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SUMMARY This study evaluates the effects of some non-learning
blind bandwidth extension (BWE) methods on state-of-the-art automatic
speaker verification (ASV) systems. Recently, a non-linear bandwidth ex-
tension (N-BWE) method has been proposed as a blind, non-learning, and
light-weight BWE approach. Other non-learning BWEs have also been de-
veloped in recent years. For ASV evaluations, most data available to train
ASV systems is narrowband (NB) telephone speech. Meanwhile, wideband
(WB) data have been used to train the state-of-the-art ASV systems, such as
i-vector, d-vector, and x-vector. This can cause sampling rate mismatches
when all datasets are used. In this paper, we investigate the influence of
sampling rate mismatches in the x-vector-based ASV systems and how
non-learning BWE methods perform against them. The results showed that
the N-BWE method improved the equal error rate (EER) on ASV systems
based on the x-vector when the mismatches were present. We researched
the relationship between objective measurements and EERs. Consequently,
the N-BWE method produced the lowest EERs on both ASV systems and
obtained the lower RMS-LSD value and the higher STOI score.
key words: blind bandwidth extension, non-linear function, automatic
speaker verification, i-vector, x-vector

1. Introduction

Automatic speaker verification (ASV) refers to a technique
that uses voices to identify people. Recent state-of-the-art
ASV techniques include i-vector approach [1], [2], prob-
abilistic linear discriminant analysis (PLDA) classifier [3],
and methods based on the x-vector [4]–[6]. Thanks to
these methods, the performance of ASV systems has dra-
matically improved with narrowband (NB) or wideband
(WB) databases, such as the National Institute of Stan-
dards and Technology (NIST) speaker recognition evalua-
tion (SRE) [7] or Speaker In The Wild (SITW) [8]. The
state-of-the-art ASV systems require a large amount of
training data for obtaining high performance, and data aug-
mentation is regarded as an important factor for ASV per-
formance. It is well known that almost databases released
by NIST SRE series are sampled at 8 kHz (NB) and the
SITW database is sampled at 16 kHz (WB). Additionally,
some databases sampled at 32, 48 kHz, and so on. There-
fore, sampling mismatch problem has already happened and
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discussed in ASV research area [9]–[11]. Moreover, some
applications using voice patterns adopt client server system
(CSS). These CSSs are required to assume many communi-
cations technology which including several bandwidth lim-
itations and recording environments. Depended on these
assumptions, sampling mismatch problems are caused in
some steps of these systems. When mismatches are present,
data that has a higher sampling rate is usually downsampled
to a lower one [12]. However, downsampling all training
data and reconstructing the ASV systems is expensive. It is
well-known that a lower sampling rate causes the ASV per-
formance to decline [9]–[11]. Bandwidth extension (BWE)
methods can be used to correspond lower sampling rates to
higher ones.

BWE methods are regarded as methods for restoring
high-frequency losses caused by band limits [9], [10], [13]–
[17]. Many BWE approaches have already been reported,
and they are categorized into blind or non-blind methods.
Non-blind methods restore missing frequency components
from auxiliary high-frequency (HF) side information en-
coded into a data stream together with low-frequency (LF)
components. In contrast, blind methods use only the LF
components to estimate missing HF components. A re-
cently non-linear BWE (N-BWE) method took a blind,
non-learning, and light-weight BWE approach [9]. It per-
formed well in terms of speaker individuality and root mean
square log-spectral distortion (RMS-LSD). Additionally,
non-learning BWE approaches are also reported [9], [17]–
[20] in recent years.

Although it has been reported that some ASV ap-
proaches estimate models with NB and WB mixed data [10],
few studies have investigated the effects of applying non-
learning BWE methods to ASV systems. For training
i-/x-vector-based ASV systems, there are three portions of
dataset: for training speaker independent (SI) models, for
estimating enrollment vectors and for evaluation. Therefore,
we assume two scenarios as sampling mismatch problems.
One is that the data for SI models are sampled at WB condi-
tions, but the enrollment and the evaluation data are sampled
at NB conditions. The other one is that the data for SI and
enrollment models are sampled at WB conditions, but the
evaluation data is sampled at NB conditions. These mis-
match problems are depended on systems and this problem
will also face between WB and super WB conditions. Since
the non-learning BWE methods have some possibilities to
relax the mismatch problems, this paper investigates their
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effectiveness.
This paper is focused on the non-learning BWE meth-

ods and the effects they have on i-/x-vector-based ASV sys-
tems. To evaluate the effectiveness of the BWE methods, we
carried out an i-/x-vector-based ASV experiment and some
objective evaluations. Consequently, the N-BWE method
produced the lowest equal error rate (EER) and obtained one
of the lowest RMS-LSD values and the higher STOI scores
from the SITW dataset.

Section 2 of this paper introduces the state-of-the-art
ASV systems under in our experiment. Section 3 describes
non-linear bandwidth extension, and Sect. 4 illustrates our
experimental setup and the results. Finally, Sect. 5 con-
cludes the paper.

2. Automatic Speaker Verification Systems

In this section, two ASV systems based on i-vector and x-
vector are described as state-of-the-art systems. The block
diagram of a basic ASV system with a Gaussian-PLDA ap-
proach is depicted in Fig. 1. Based on this diagram, both
ASV systems were built using the Kaldi toolkit [21].

2.1 I-Vector

As one of the state-of-the-art ASV system, i-vector-based
ASV system has been reported [1]. By using factor analysis,
a low-dimensional vector containing speaker individuality is
extracted from a supervector mean Mu for given utterance u
as follows:

Mu = mubm + Tωu, (1)

where mubm ∈ RCDF and T ∈ RCDF×DT are called a Gaussian
Mixture Model (GMM) supervector of a universal back-
ground model (UBM) and a total variability (TV) matrix, re-
spectively. C is the number of mixture components, and DF

is the dimension of acoustic features. ωu ∈ RDT is a latent
variable for the utterance u, and it is called “i-vector.” DT

represents the dimension of i-vector. ωu follows a Gaussian
distribution N(ω; 0, I) whose mean vector is 0 ∈ RDT and the
covariance matrix is an identify matrix 1 ∈ RDT×DT .

2.2 X-Vector

A recent ASV system based on the x-vector is an-
other recently developed state-of-the-art system called “x-
vector” [22]. Speaker individuality is represented by DNN

Fig. 1 Block diagram of ASV system

embeddings [23]. The DNN structure is shown in Fig. 2.
The inclusion of its means that feature vectors are extracted
from an utterance s and frame t = {1, · · · ,T }. The x-vector
that represents the speaker is extracted from the embedding
layers. The second or third layers of the DNN structure in
Fig. 2 works with the framewise input features. The statis-
tics pooling layer aggregates all T frame-level outputs from
previous layer and computes its mean and standard devia-
tion. The embedding layers (Emb) are trained with segment-
wise features through the pooling layer.

2.3 Gaussian PLDA

For ASV back-end systems, a Gaussian-PLDA (G-PLDA)
classifier is used [24]. On G-PLDA-based frameworks, an
extracted vector ωu from an utterance u, is assumed to be an
observation from a probabilistic generative model as

ωu = ω̄ + Φδ + Γζu + εu, (2)

where Φ and Γ are basis matrices that span speaker and
channel subspace. δ and ζu express channel and speaker fac-
tors as standard Gaussian distributions. εu expresses resid-
ual error and follows a Gaussian distribution N(ω; 0, I), the
mean vector of which is 0 ∈ RDT and the covariance matrix
Σ ∈ RCDF×CDF . ω̄ is a global offset. In Eq. (2), the probabil-
ity generation model is defined as follows,

p(ωu|δ, ζu) = N(ω̄ + Φδ + Γζu,Σ). (3)

When the vectors of enroll speaker ω1 and test speaker ω2

are obtained, an identification score s(ω1, ω2) is calculated
as the log-likelihood ratio for hypothesis test, which was in
the same speaker model (H1) and in the different speaker
models (H0) as shown below,

s(ω1, ω2) = log
p(ω1, ω2|H1)

p(ω1|H0)p(ω2|H0)
. (4)

The G-PLDA-based back-end approach can reduce the
acoustic fluctuation and improve ASV system performance.

Fig. 2 DNN structure for x-vector
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3. Bandwidth Extension Methods

3.1 Categories of BWE Methods

In the last decade, many bandwidth extension (BWE) meth-
ods have been developed [9], [10], [18], [25]. These ap-
proaches can be categorized into blind or non-blind and non-
learning or learning. Non-blind approaches must reserve
some bandwidth for additional information, which helps to
restore missing information by controlling the bandwidth.
However, received servers have to change their decoding
protocols for non-blind BWE methods. Blind approaches
restore the missing information without providing any addi-
tional information. Almost all research focuses on the blind
approach because it requires no change to the decoding pro-
tocols. For the other category, many learning approaches are
reported [10], [25]–[27] thanks to the development of ma-
chine learning techniques. Learning approaches require a
large amount of speech data and hard parameter tuning to
train accurate models. Non-learning approaches have also
been developed [9], [17]–[19]. Non-learning methods fo-
cus on situations that involve lightweight processing and
constraint-free amounts of data. In this paper, we focus on a
blind and “non-learning” BWE approach.

3.2 Spectrum Shifting

The spectrum shifting method (SHIFT) was reported in [28].
After a basic upsampling with a low-pass filter and an in-
terpolator factor, this method modulates the period under
Fs0/2 [Hz] for generating high frequency components. A
WB signal can be obtained by filling the free frequency do-
main (Fs0/2 − Fs1/2) [Hz]. Here, Fs0 and Fs1 are original
sampling rate and upsampled rate, respectively. When m is
an upsampling factor, Fs1 = mFs0 .

3.3 Linear Prediction-Based Analysis-Synthesis

Linear prediction-based analysis-synthesis (LPAS) was de-
veloped in [18] as a SHIFT-based method. This algorithm
is based on a classical source-filter model. Spectral enve-
lope and residual error information is extracted from an NB
signal by using linear prediction analysis. The generated
high-frequency components are more natural than the ones
generated by SHIFT.

3.4 N-BWE

An N-BWE method has been proposed as a blind and non-
learning BWE approach [9]. Figure 3 shows the block dia-
gram of the N-BWE method. By using basic upsampling, an
upsampled signal yUP[n] is generated. n is a discrete-time
variable. yUP[n] has no harmonic components. Before pass-
ing the non-linear function, the upsampled signal yup[n] is
convoluted a filter hA[n] to select the bandwidth to generate

Fig. 3 Block diagram of non-linear BWE method

harmonics. The signal denotes yF(A)[n]. A non-linear func-
tion can be used to generate harmonic components, and a
general form is given by

yNLF[n] = sgn(yF(A)[n]) · |yF(A)[n]α| × β, (5)

with

sgn(a) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 (a > 0)

0 (a = 0)

−1 (a < 0)

, (6)

where α and β are the parameters for controlling the nonlin-
earity, and a is a real value. Here, α and β control the fre-
quency of the generated harmonics and the magnitude of the
generated components, respectively. Since these parameters
affect the quality of extended signal ybwe[n] non-linearly, the
speaker verification performance sometimes depends on the
parameters. There are some approaches to decide the pa-
rameter values by trying many parameters or solving some
optimization problems. This paper focuses on investigating
the abilities of N-BWE, the parameters uses the same of [9]
which have already searched the adequate parameters. To
control the bandwidth of yF(A)[n], in this paper, the impulse
response of a digital filter, hA[n] in Fig. 3, is assumed to be
an all pass filter.

hA[n] =

⎧
⎪⎪⎨
⎪⎪⎩

1 (n = 0)

0 (n � 0)
. (7)

The limiter in Fig. 3 is given as,

yHB[n] =

⎧
⎪⎪⎨
⎪⎪⎩

yNLF[n], yNLF[n] ≤ Th

M, yNLF[n] > Th
, (8)

where Th is a threshold value and M is a constant value. The
parameters Th and M control clipping conditions of input
signals. Basically, these parameters set to the same value,
and it depends on encoding methods or using software. Fi-
nally, in order to reduce aliasing artifacts, the digital filter
hB[n] is used. For the digital filters hA[n] and hB[n], a high-
pass, a low-pass or a band-pass filter can be used. On the
basis of procedure in Fig. 3, it is expected that yHB[n], will
compensate for high-frequency losses. Based on the proce-
dure in Fig. 3, it is expected that yHB[n] will compensate for
high-frequency losses.

3.5 Spectrogram Comparison of Each Method

Figure 4 shows spectrogram examples of speech signals.
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Fig. 4 Spectrogram examples of speech signals (m = 2; FS 0 = 8kHz,
FS 1 = 16kHz)

First, the original signal (a) sampled at 16 kHz has fre-
quency components from 0 kHz to 8 kHz. The upsampled
signal (b) from 8 kHz to 16 kHz contains only low fre-
quency components under 4 kHz. Signal (c) was generated
by SHIFT, signal (d) was generated by LPAS, and signal
(e) was generated by N-BWE. As these examples show, the
BWE methods in Figs. 4 (c), (d) and (e) can generate har-
monic components in high-frequency components. The root
mean square log spectral distortion (RMS-LSD) scores are
also shown in Fig. 4. The lower the RMS-LSD score, the
closer the degraded speech sample is to its reference. Even
though the spectrogram of N-BWE showed a low similarity,
N-BWE can generate the harmonics with smoothing effects.
Consequently, it can be seen that the RMS-LSD score of
N-BWE was the lowest of all BWE methods.

4. Experiments

To evaluate the effectiveness of the non-learning BWE
methods, we carried out ASV experiments based on i-vector
and x-vector and some objective evaluations.

4.1 Database

The Kaldi toolkit [21] and a recipe for the Speaker In
The Wild (SITW) database [8] were used to construct an
ASV system. The Voxceleb dataset was used to estimate
the DNN and G-PLDA. There were two versions of this
dataset: Voxceleb 1 [29] and Voxceleb 2 [30]. The databases
were collected from interview videos uploaded to YouTube.
Voxceleb 1 contained over 100,000 utterances from 1,251
celebrities. Voxceleb 2 contained over 1,000,000 utter-
ances from 6,112 celebrities. In both versions, the speak-
ers spanned a wide range of different ethnicities, accents,
professions, and ages. Their nationalities and genders were
provided as well. The evaluation task was performed us-
ing the SITW database, which contained 299 speakers. The
SITW database was split into two tasks. It named devel-
opment task and evaluation one. There was no speaker
belongs to both tasks. The development task contained
2,597 target and 335,629 impostor trials from 119 unique
speakers and the evaluation task contained 3,658 target and
718,130 impostor trials from 180 unique speakers. Un-
like existing databases for ASV systems, this data was not
recorded under controlled conditions and contained real

noise. We tested each method on the core-core task of the
Kaldi recipe for SITW. Although SITW and Voxceleb were
collected independently, there was an overlap of 60 speakers
in both datasets. The overlapping speakers were removed
from Voxceleb prior to using them as training data. Two
noise databases were used for data augmentation. One was
MUSAN [31], which consisted of music, noise, and speech.
It contained over 900 noise signals, 42 hours of music from
various genres and 60 hours of speech from 12 languages.
We used this database for adaptive noise to Voxceleb. An-
other one was RIRNOISE [32], which consisted of three
database: pointsource-noises, real-rirs-isotropic-noises, and
simulated-rirs. We used only simulated-rirs. All databases
were sampled at 16 kHz.

4.2 Experimental Conditions

We assumed two scenarios. The first was that the sampling
rate mismatch was caused by the enrollment and the test data
(Test). The second was that the training data of the speaker
independent models was of a higher sampling rate, and the
enrollment and test data were of a lower sampling rate (En-
roll). In both scenarios, the WB signals were sampled at
16 kHz and the NB signals were sampled at 8 kHz. Equal
error rate (EER) was used as an evaluation measurement.
EER is the point where the false rejection rate (FRR) and
the false acceptance rate (FAR) become equal, the lower the
value, the better the accuracy. For objective evaluation, per-
ceptual evaluation of speech quality (PESQ), short-time ob-
jective intelligibility measure (STOI), and RMS-LSD were
used. PESQ and STOI represented the naturalness of de-
graded speech by comparing with a reference one. The
PESQ score ranged from 0 (bad) to 4.5 (best). The STOI
value ranged from 0.0 (bad) to 1.0 (best). RMS-LSD mea-
sured the log spectral distance between a degraded piece of
speech and a reference one.

For i-vector-based systems, standard mel-frequency
cepstrum coefficients (MFCCs) extraction was used as
acoustic feature. In the feature extraction, we used 24-order
MFCCs computed over a window of 25 ms with a frame
shift of 20 ms. The UBM had 2048 Gaussian mixtures com-
ponents. The system used a 400 dimensional i-vector ex-
tractor and G-PLDA scoring. Although SI models, such as
UBM, TV matrix and G-PLDA, were trained with Voxceleb
1 and Voxceleb 2, training models required too much time
because both databases contained over 1,000,000 utterances.
Therefore, UBM and TV matrix were trained after reducing
them from 1,000,000 to 100,000 utterances as original data.
For x-vector-based systems, we used 30-order MFCCs with
the same manner of the i-vector-based system. The DNNs
and the G-PLDA models were trained 100,000 utterances in
Voxceleb1 and Voxceleb 2 as original data and augmented
data by using MUSAN and RIRs noise database. Table 1
shows the DNN architecture used by the x-vector systems.
These conditions for the x-vector-based systems were set to
the same as the original paper of x-vector [22].
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Table 1 DNN architecture

Layer Layer context Total context input x output

Frame1 {t-2, t+2} 5 120x512
Frame2 {t-2, t, t+2} 9 1536x512
Frame3 {t-3, t, t+3} 15 1536x512
Frame4 {t} 15 512x512
Frame5 {t} 15 512x1500

Stats pooling [0,T) T 1500Tx3000
Segment6 {0} T 3000x512
Segment7 {0} T 512x512
Softmax {0} T 512xS

Table 2 Experimental conditions for each method

Scenario Condition SI model Enroll Test

Mismatch
(A) UP UP UP

scenario
(B) SHIFT SHIFT SHIFT

(Enroll)
(C) LPAS LPAS LPAS

(D) N-BWE N-BWE N-BWE

Mismatch
(E) UP UP

scenario
(F) SHIFT Original Original SHIFT

(Test)
(G) LPAS (16 kHz) (16 kHz) LPAS

(H) N-BWE N-BWE
Matched (I) Down 8 kHz 8 kHz

cond. (J) Org 16 kHz 16 kHz

4.3 Comparison Conditions

Based on the two mismatched scenarios, comparison condi-
tions were set as shown in Table 2. The details were denoted
as follows.

(A) UP (Enroll)
The enroll and test data was simply upsampled. Note
that the speech samples did not include any harmonic
components in the high-frequency components.

(B) SHIFT (Enroll)
The enroll and test data was extended by SHIFT [17].
The band-pass filter was the same as [28].

(C) LPAS (Enroll)
All data for enroll and test was extended by LPAS [18]
from the NB speech sampled at 8kHz.

(D) N-BWE (Enroll)
The enroll and test data was extended by using the N-
BWE method [9] from the NB speech sampled at 8kHz.
The optional filter hA[n] was defined as the all pass fil-
ter, and the filter hB[n] was defined as Fig. 5. To control
the nonlinearity, α and β in Eq. (5) were set to 2 and
100,000, respectively.

(E) UP (Test)
For the enrollment data, original speech was used. The
test data was upsampled from 8kHz to 16kHz.

(F) SHIFT (Test)
From (E), the test data was extended by SHIFT. The
band-pass filter used [28].

(G) LPAS (Test)
From (E), the test data was extended by LPAS.

(H) N-BWE (Test)
From (E), the test data was extended by N-BWE. The

Fig. 5 Filters designed for N-BWE

Fig. 6 EERs for each conditions on ASV systems based on i-vector (de-
velopment task)

filters and parameters were the same as (D).
(I) Down

All data was downsampled from 16 kHz to 8 kHz. This
is denoted as NB signal x[n] in Fig. 3.

(J) Org
All data was used without any modifications.

The parameters for N-BWE (α, β, Th, M) were decided from
the preliminary experiments with different databases. Thus,
the parameters were not optimized for these experiments
of this paper, but the parameters commonly fitted to many
databases. Since it is expensive to reconstruct the UBM, TM
matrix and G-PLDA models for each condition, the original
data sampled at 16 kHz was used for the SI models. In the
case of (I) Down, all data were downsampled at 8 kHz.

4.4 Results

4.4.1 I-Vector

Figures 6 and 7 show the EERs on the i-vector systems for
each of the conditions under a development task and an eval-
uation one, respectively. From Fig. 6, comparing the EER
of (I) with that of (J), when the sampling rate mismatch was
not present, the ASV performance did not change signifi-
cantly. However, when the mismatch was present, the EERs
of (A) - (H) were considerably higher than those of (I) and
(J). This result suggests that the sampling rate mismatches
are still big problems. The results of the Enroll scenario
and the Test scenario had a similar tendency. The EERs of
(A) and (E) were high due to the missing information, al-
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Fig. 7 EERs for each conditions on ASV systems based on i-vector
(evaluation task)

Fig. 8 EERs for each conditions on ASV systems based on x-vector (de-
velopment task)

though the EERs of SHIFT-based methods (B) and (F) were
obtained higher values. This means that SHIFT can gener-
ate WB components. However, the speaker individualities
were not suitable. The LPAS and N-BWE conditions ob-
tained lower EERs than (A) and (E). This proves that the
non-learning BWE had some potential for reducing mis-
match problems without the learning process. Both EERs
of N-BWE achieved significantly lower EERs in both sce-
narios. The EERs of “test” scenario were lower than those
of “Enroll” scenario. It can be considered that the sampling
mismatch between the SI models and the enrollment utter-
ances makes the accuracy of the enrollment models low. In
the test scenario, the enrollment model can estimate ade-
quately, and the BWE methods help to compensate for the
sampling mismatch between the enrollment models and test
utterances. From Fig. 7, it can be seen that almost all results
were the same as Fig. 6. Thus, the BWE methods had the
same effects for the different tasks.

4.4.2 X-Vector

Figures 8 and 9 show the EERs on the x-vector systems for
each of the conditions under the development and evaluation
tasks, respectively. Comparing the results of the i-vector
with that of x-vector, the performance of x-vector worked
well than that of i-vector. It showed the x-vector-based
ASV systems work with the high performance. However,
the sampling mismatches still caused to obtain considerably
high EERs. The EER of all conditions had almost the same
tendency as the i-vector results. Therefore, the potential of
the BWE methods to reduce mismatch problems was not de-
pendent on the ASV systems.

Fig. 9 EERs for each conditions on ASV systems based on x-vector
(evaluation task)

Fig. 10 Objective results for each BWE methods

4.4.3 Objective Results

Figure 10 illustrates the PESQ, STOI or RMS-LSD scores
for each BWE method. Objective experiments were per-
formed with all utterances of the SITW database. From the
results, BWE methods have no precise advantage in terms
of the objective measurements. However, N-BWE obtained
slightly better scores than SHIFT and LPAS. Comparing
the RMS-LSD scores with EERs of Figs. 6–9, the method
which obtained the lower RMS-LSD tends to obtain the
lower EER.

Consequently, N-BWE can help to compensate for the
bandwidth limitation for state-of-the-art ASV systems.

5. Conclusion

This paper evaluated the effects of some non-learning and
blind BWE methods on ASV systems based on i-vector
and x-vector. The N-BWE is a blind, non-learning and
lightweight BWE approach. Other non-learning BWE
methods have also been developed in recent years. We in-
vestigated the influence of sampling rate mismatches and
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the performance of BWE methods against mismatches. The
N-BWE method improved the EER of ASV systems based
on i-vector and x-vector. We researched the relationship
between objective measurements and EERs. Consequently,
the N-BWE method produced the lowest EER and obtained
the lower RMS-LSD value and the higher STOI score.

In the future, the BWE methods will be evaluated with
regards to the algorithmic delay. Because BWE methods
generate amplitude information only, phase estimation will
be adopted to make reconstructed signals more natural. We
will also discuss about scoring approaches to evaluate the
BWE methods. Additionally, since the BWE methods can
use as a technique for data augmentation, the effectiveness
will be evaluated.
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