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SUMMARY In this paper, we propose secure dictionary learning based
on a random unitary transform for sparse representation. Currently, edge
cloud computing is spreading to many application fields including ser-
vices that use sparse coding. This situation raises many new privacy con-
cerns. Edge cloud computing poses several serious issues for end users,
such as unauthorized use and leak of data, and privacy failures. The pro-
posed scheme provides practical MOD and K-SVD dictionary learning al-
gorithms that allow computation on encrypted signals. We prove, theoreti-
cally, that the proposal has exactly the same dictionary learning estimation
performance as the non-encrypted variant of MOD and K-SVD algorithms.
We apply it to secure image modeling based on an image patch model. Fi-
nally, we demonstrate its performance on synthetic data and a secure image
modeling application for natural images.

key words: sparse representation, dictionary learning, random unitary
transform, secure computation

1. Introduction

With the advent of the big data era, the amount of digital
data continues to grow. Sparse modeling [1]-[8] is drawing
attention as an information processing model for extracting
useful information hidden in large amounts of data. It rep-
resents observed signals effectively as a linear combination
of a small number of bases chosen from the basis functions
trained by a dictionary learning algorithm. Sparse modeling
has yielded numerous processing applications for sources
such as image/video, audio, biological signal, and seismic
data [8].

Another trend is the spread of edge cloud computing,
which includes big data analysis, to many fields. However,
edge cloud computing confronts end users with several se-
rious issues, such as unauthorized use and leak of data, and
privacy failures, due to the unreliability of providers and ac-
cidents [9]. Most of the many studies that have examined the
processing of encrypted data use homomorphic encryption
(HE) and secure multiparty computation (MPC) [10]-[13].
Even though service providers cannot directly access the na-
tive content of the encrypted signals, they can still employ
HE and MPC. In particular, fully homomorphic encryption
(FHE) allows arbitrary computation on encrypted data. It
imposes high computation complexity and large cipher text
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size, so further advances are needed for applications such as
big data analysis and advanced image/video processing [13].

Our study focuses on the secure but practical compu-
tation of sparse modeling. The proposed scheme, based
on the random unitary transform, has much lower com-
putation complexity and small cipher text size than either
HE or MPC. We have already proposed a secure Orthogo-
nal Matching Pursuit (OMP) computation method for image
modeling [14] and network BMI decoding [15]. OMP is one
of the pursuit algorithms that choose the basis and calculate
the sparse coeflicients sequentially. Secure OMP can choose
the basis and estimate the sparse coefficients from encrypted
signals.

In this paper, we propose a secure sparse dictionary
learning method [16]-[18]. Method of Optimal Direc-
tion (MOD) [4] and K-Singular Value Decomposition (K-
SVD)[5] are well-known dictionary learning algorithms
that seek dictionaries that fit the observed signals. MOD
is known for its simple way of updating the dictionary. K-
SVD is an adaptive learning algorithm that generalizes the
K-means clustering algorithm. The proposed scheme yields
practical MOD and K-SVD algorithms that allow compu-
tation on encrypted signals. The secure dictionary learning
proposed here not only protects observed signals, but also
attains the same estimation performance as that of sparse
dictionary learning for non-encrypted signals. We apply
the proposed secure dictionary learning to secure image
modeling, which can be used for applications such as an
Encryption-then-Compression (EtC) system [14], [19], and
secure image pattern recognition [20]. Finally, we demon-
strate its performance on both synthetic data and a secure
image modeling application for a natural image. We show
that secure MOD and secure K-SVD can represent the im-
age with fewer sparse coeflicients, even when processing is
performed in the encrypted domain. We evaluate the secu-
rity strength of the proposed method from the viewpoints
of quality and visibility of decoded/decrypted images. It is
shown that unauthorized users can only extract images of
unusable quality and visibility. The organization of this pa-
per is as follows. Section 2 overviews dictionary learning.
In Sect. 3, we propose a secure MOD and K-SVD compu-
tation process. Section 4 illustrates its application to secure
image modeling. Section 5 shows numerical assessment re-
sults. Conclusions are given in Sect. 6.

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers
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2. Overview of Dictionary Learning

In this section, we overview dictionary learning and two rep-
resentative MOD and K-SVD algorithms.

2.1 Sparse Representation

Given an observed signal set Y = {y;} | € R™*N we assume
that there exists an over-complete dictionary matrix D =
{di,...,dg} € RMK whose columns contain K prototype
signal-atoms d;. As shown in Fig. 1, Y can be represented
as a sparse linear combination of these atoms:

Y = DX (1)

where X = {x;}?V | € RFV is a set of sparse coefficients.

If M < K and D is a full-rank matrix, an infinite num-
ber of solutions to the representation problem are available.
The solution with the fewest number of nonzero coefficients
is certainly an appealing representation. This sparsest rep-
resentation is the solution given by

min ¥ - DX|% subjectto Vi, |lxillo < To )

where ||-]|y is the [p-norm which counts the nonzero entries
of the vector. The notation ||A||r stands for the Frobenius

norm, defined as ||Allr = /X j A2 Sparse dictionary learn-

ing solves the optimization problem of Eq. (2) by alternately
repeating two steps: 1) sparse coding and 2) dictionary up-
date. In the sparse coding step, fix the dictionary D and es-
timate the sparse coefficient set X. In the dictionary update
step, fix X and update the dictionary D.

MOD and K-SVD are well known sparse dictionary
learning algorithms. One key property of MOD is its sim-
ple way of updating the dictionary. K-SVD is the adaptive
learning algorithm that generalizes the K-means clustering
algorithm. When forced to have a unit coefficient for one
atom, it exactly reproduces the K-means algorithm. MOD
and K-SVD use the same sparse coding step, but employ
different methods of updating the dictionary. The following
overviews the dictionary learning algorithm:

Dictionary Learning Algorithm

Task: Train a dictionary D to sparsely represent the data
Y = {yi}f\i , by approximating the solution to the problem

T B

Y € RMXN De RMXK

Fig.1 Sparse coding: observed signals are effectively represented as a
linear combination of a small number of bases.
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posed in Eq. (2).

Initialization: Set the dictionary matrix D € RM*X with [,
normalized columns.

Main Iteration: Repeat until convergence (stopping rule):

- Sparse Coding Step: Use a pursuit algorithm such as
Matching Pursuit (MP) [6], Orthogonal Matching Pursuit
(OMP) [7], to approximate the solution of

arg min ”yl- - Dx,“i subject to  ||x;llo < To,

Xi

for i=1,2,---,N. 3)

- Dictionary Update Step: Update D by MOD or K-SVD.
The dictionary update steps are shown in the following sec-
tion.

2.2 MOD Dictionary Update

MOD uses a pseudo inverse to minimize the squared error
between Y and DX. For the given Y and the fixed X ap-
proximated in the sparse coding step, update the dictionary
by the formula:

D = arg min||Y - DX||%
D

=yYXx'(xx". 4)

2.3 K-SVD Dictionary Update Step

Unlike MOD, K-SVD updates one atom sequentially. Fig-
ure 2 shows the k-th atom d and the corresponding sparse
coefficient vector x’}. For each atom d; (k = 1,2,--- ,K in
D), update it by the following steps:

1) Compute the overall representation error matrix E; by

K
E =Y-) dpx]. 5)
Jj#k
2) Define the group of indexes that satisfy the following:
we={il1<i<K, xp(i)#0} (©6)

Define Q; as a matrix of size N X |wy| with ones on the
(wi (i), )th entries and zeros elsewhere. Multiplication Ef =
EQ; creates a matrix that includes a selection of error
columns that use the atom dj.

'LIJ

Y € RMXN De RMXK

Fig.2  One atom d and corresponding sparse coefficient vector x’}.
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3) Apply Singular Value Decomposition (SVD) to Eff:

n
Ef = UAVT = Zu,‘ . O’iViT. (7)
i=1

Choose the updated dictionary atom dj to be the first col-
umn u;. Update coefficient vector x’,; to be the first column
multiplied by the first eigenvalue o-lvlT.

3. Secure Dictionary Learning

In this section, we propose secure MOD and K-SVD dic-
tionary learning algorithms that allow computations in the
encrypted domain.

3.1 Overview of Secure Dictionary Learning

Figure 3 illustrates the architecture of secure dictionary
learning. At the local site, a random unitary transform
Q, € CYN with a private key p is applied to a given set
of training signals Y. The encrypted set Y= {y,} L, is sent to
the edge and cloud site. By using just the encrypted set ¥,
the secure dictionary learning method designs the encrypted
dictionary D in the encrypted domain. The encrypted set ¥
is generated by

Y=T(.p=0,Y. ®)
Note that the random unitary matrix @, satisfies
0,0,=1 9

where [-]* and I mean the Hermitian transpose operation and
the identity matrix, respectively. Gram-Schmidt orthogonal-
ization is a typical method for generating @,,. In addition to
unitarity, @, must offer randomness when generating the en-
crypted signal. The following is an example of generating
Q,, by using multiple unitary matrices.

Q,=H,AL, (10)

where H, is an orthogonal matrix generated using Gram-
Schmidt orthogonalization, A is a unitary transform having
no randomness such as discrete Fourier transformation or
Hadamard transformation, and L, is a unitary matrix with
randomness generated by a pseudorandom number genera-
tor. Note that H,AL, satisfies

(H,AL,)"(H,AL,) = I. (11)

Random
unitary transform

Encrypted
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Security analyses of the protection schemes have been
demonstrated from the aspects of brute-face attack, diver-
sity and irreversibility [21]. The encrypted vector has the
following properties:

- Property 1: Conservation of Euclidean distances

i = wills = [l = 51l (12)
- Property 2: Norm isometry
lyills = 19155 - (13)

- Property 3: Conservation of inner products
YTszyA?ﬁj‘ (14)
Here we consider the following optimization problem:
min] |7 - DX|[. subjectto Vi, llxillo <To, (15

where D = {dy,...,dx} € RM*K is an encrypted dictionary.
The following is an overview of the secure dictionary learn-
ing algorithm:

Secure Dictionary Learning Algorithm

Task: Train an encrypted dictionary Dto sparsely represent
data Y = { j}i}f\i , by approximating the solution to the prob-
lem posed in Eq. (15).

A

Initialization: Set the encrypted dictionary matrix D €
RM*K with I, normalized columns.

Main Iteration: Repeat until convergence (stopping rule):

- Sparse Coding Step: Use OMP to approximate the solu-
tion of

arg min”j’i - ﬁxi”; subject to  |x;llo < T,
Xi

for i=1,2,---,N. (16)

We have already proven that the solution obtained by solv-
ing Eq. (16) by OMP is equal to the solution yielded by the
non-encrypted variant of the OMP algorithm [14], [15] un-
der the condition D = Q,D. We refer to the secure variant
as secure OMP.

- Dictionary Update Step: Update D by secure MOD or
secure K-SVD. The dictionary update steps are shown in
the following section.

Edge/Cloud

Secure dictionary learning (' " A
| ]

o (e

-~ (e

observed signal

Encrypted N L ;'/
dictionary D Sparse

coefficients X

Encrypted |
observed signal Y

Fig.3  Architecture of secure dictionary learning.
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3.2 Secure MOD Dictionary Update

The derivation of Eq.(15) with respect to D yields (¥ —
DX)X" = 0, which leads to

D= arg min“f/— DX”?
D
=¥xT(xx") . (17)

The encrypted dictionary D can be calculated by Eq. (17).
The following shows the relationship between the non-
encrypted dictionary D and the encrypted dictionary D.
From the definition ¥ = Q,Y, Eq. (17) can be rewritten as

D=9, yx"(xx"". (18)

3.3 Secure K-SVD Dictionary Update Step

Similar to the derivation of the non-encrypted version of K-
SVD, the overall representation error matrix Ej is written as

Eszf—zajx;. (19)

Restrict £ by choosing only the columns corresponding to
wy, and obtain E,’:. Apply SVD:

Ef = DAVT = a6l (20)

i=1

Choose the updated dictionary atom di = il. Updated co-
efficient vector x% = &9} .

Next, we show the relationship between the solution
obtained by K-SVD (i.e. d; = u, xfe = o-lvlT) and the so-
lution yielded by secure K-SVD (i.e. di = @, &% = 619]).
Similar to the derivation of the non-encrypted variant of K-
SVD, the overall representation error matrix E; of Eq. (19)
can be written as

K
A .
Be=¥-) dx,
J#k

=0,E;, ey

Random
unitary transform

(0, }—

Encrypted
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where we assume that d; = Q,d; which is derived from
the condition D = Q[,D [14], [15] in the sparse coding step.
Multiplication Ef = Eka creates a matrix that includes
a selection of error columns that use the atom d;. Using
Eq. (21), Ef can be written as

E = By
= 0,EQ = Q,E}. (22)

Using Eq. (7), i.e. the result of applying SVD to the non-
encrypted variant of overall representation error matrix EX,
Eq. (22) can be decomposed as follows:

E; = 0,Ef
=0, > ui-owl. (23)

i=1

Therefore, the sparse coefficients and the dictionary atom of
the encrypted version of K-SVD can be expressed as those
of the non-encrypted version of K-SVD as follows:

-Sparse coefficients : £f = oyv! (24)

-Dictionary atom : zAlk = qul 25)

Equations (24)—(25) can be shown as described in Appendix
A and Appendix B, respectively.

4. Secure Image Modeling

In this section, we apply the secure dictionary learning pro-
posal to secure image modeling.

4.1 Opverview of Secure Image Modeling

Figures 4 and 5 show the architectures of 1) learning step
and 2) encoding and decoding steps of secure image model-
ing, respectively. In the learning step, content owner Alice
wants to securely transmit images for dictionary learning to
public service provider Charlie. Alice wants Charlie to de-
sign the encrypted dictionary D. The details of the learning
step are shown in Sect. 4.2.

At the encoding and decoding steps, content owner
Alice wants to securely transmit images to recipient Bob,
via a public service provider Charlie. Alice wants Charlie

Charlie
Edge/Cloud

Secure dictionary learning (™ "=

/f)

training samples -

)

L
Encrypted A Encrypted "

training samples Y dictionary D Sparse X
coefficients
e |

Fig.4  Architecture of learning step for secure image modeling.
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Alice Charlie
Local Edge/Cloud Secure OMP computation
Random .- -
Unitary transform e
\ . O Post
x Encrypted = —_— 9
- -J Classification
Y, Encrypted Encrypted _ ete
images Y, dictionary D Sparse
coefficients X'
f————
-
Bob
Local Hermitan
Encrypted
dictionary D

transform
! .‘ :
=

Y= Q;[f)X /3 Encrypted

dictionary 1)

Sparse
coefficients X

coefficients X

Fig.5  Architecture of encoding (upper) and decoding (lower) steps for secure image modeling.

to store images or analysis images etc. The proposed sys-
tem works as an EtC system[19]. In conventional secure
image transmission systems, image compression has to be
conducted prior to image encryption. On the other hand,
as EtC systems are expected to provide privacy protection,
they allow image encryption to be conducted prior to com-
pression. Even if the transmitted data leaks, privacy can
be maintained because the data remains encrypted. Fur-
thermore, the proposed system can work as a secure im-
age pattern recognition system by processing the estimated
sparse coefficients as shown in Ref. [20]. The public service
provider Charlie provides the pattern recognition results to
Alice and Bob without viewing their image contents. This
offers a surveillance camera system and an SNS photo ser-
vice, etc. The details of the encoding and decoding step are
shown in Sect. 4.3.

4.2 Secure Dictionary Learning for Image Patches

In secure image modeling, training and encoding sets are
formulated around an image patch model. At the learning
step, as shown in the left side of Fig.4, we order image
patches of size VM x VM pixels lexicographically as col-
umn vectors y; € R™ (i =1,---,N;), where N, is the num-
ber of image patches for dictionary learning. Each image
patch is extracted lexicographically or randomly selected
from an image or multiple images. Next, the image patch
setY; = { yi}?jl is transformed into an encrypted image patch

set ¥, = {5}, by
Y, =T(Y..p)=Q,Y. (26)

where p; and @, are the secret key and the random unitary
transform in the learning step, respectively.

The secure dictionary learning proposed in the previ-
ous section is applied to the encrypted image patch set ¥;.
We assume that encrypted image patch set ¥, could be repre-
sented sparsely over the encrypted over-complete dictionary

D e RM*K_ By feeding the encrypted image patch set ¥;
to the secure dictionary learning algorithms, the encrypted
dictionary D is estimated and stored in the edge/cloud site.

4.3 Secure Encoding and Decoding

In the encoding step, we order image patches of size VM x
VM pixels lexicographically as column vectors, which are
then permuted randomly using a random integer gener-
ated with a secret key p.. Each image patch is extracted
from a VN x VN pixel encoded image without overlaps,
which yields N, = N/M. The resulting image patch set,
Y, = {yi}ﬁ"l, is transformed into an encrypted image patch

setY, = {j}z}f\fl by
Y.=T¥.p)=0,Y. @7)

where Q,,

step. Upon receiving the encrypted image patch set Y, and
the encrypted dictionary D designed at the learning step,
secure OMP estimates the sparse coefficients. Since the en-
crypted dictionary Dis optimized for images owned by con-
tent owner Alice, sparse coefficients can be estimated effi-
ciently whenQ, =0,,.

In the decoding step, a decoded/decrypted image patch
set Y, = {jil-}?i"l can be calculated by Y, = Q;dDX, where
pa and @, are a secret key and a random unitary transform
in the decoding step, respectively. WhenQ, =0, =0,
the proposal has exactly the same coding performance as
the non-encrypted variant of image modeling. The image
quality of decoded/decrypted image y; at each patch can be
controlled by using sparsity ratio s; or threshold €. Spar-
sity ratio s; is the ratio of the number of nonzero sparse co-
efficients to the total number of elements of the dictionary
D. Threshold ¢ determines the stopping condition of se-
cure OMP, i.e. (I-norm of reconstruction error) < . If we
want to keep each image patch quality the same, the same
threshold is set: ¢ = constant (i = 1,--- , N).

is a random unitary transform in the encoding
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5. Numerical Assessments

We demonstrated the performance of the proposed method
both on synthetic data and in an image modeling application
for natural images.

5.1 Synthetic Data

We created a random matrix D of size 30X 60 and generated
a training data set X = {x;}}°)°, with uniformly distributed
iid sparse coefficients in random and independent locations.
We set the target cardinality to Ty = 4. Once X was gener-
ated, we computed Y = DX. Then we encrypted Y by using
a random unitary transform @, based on Gram-Schmidt or-
thogonalization, i.e. ¥ = 0,Y. We performed experiments

on¥ = { $:129% and present the average results. We present

two measures: normalized /;-norm error and recovery of
support’. Normalized l,-norm error was computed as the
ratio E(||X — X||2/||X||2), where E(-) is an ensemble average.
Recovery of support indicates I, proximity of the two solu-
tions. Denoting the two supports as S and S, we define this
distance by

max{|SI, IS} — 1S N S|
max{|S|, S|}

dist(8,S) = (28)
It represents the relative number (in %) of correctly recov-
ered atoms. The results are shown in Figs.6 and 7. Hor-
izontal axis shows iteration number. As can be seen, se-
cure K-SVD gives better results than secure MOD in terms

0.2 0.2
--- Secure MOD -+~ MOD
— Secure K-SVD! —K-SVD

0.15F

o
i
@

0.1

R oosf g —

[ 10 20 30 40 50 [¢] 10 20 30 40 50
Iteration Iteration

o
o
@

Average Representation Error
°
“

Average Representation Error

(a) Secure MOD and secure K-SVD (b) MOD and K-SVD

Fig.6  Normalized /;-norm error: E(||X — X|12/|IX][%).

-
o
<3

80

@
S

60

@
S

40

IS
S

N
S

20

Relative # of Recovered Atoms
Relative # of Recovered Atoms

~“Mop --- MOD
—K-SVD —K-SVD
o 10 20 30 40 50 0 10 20 30 40 50
Tteration Iteration

(a) Secure MOD and secure K-SVD (b) MOD and K-SVD

Fig.7  Recovery of the support: dist(8, S).

TSupport is the set of indexes corresponding to non-zero ele-
ments of a sparse vector.
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of both final outcome and speed of convergence. We com-
pared the proposed method with the non-encrypted versions
of MOD and K-SVD algorithms. Figures 6 and 7 show that
the proposed method offers exactly the same performance as
the non-encrypted versions of MOD and K-SVD algorithms
with regard to both measures.

5.2 Secure Image Modeling

We confirmed the practicality of the proposed method by
conducting secure image modeling experiments on natural
images. We trained a dictionary D to sparsely represent
patches of 8 x 8 pixels extracted from a 512 x 512 Barbara
image. We extracted one fifth of these image patches, i.e.
the total number of image patches N; = 820. Our choice
N; = 820 came from our attempt to seek the dictionary
that fit the Barbara image with moderate computational cost.
Each selected patch was transformed by a 64 x 64 random
unitary transform @, to produce a training encrypted im-

age patch ¥,. The random unitary transform Q,, was based
on Gram-Schmidt orthogonalization. Feeding the encrypted
image patch set ¥, into secure MOD and secure K-SVD with
50 iteration yielded the encrypted dictionary D. We set the
number of atoms to K = 256 and the /p-norm constrains
To = 5. Ty = 5 was set heuristically so as to minimize

Hf/ -bx ||i Encrypted dictionaries designed by secure
MOD and secure K-SVD are shown in Fig. 8. They provide
no visible information. Corresponding decrypted dictionar-
ies calculated by Q;‘,IIA) are shown in Fig. 9. Figure 10 shows

convergence properties of l,-norm error E ||I7 - bx 1. Both
secure algorithms have almost the same performance.
Then, we carried out secure image modeling using se-
cure OMP [14] with the trained encrypted dictionaries D.
The encoding image patch set Y, consisted of 8 x 8 pixel
images extracted from the 512 x 512 Barbara image with-
out overlapping, i.e. the total number of image patches
N, = 4096. Each patch was permuted randomly using a
random integer and transformed by a 64 X 64 random uni-
tary transform @, with a secret key p,. Figure 11 shows
original Barbara and corresponding encrypted images. In
the decoding step, a decoded/decrypted image patch set

(b) Secure K-SVD

Fig.8 Encrypted dictionaries designed by secure MOD and secure
K-SVD.
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Fig.9  Decrypted dictionaries Q;ID

©

== Secure MOD
— Secure K-SVD
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Average Representation Error

IS
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Fig.10  Convergence property of secure MOD and secure K-SVD.

(b) Encryped image

(a) Barbara

Fig.11  Original and encrypted images.

{yl} =, was calculated by Y; = @), di)X. Figure 12
plots coding efficiency (average sparsity ratio S vs. de-
coded/decrypted image quality PSNR [dB]) in comparison
with over-complete DCT. We controlled the image qual-
ity of decoded/decrypted image at each patch by setting the
threshold ¢ = {3.0,5.0,7.0, 10.0, 15.0}. The random unitary
transforms were set to @, = 0, = Q,,. Average sparsity
ratio S is defined by S=3¥, s;/K. It can be seen that se-
cure MOD and secure K-SVD can represent the image with
fewer sparse coefficients than over-complete DCT. The se-
cure MOD and secure K-SVD have the same coding perfor-
mance.

Finally, we evaluated the security strength of the pro-
posed method from the viewpoints of quality and visibility

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.1 JANUARY 2020

-#- Secure MOD
Secure KSVD
~+- Overcomplete DCT

PSNR [dB]
w
B

w
R

0.05 0.1 0.15
Average Sparsity Ratio

Fig.12  Average sparsity ratio S; vs. decoded image quality PSNR [dB].

Table1 Decoded/decrypted image quality by secure K-SVD for
authorized and unauthorized users.
(a) Authorized user (sz = Qpe = de)
| € || 3.0 | 5.0 | 7.0 | 10.0 | 15.0 |

S 0.155 | 0.088 | 0.058 | 0.035 | 0.017
PSNR [dB] || 39.28 | 35.61 | 33.21 | 30.70 | 27.95

(b) Unauthorized user (@, # Q,,, = Q,,)

| e ] 30 | 50 | 70 | 100 [ 150 |
S 0.370 | 0.308 | 0.261 | 0.202 | 0.123
PSNR [dB] 10.40 | 1046 | 10.52 | 10.35 | 10.53
(c) Unauthorized user (@, =@, # @)
| e [ 30 [ 50 | 70 | 100 [ 150 |
S 0.155 | 0.088 | 0.058 | 0.035 | 0.017

PSNR [dB] 10.42 | 10.37 | 10.38 | 10.31 | 10.39

of decoded/decrypted images. We assumed the following
three cases:

(a) Access by an authorized user (Q,, =0, =0,
(b) Access by an unauthorized user (Q,, # @, = 0,,)
(¢) Access by an unauthorized user (Q, =0, #0,,)

All the cases used the same random unitary transform Q,,
in the learning step. In case (b), the random unitary ma-
trix for encoding and decoding was different from that in
the learning step. In case (c), the random unitary matrix for
decoding was different from that in the learning and encod-
ing steps. Table 1 shows decoded/decrypted image quality
achieved by secure K-SVD with different stopping condi-
tions (/; norm of reconstruction error €). From Table 1, it
can be seen that the unauthorized users attain only very low
decoded/decrypted image quality regardless of €. Figure 13
shows images decoded/decrypted by authorized and unau-
thorized users at € = 3.0 and 15.0. These results show that
the encrypted images cannot be decrypted by unauthorized
users.

The purpose of this paper is to provide a theoretical
guarantee about secure dictionary learning and to demon-
strate the theoretical guarantee through experiments. Re-
garding the hyperparameters in secure image modeling, they
were set experimentally as described above. In the practical
application of the system, the hyperparameters optimization
is important and is considered as a future issue.
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€=3.0 (PSNR = 39.28 [dB]) € =15.0 (PSNR = 27.95 [dB])
(a) Authorized user (Q,, =0Q,, =0,)

€ =15.0 (PSNR = 10.45 [dB])

€=3.0 (PSNR = 10.43 [dB])
(b) Unauthorized user (@, # @, = Q,,)

€=3.0 (PSNR = 10.40 [dB]) e =15.0 (PSNR = 10.47 [dB])
(c) Unauthorized user (sz = ng * de)

Fig.13  Decoded/decrypted images by secure K-SVD for authorized and
unauthorized users.

6. Conclusions

In this paper, we proposed secure MOD and secure K-SVD
algorithms for sparse representation. The proposed algo-
rithms are practical as they realize efficient computation on
encrypted signals. We proved, theoretically, that the pro-
posal has exactly the same dictionary learning performance
as their non-encrypted variants. Finally, we confirmed their
performance on synthetic data and a secure image modeling
application for natural images. The secure MOD and secure
K-SVD proposals can represent images with fewer sparse
coefficients than over-complete DCT.
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Appendix A: Derivation of Eq. (24)

From Eq. (20) and the general property of SVD, the eigen
decomposition of (Ef(e )TEf can be written as

(B E$:i =49, (A1)

where J; is the i-th eigenvalue. By using the relationship
Ef = QpER, the left side of Eq. (A- 1) can be expressed as

(B B = (E) 010,Ef
= (ERER, (A-2)

. AR\T & .
Since (£;)" E; and (ER" ER are equal, the eigenvector and
the eigenvalue of these matrices are equal:

§>

=i (A-3)
= A, (A-4)

.}")

From Eq. (A- 4), and the relationship between A; and the sin-
gular value & (6; = \/;17), the singular value is also equal:

6’,‘ = 0. (A 5)
Equations (A- 3) and (A-5) show that Eq. (24) is satisfied.

Appendix B: Derivation of Eq. (25)

In the SVD of E,’: shown in Eq. (20) and the general property
of SVD, the eigenvectors on the left side &#; and the eigen-
vectors on the right side »; have the relationship:

12[ = iﬁfﬁ[/ \//?.T, (A 6)

Using the relationship Ef = QpEf, G = \/Z and Eq. (A- 3),
the first term of Eq. (20) can be expressed as follows:
AR, o AT
+E, V) - 0P
iy o] = LT

A1
+Q,Efviv]. (A7)

Similarly, the first term of Eq. (23) can be written as
iQpEfvl cop!

v
= iQpEfvlvlT. (A-8)

qul . o-,-vlT

Therefore, Eq. (25) is satisfied.
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