
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019
2341

PAPER Special Section on Parallel and Distributed Computing and Networking

Dither NN: Hardware/Algorithm Co-Design for Accurate
Quantized Neural Networks

Kota ANDO†a), Kodai UEYOSHI††, Student Members, Yuka OBA††, Kazutoshi HIROSE††, Ryota UEMATSU††,
Takumi KUDO††, Nonmembers, Masayuki IKEBE††, Tetsuya ASAI††,

Shinya TAKAMAEDA-YAMAZAKI†††,††††, and Masato MOTOMURA†, Members

SUMMARY Deep neural network (NN) has been widely accepted for
enabling various AI applications, however, the limitation of computational
and memory resources is a major problem on mobile devices. Quantized
NN with a reduced bit precision is an effective solution, which relaxes
the resource requirements, but the accuracy degradation due to its numer-
ical approximation is another problem. We propose a novel quantized
NN model employing the “dithering” technique to improve the accuracy
with the minimal additional hardware requirement at the view point of the
hardware-algorithm co-designing. Dithering distributes the quantization
error occurring at each pixel (neuron) spatially so that the total informa-
tion loss of the plane would be minimized. The experiment we conducted
using the software-based accuracy evaluation and FPGA-based hardware
resource estimation proved the effectiveness and efficiency of the concept
of an NN model with dithering.
key words: neural network, dithering, error diffusion, FPGA, hardware-
oriented neural network algorithm

1. Introduction

Deep neural network has enabled various artificial intelli-
gence (AI) applications in many fields, such as virtual as-
sistants, self-piloting robots and cars, smart home devices,
and game players. They are supported by the enormous
evolution of neural network structures (models) with im-
provements of the recognition accuracy. However, the ex-
plosion of the computational and memory resource require-
ments of these highly-developed neural network models has
become the problem, especially looking at the era of the In-
ternet of Things (IoT) approaching rapidly. To reduce this
resource problem, many approximate neural network algo-
rithms and accelerator architectures based on them, which
utilize a reduced-precision arithmetic and data storage, have
been researched and presented [1]–[5].

In this paper, we attempt to improve the recognition ac-
curacy of the low-precision quantized neural network mod-
els under the limited hardware resource. We import the
dithering technique from the field of image processing into

Manuscript received January 8, 2019.
Manuscript revised June 2, 2019.
Manuscript publicized July 22, 2019.
†The authors are with the Tokyo Institute of Technology,

Yokohama-shi, 226–8502 Japan.
††The authors are with the Hokkaido University, Sapporo-shi,

060–0814 Japan.
†††The author is with The University of Tokyo, Tokyo, 113–8656

Japan.
††††The author is with JST PRESTO, Kawaguchi-shi, 332–0012

Japan.
a) E-mail: ando.kota@artic.iir.titech.ac.jp

DOI: 10.1587/transinf.2019PAP0009

neural network; dithering is a commonly-used technique in
image/signal processing to quantize an image/signal to low
precision while keeping the gradation of the source signal
by diffusing the quantization error occurring at each pixel
(neuron) to its neighboring pixels, by which the total (or av-
erage) quantization error of entire the plane is minimized.

We extend the quantized neural network by introducing
the error diffusion method, the basic and lightest algorithm
for dithering. This dithering extension is quite hardware-
friendly because it requires only two additional operations
of addition and comparison, which are used as the primi-
tive operations in a neural network, therefore no additional
arithmetic units are needed. This allows the dithering al-
gorithm to be easily integrated into an existing approximate
neural network accelerator architecture with a little modifi-
cation. To verify the merits of the dithering algorithm, we
conduct a hardware resource evaluation using experimental
architectures we implemented, as well as the software-based
accuracy evaluation.

This work is based on our previous conference pa-
per [6]. The main contribution of this paper is the follow-
ing: we explained the proposed algorithm and architectures
in more detail, and we conducted the evaluation using well-
known network structures that are easier to reproduce. We
also expanded the concept of the dithering into the neural
networks with fixed-point and logarithmic quantization, not
only for binary, by presenting typical procedures and archi-
tectures with those quantization methods; they are described
as Appendix since the reproducible evaluation for them has
not been completed.

The rest of the paper is composed as follows. In Sect. 2,
we take a brief look at the prior work on hardware-oriented
low-precision neural networks, and on their accelerator ar-
chitectures. In Sect. 3, the base algorithm of the dithering
in the field of digital signal processing, which motivates
our work attempting to improve the accuracy of the low-
precision neural networks, is explained. Then in Sect. 4, the
algorithm is modified and extended so that it can be used
with neural network hardware. In Sect. 5, we discuss apply-
ing the back propagation training method to the proposed
dithering neural network, and another dithering technique is
discussed as well. In Sect. 6, we conduct the accuracy eval-
uation using software simulation, and we evaluate the hard-
ware efficiency of the proposed method by FPGA prototype
architectures. We conclude the paper in Sect. 7. Concep-
tual proposal of using the dithering in generic low-precision

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

2342
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

hardware is presented in Appendix.

2. Related Work

Multiplication is the costliest computation of the neural net-
work, and the memory occupation is caused mostly for the
weights. Multiplication requires a lot of hardware resource;
the gate count is in proportion to the square of the bit width,
in contrast to addition whose gate count is in linear propor-
tion. Data amount, on the other hand, gets larger as the
network model becomes more complex, owing to the de-
mands on the practical applications. To reduce these com-
putation and memory resource requirements, mainly for mo-
bile applications that cannot hire large memory and energy-
hungry high-end processors, many hardware-aware approx-
imate neural network algorithms have been proposed.

The redundancy of a neural network model has been
researched since the dawn of the deep learning applica-
tions. It is known that a neural network does not require
much higher numerical precision, especially in the inference
phase. Studies have been conducted that use fixed-point
expression rather than floating point, aiming at simplifying
the computation (both multiplication and addition) [7], [8].
An approach called dynamic fixed-point that allows the bit
width in a single network to vary has been proposed [9]–
[11]. In the most aggressive case, the bit precision alter-
nates during the inference on an accelerator according to the
occurrence of the latest arithmetic overflow/underflow.

BinaryConnect [12] appeared in the second half of
2015 as the first successful neural network model that uses
binary weights. It binarizes the weights into ±1 while
keeping the activations linear, which allows the maltiply-
accumulation (MAC) operation between an activation and a
weight to be calculated as an addition. During the training
phase, the full-precision weights must be kept since the up-
date of the weights takes place in full-precision as a part of
back propagation. When the training phase is complete, the
weights are statically binarized, and in the inference phase
only the binarized weights are retained.

The first feasible network model that binarizes both
the weights and the activations was BinaryNet [1] in 2016,
which is also called binarized neural network or binary neu-
ral network (BNN). Its binarized weights and activations can
be multiplied by a bit-wise XNOR (exclusive NOR) opera-
tion; therefore, the heavy multiplication step can be elimi-
nated. The success of this model is attributed to “batch nor-
malization” [13]. Batch normalization regularizes the distri-
bution of the activations statistically before binarizing them,
which tolerates the statistical changes in the input activa-
tions among batches in the training phase; thus preventing
the network from overfitting/diverging and accelerating the
training.

These binary network models often result in lower
recognition accuracy due to their extreme approximation.
There are several approaches that use quantized numeri-
cal expression other than binarization. Ternary weight net-
work [14], or ternary neural network, quantizes the weights

into ternary expression with the values of −1, 0, and +1,
which could achieve a more accurate weight representation
than the binary one in a certain situation. LogNet [2] quan-
tizes the weights and activations in the logarithmic repre-
sentation, which replaces the costly multiplication with a
simple addition while retaining the resolution of the most
frequently occurring numbers valued at around 0.

XNOR-Net [15] appeared just after BinaryNet. It con-
ducts the binary weight-activation XNOR multiplication
with a few real-valued scaling factors. Residual binary neu-
ral network (ReBNet) [16] is an extension of the binary neu-
ral network that binarizes both the activation and weights,
intended to obtain the appropriate approximation by a lin-
ear combination of the binary activations. It binarizes the
activations gradually into a sequence of binary numbers us-
ing multiple thresholds and “residual errors”. The resulting
multiple binary activations are multiplied (XNORed) with a
single binary weight, which are then linearly combined us-
ing the scaling factors.

3. Dithering

In this section, we explain the base algorithm of “dithering”
to accommodate to neural networks.

3.1 Dither in Signal Processing

Dithering is a commonly-used technique in digital signal
processing, used to reduce the effect of quantization errors.
When a source signal is “quantized” into another signal digi-
tally, quantization errors (the differences between the source
and quantized signal) always occur. For example, when a
photograph in 24-bit color is converted to 8-bit color, the
details and gradients will be lost and parts that had similar
colors may become indistinguishable.

Dithering is often used with binary quantization where
the quantized signal only takes two states (in 1-bit digital
signal, they are ‘0’ and ‘1’). In binary quantization, a thresh-
old is set, and an input value is quantized into ‘1’ when
it is greater than the threshold; otherwise it becomes ‘0’.
This means that if many of the input samples have values
slightly lower than threshold, they always become ‘0’, and
as a result, the total quantization error becomes quite large.
A solution is to stochastically quantize nearly half of those
middle-valued samples into ‘0’ and the other half into ‘1’.
This would equalize the quantization errors among the input
samples so that the total quantization error becomes min-
imal because half of the output values will have negative
errors (deficit of the output), while the others will have posi-
tive errors (surplus of the output). This idea of stochastically
quantizing the inputs is called “dithering.”

3.2 Error Diffusion

One of the most widely used approaches of dithering is the
“error diffusion” method. In the following explanation, con-
sider that the N-length source signal S takes a real value in

ANDO et al.: DITHER NN: HARDWARE/ALGORITHM CO-DESIGN FOR ACCURATE QUANTIZED NEURAL NETWORKS
2343

Fig. 1 Error diffusion on 1-d signal quantization.

[0, 1] at the i-th sample S i for each i (i = 1, · · · ,N), the re-
sulting quantized signal Q takes a binary value (0 or 1) at
the i-th sample Qi, and the threshold is T (0 < T < 1). Note
that the error diffusion algorithm does not limit the output
signal to be binary; it can be utilized with any kind of quan-
tization; however, we use binary quantization as an example
here. As shown in Fig. 1 and Algorithm 1, the basic idea of
this method is to “integrate” (or “accumulate”) the quanti-
zation error occurring at each sample. The current quantiza-
tion error E (surplus/deficit of the quantized value when it is
1/0) is added to the next source value S i+1 before threshold-
ing. This works to cancel the total (or average) quantization
error among overall samples as described above. This algo-
rithm is quite similar to the “delta-sigma modulation” that is
used in ADCs (analog-to-digital converters).

Let us give an example. If the first input is S 1 = 0.3, the
second is S 2 = 0.4, and the threshold is T = 0.5, the quan-
tized values without dithering would be Q1 = Q2 = 0 be-
cause both inputs do not exceed the threshold. In this case,
the total quantization error is

∑
(S i − Qi) = 0.7. When we

apply the error diffusion method to these inputs, the first
quantized output is Q1 = 0 since the initial value of the in-
tegrated quantized error E is 0; therefore, the error becomes
E = 0.3 − 0 = 0.3. Then, this error E = 0.3 is added to the
next input (S 2 + E = 0.4 + 0.3 = 0.7), and the resulting out-
put is Q2 = 1 because it is greater than the threshold T . With
the integrated quantization error, even a smaller input could
produce an output 1, and vice versa. The total quantization
error is now (0.3 − 0) + (0.4 − 1) = −0.3, whose absolute
value is smaller than 0.7 of the case without dithering.

3.3 Dithering on 2-d Signals

We have explained the error diffusion on a 1-d sequence, and
this can be easily extended to 2-d signals (such as images)
by propagating the quantization errors in the plane. The sim-
plest way to achieve this is through a “1-directional” method
that retains an integrated quantization error for each row as
shown in Fig. 2 (a), i.e. there is no such relationship between
the rows. There are several algorithms used in image pro-
cessing that diffuse the quantization errors of neighboring
pixels (Fig. 2 (b): an example of “2-directional” error diffu-
sion). These multidirectional methods result in better im-

Algorithm 1 binary-quantization of 1-d signal using error
diffusion
Input: S = {S 1, · · · , S N }:

N-length sequence of a source signal (analog or digital)
Input: T : Threshold
Output: Q = {Q1, · · · ,QN }:

N-length sequence of the binary-quantized signal
1: E ⇐ 0
2: for i in {1, · · · ,N} do
3: if (S i + E) ≥ T then
4: Qi ⇐ 1
5: else
6: Qi ⇐ 0
7: end if
8: E ⇐ (S i + E) − Qi

9: end for
10: return Q

Fig. 2 Error diffusion in 2-d image. (a) “1-directional” method and (b)
“2-directional” method.

age quality when used for image conversion, but the com-
putational complexity would increase. We discuss these 2-d
dithering algorithms later from the viewpoint of hardware
implementation.

4. Neural Network with Dither

We have described the base algorithm of dithering, which
minimizes the total quantization error for low-precision
quantization. In this section, we attempt to apply it to neu-
ral network models to improve the accuracies of approxi-
mate neural network algorithms for mobile/embedded ap-
plications while minimizing additional requirement of hard-
ware resources.

4.1 Prerequisite

Many convolutional neural network (CNN) based proces-
sors integrated on ASICs (application-specific ICs) and FP-
GAs feature output-parallel processing, where the process-
ing engines (PEs) form an array and each PE computes an
output neuron. On this parallel processor, each PE usually
has a multiplier and an accumulator to calculate the MAC
operations between the inputs and weights, and the PE array
sequentially scans all the input neurons while accumulating
the products generated by the multipliers.

We assume this output-parallel processor as the main
target of our work. As described later, this type of paral-
lelism in which the output partial results stay in the accu-

2344
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Fig. 3 (a) A general and simplified form of an XNOR-accumulator-type
PE. (b) An XNOR-accumulator PE with error diffusion operation mode.

mulators and the inputs travel is suitable for the dithering
algorithm.

4.2 Error Diffusion in Output-Parallel Binary Architecture

4.2.1 Baseline Binary Neural Network

We first discuss the general architecture with dithering for
a binary neural network. Binary neural networks [1] restrict
the activations and weights to either −1 or +1, unlike stan-
dard binary quantization used in signal processing, which
uses values of 0 and 1. This is because the binary-quantized
network is a special case of fixed-point (or linear integer)
quantization where the bit width is 1, and therefore, only the
sign bit remains. As proposed in [1], the multiplication be-
tween two binary-quantized values produces only four pos-
sible situations and can be executed as an XNOR (exclu-
sive NOR) operation with the values −1/+1 being denoted
as logic 0/1 respectively. A neuron of a binary neural net-
work layer acquires the binary (±1) pairs of weights and
activations, conducts XNOR operation (multiplication) on
each pair, sums all the resulting products, and picks the sign
of the sum as the output activation (non-linear function).

To implement this logic on an output-parallel array,
usually an XNOR-accumulator-based PE is used (Fig. 3 (a)).
The accumulator on a PE sums the binary products calcu-
lated by the XNOR gate from all the input activations in a
linear manner.

4.2.2 Applying Error Diffusion

The summation of each neuron produces an integer value in
the range of −N to N for N input activations, and the re-
sulting output activation is ±1 depending on the sign. The
quantization error can be defined in a similar manner to the
basic explanation provided in Sect. 3.2, i.e. by simply sub-
tracting the resulting activation ±1 from the sum.

Fig. 4 Four axes of the activation of a convolutional layer.

In the binary neuron processing on an output-parallel
PE, the accumulator retains the final sum at the end of input
scanning, and the value is reset to 0 immediately after the
sign is assigned as the output. On the other hand, the quan-
tization error to be added to the next neuron’s weighted-sum
in the dithering algorithm is calculated using the sum and
sign of the current neuron. Thus, we can compute the accu-
mulation of the quantization error by the following steps: 1)
scan the inputs and perform XNOR-accumulation similar to
the operation in standard binary neuron processing; 2) cal-
culate the sign bit (the output activation) upon completion
of the input scan; 3) subtract this ±1 value from the sum in
the accumulator instead of the reset operation; and 4) scan
the next input. Therefore, we do not need additional circuit
components in the XNOR-accumulator-based PE; all that is
required is a simple selector circuit to select the mode of the
accumulator for the initial reset, accumulation, or quantiza-
tion error calculation, as shown in Fig. 3 (b).

The dependencies among the error diffusion sets in the
output activations of the current neuron affect the next neu-
ron; however, this would not be a problem for the output-
parallel processing. A typical convolutional layer of a neu-
ral network has four axes in the output activation: batches,
rows (height), columns (width), and channels (Fig. 4). We
introduce the error diffusion technique only within a plane,
i.e. the axes of rows and columns of each channel in each
batch. Therefore, the axes of the batches and channels are
unaffected. Most output-parallel architectures map the axes
of the channels and rows onto their PE arrays mainly be-
cause of the efficiency of data delivery achieved. As long
as we use the 1-directional error diffusion, the quantization
error is only accumulated along a row; as each row/channel
can be computed individually, the output-row-and-channel-
parallel processing works well with dithering. In such a
configuration, each PE in the array is assigned to an out-
put neuron in a row of a channel and operates sequentially
along the columns, as indicated in Fig. 5. In other words,
error diffusion algorithms can be computed in a channel–
row–column loop with the outer two axes unrolled spatially
onto the output-parallel PE array. The output–input–channel
parallelism is also suitable; in this case, the PEs in a column
correspond to an output neuron, a row corresponds to an
input, all the PEs individually calculate the MACs of the in-
puts and weights, and the partial sums finally obtained in the
PEs are gathered and summed in a column-wise manner.

ANDO et al.: DITHER NN: HARDWARE/ALGORITHM CO-DESIGN FOR ACCURATE QUANTIZED NEURAL NETWORKS
2345

Fig. 5 Row- and channel-parallel PE. The output columns are processed
sequentially, which harmonizes with dithering.

4.3 Combination with ReLU Activation Function

4.3.1 Activation Function in Conventional Models

A convolutional or fully-connected layer in a neural network
employs a non-linear function called activation function.
The activation function, which is applied to the weighted-
sum of each neuron, is a key technique for neural networks.
It represents a primitive non-linear response by itself, and
this non-linearity helps the network in obtaining an accept-
able approximation of the complex behavior of an unknown
implicit function.

Rectified linear unit (ReLU), is the most popular type
of activation function in standard (linearly expressed) neu-
ral network models. This unit allows a positive value and
blocks a negative value (set to 0). This lightweight imple-
mentation of a non-linearity requires checking only the sign
of the input, and it is widely used because it is friendly with
the training algorithms that use back propagation.

In a binary neural network, obtaining the sign of the
sum is also a kind of activation function called binarization
or simply Sign function. It can be interpreted as a threshold-
ing function that checks if the weighted-sum exceeds 0 or
not and can be generalized for any threshold value via a bias
term.

4.3.2 Activation Function and Dithering

The output of the binarization using dithering approaches
the identity transformation when the input is large enough
and the output is “demodulated” by blurring it (equivalent
to “integrating” or “applying low-pass filter”). This fact
suggests that dithering does not have any non-linear effects.
Therefore, we must consider introducing a mechanism for
obtaining non-linearity in the error diffusion.

One possible option is to use dithering after a standard
ReLU activation function. This is quite straight-forward
and expects the ReLU activation function to provide the
non-linearity and dithering to remap the result of the ReLU
spatially. However, there are some disadvantages in this
method: the computational complexity would increase ow-
ing to the separate operations for ReLU and dithering, and

it may generate +1 in the neurons that the non-linear ReLU
previously deactivated.

Another option is to customize the error diffusion algo-
rithm, namely positive-only error diffusion, such that it takes
the quantization error into consideration only when the raw
sum (S i) is greater than the threshold. Similar to the ReLU,
the positive-only error diffusion suppresses a negative sum
value to −1 unconditionally without using/accumulating the
quantization error. When the sum has a positive value, it
works like the baseline error diffusion, i.e. some of the pos-
itive inputs become −1 outputs by considering the quanti-
zation error or total surplus. This method could not only
operate as a single activation function whose computational
complexity would be reduced compared to the separated
ReLU-dither structure but also properly evaluate the neu-
rons having negative sums, which should be deactivated to
obtain the non-linearity.

4.4 Working with Other Low-Precision Networks

The idea of dithering using error diffusion algorithm on a
low-precision hardware can be naturally extended to any
kind of quantization methods other than binarization, as
long as the quantization error can be defined using the input
and output of the quantization. We present basic concepts
of using the dithering with the logarithmic and fixed-point
quantization in Appendix, since they have not been synthe-
sized and evaluated.

5. Discussion

5.1 Back Propagation Methods for Dither NN

When we intend to use a certain operation in the hidden lay-
ers of a neural network, its derivative must be defined for
applying the back propagation. We discuss the appropriate
realization of the derivative of the dithering operation.

The strictest and most accurate form of the derivative of
the error diffusion is to mathematically differentiate it with
no doubt. However, defining the strict derivative of the error
diffusion algorithm is very difficult because it employs dis-
continuous non-linear operations, and because the computa-
tion of a neuron could depend on the results of many other
neurons in the plane. Instead, we attempted to use another
function to adopt back propagation into error diffusion.

5.1.1 Identity Function

First, we viewed the dither as an identity transformation.
Since dithering aims to represent a richer expression by a
poor quantized signal, the output must be similar to the in-
put. The derivative of an identity function is simply the con-
stant 1. This supposition worked well with some relatively
small neural network models, but it was unstable. One rea-
son for this failure is that the identity supposition is too sen-
sitive (or too much linear) that many undesirable responses

2346
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

of the input/output activations (they are expected to be sup-
pressed in a part of the non-linearity of the standard activa-
tion functions) affected the weights.

5.1.2 Active-Only Propagation

The basic principle of the back propagation is to claim the
responsibility of the input for the output result. The idea is
to pass the output error (or delta; not to be confused with the
quantization error) only to the neuron that was activated as
‘+1’ at the positive-only dithering and activation, similarly
to the back propagation for max pooling. This was totally
unsuccessful, probably because it was the opposite of the
case of identity assumption. . . it was so dull that the neces-
sary feedbacks were trapped.

5.1.3 Partial Linear Approximation (Near-Threshold Prop-
agation)

This method propagates the output error when the weighted-
sum value before quantization is near the threshold and is
very similar to the piecewise linear approximation of the
Sign function of a standard binary neural network. It worked
perfectly with the models we tested, from narrow and shal-
low networks to deep networks. We view the two charac-
teristics of this setting: 1) the weights that must be updated
waver near the threshold; 2) this near-threshold back propa-
gation, where the neurons with the weighted-sum values in
a certain range are updated, could harmonize with the char-
acteristic of the dithering where the location of the neurons
being activated is changed by the error diffusion.

5.1.4 Delayed-Linear Derivative

The same calculation as that for the error diffusion is used,
as delta-sigma modulation in the field of digital audio.
This is a form of ADC, which generates a pulse-density-
modulated binary stream from the source analog signal. The
transfer function of this modulation is denoted as Y = z−1X,
so the output sequence is linear to the input with 1-cycle de-
lay. Based on this observation, we tested the delayed-linear
derivative, where the output errors propagate linearly to the
input with a 1-pixel shift. This implementation worked well
in most of the experimental cases. We should select the near-
threshold or this delayed-linear back propagation consider-
ing their computational load and non-linearity that would
affect the training speed and final accuracy.

5.2 Complex Dithers

We mentioned that the error diffusion algorithm in image
processing could be more complex for perceptually better
image quality. This tends to enlarge the area for distribution
of the quantization errors; for example, the Floyd–Steinberg
dithering distributes the error of a pixel to 4 neighboring
pixels. Many such algorithms distribute the error unevenly,
i.e. they use multiple scaling factors for each direction.

However, we believe that this complex dithering can
hardly be used with neural networks, because such process-
ing procedures are too complicated to be integrated in an ac-
celerator. The 1-directional error diffusion we experimented
is the most friendly to the hardware implementation. More-
over, we tested a uniform 4-directional error diffusion algo-
rithm (distributes the error of a pixel to the right, lower-left,
lower, and lower-right pixels with magnifying 1/4) by soft-
ware simulation, but the recognition accuracy did not im-
prove as much as that in the case of the 1-directional ver-
sion.

6. Evaluation

We evaluate the proposed algorithm from the viewpoints
of accuracy and hardware cost. First, we conduct the
simulation-based accuracy comparison by training a 10-
layer binary CNN model with/without dithering. Second,
we construct test architectures for the CNN processing,
and evaluate the hardware impact of adopting the dithering.
Through the above, we show that the proposed algorithm
can achieve higher accuracy than conventional binary quan-
tization while minimizing the hardware cost.

6.1 Experimental Setup

6.1.1 Training Environment

To organize the neural network models, we used Tensor-
Flow [17], Keras [18], and PyTorch [19] frameworks run-
ning on GPGPU servers. We customized the frameworks
to apply several non-standard operations. We implemented
the forward and backward operations of the error diffu-
sion using the TensorFlow and PyTorch C++/CUDA API
according to the discussion in Sect. 5.1. The Sign activa-
tion function and weight binarization method proposed in
[1] were also included in our implementation. In the pro-
cess of the hyperparameter exploration, we partially used
Optuna [20], though the configurations of the final exper-
iments were manually fixed to equalize the environments
along them.

The network models we tested are shown in Tables 1
and 2, namely Model A and Model B. Both in the “w/o
Dither” and “w/ Dither” cases, the first convolutional lay-
ers accept the full-range (24-bit color) images and binary
weights, and the later layers have the binarized activations
and weights, except for the final readout layer that remains
floating-point due to the Softmax operation. This would
not be a limitation when the model is offloaded on an ac-
celerator; most implementations of the neural network ac-
celerators have the input layer preprocessed by their host
CPUs, and the final readout Softmax layer is only applied
in the training phase and is replaced with a linear or bi-
nary activation layer (this is possible because the Softmax
operation is monotonic and only the location of the maxi-
mal value is important). The models were trained using the
CIFAR-10 image recognition dataset [21] in Models A and

ANDO et al.: DITHER NN: HARDWARE/ALGORITHM CO-DESIGN FOR ACCURATE QUANTIZED NEURAL NETWORKS
2347

Table 1 Test Network Model Architectures A

#
Layer Type Activation F.

Output Size
w/o Dither w/ Dither

0 INPUT - 32 × 32 × 3
1 CONV Sign Dither 30 × 30 × 128
2 CONV Sign Dither 30 × 30 × 128
- MaxPool Sign Sign 15 × 15 × 128
3 CONV Sign 15 × 15 × 256
4 CONV Sign 15 × 15 × 256
- MaxPool Sign 7 × 7 × 256
5 CONV Sign 7 × 7 × 512
6 CONV Sign 7 × 7 × 512
- MaxPool Sign 3 × 3 × 512
7 FC Sign 1,024
8 FC Sign 1,024
9 FC SoftMax 10

In Layer Type, we represent the input layer as INPUT, convolutional layers
with 3 × 3 kernel as CONV, fully-connected layers as FC, max pooling
layers with 2 × 2 window as MaxPool. In Activation F., sign activation
function is denoted as Sign and 1-directional dithering as Dither. A batch
normalization layer is included in each CONV layer but is not shown in the
table.
The first CONVs #1 in both case are in the “valid” mode, and the others are
in the “same” padding mode.
Output Size refers to (Output height) × (Output width) × (Output channels)
for the input and convolutional layers and (Output neurons) for the fully-
connected layers.

B, and SVHN [22] dataset in Model B. To use CIFAR-10
and SVHN whose input size is 32 × 32 in Model B with
the input size 224 × 224, we enlarged the input images by
bilinear interpolation. We used Adam optimizer with the
learning rate decay strategy starting from 0.01 and halved
every 25 epochs (Model A), and from 0.005 being halved
every 20 epochs (Model B). We applied the data augmen-
tation technique to improve the generalization capability of
the networks.

The reason why we did not apply the dithering in DW-
CONV layers in Model B is that they are followed by CONV
layers with 1× 1 kernels (i.e. pointwise convolution layers).
The “demodulation” of the dithered signal in the context of
signal processing is done by applying a low-pass filter; in a
convolutional neural network, the convolutional kernels are
expected to act as the filters. This suggests that the size of
convolution kernels, as well as the number and location of
layers with dithering, would be a key when we explore the
hyperparameter space.

6.1.2 Target FPGA

We designed the prototype architectures in Verilog HDL,
and synthesized them using Xilinx Vivado 2017.4. We
chose the Xilinx Zynq-7000 XC7Z020 FPGA mounted on
the ZedBoard evaluation kit as the target because it is a
middle-range system-on-chip (SoC) that features the ARM
processor coupled with user logic on a single FPGA, which
is an acceptable prototype candidate for mobile applications.

6.2 Accuracy

The accuracy evaluation was conducted on a GPGPU work-

station using a 10-layer tiny CNN models “Model A” (Ta-
ble 1) with CIFAR-10 dataset and a MobileNet [23]-based
CNN models “Model B” using CIFAR-10 and SVHN for-
mat 2 dataset. We first pre-trained a binary neural network
model with the same structure as the “w/o Dither” model
for 200/100 epochs for Models A/B, and we then trained the
two models “w/o Dither” and “w/ Dither” for 200/50 more
epochs starting with the pre-trained weights.

The Model A “w/ Dither” achieved 87.14% accuracy
with two layers employing the dithering, whereas the base-
line “w/o Dither” model was 85.83% accurate. This re-
sult outperformed the previous multithreshold model [16],
although a straightforward comparison is impossible due to
the differences in the model structure. It should be noted
that the proposed method could be used with other state-of-
the-art algorithms including [16].

Model B trained with CIFAR-10 dataset showed the
accuracy 75.15%/73.45% with/without dithering, while
the model trained using SVHN format 2 achieved
91.64%/90.91% with/without dithering, respectively. The
improvement with SVHN dataset is not greater than that
with CIFAR-10 dataset, although the baseline accuracy with
SVHN is higher than CIFAR-10. One possible explanation
of this is the following: dithering remaps the multi-level
bit precision on the spatial resolution using multiple low-
precision pixels, which assumes the large enough area of
smooth gradation; the pictures of digits in the SVHN dataset
did not match this assumption.

Again, the error-diffusion-based dithering algorithm
can be utilized with any settings of the dataset, network
model structure, and optimizer, as long as the model has
2-d (height, width) or higher-dimensional image-like acti-
vations with quantization, however it works well especially
with spatially smooth data like objects in natural photos.

6.3 FPGA Implementation

To evaluate the hardware impact on the dithering opera-
tion, we implemented two prototype PE-array-based parallel
architectures on an FPGA with/without dithering support.
This design only supports the processing of a convolutional
layer of a neural network for simplicity.

Figure 6 (a) (b) (c) (d) indicates the prototype architec-
tures. The PE array (Fig. 6 (a)) forms a primitive binary neu-
ral network accelerator based on the typical output-input-
channel parallelism, where each PE row corresponds to an
input channel and each PE column corresponds to an output
channel. This is a binary-only subset of a single core of the
architecture proposed in [4]; the weights and inputs/outputs
are all in 1-bit. In this configuration, an input activation is
shared among multiple output channels (i.e. among PEs in
a row), and an output is calculated in a column, with a word
of the weight RAM being distributed bit-wise to the PEs and
the Activation PE (Act-PE; Fig. 6 (c)) summing up the par-
tial sums (weighted-sums) accumulated in each PE (shifted
column-wise sequentially) and generating an output activa-
tion.

2348
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Table 2 Test Network Model Architectures B: MobileNet v1

Layer Type
Activation F.

Output Size
w/o Dither w/ Dither

0 INPUT - 224 × 224 × 3
1 CONV 3-s2 Sign Dither 112 × 112 × 32

2-1 DW-CONV 3-s1 Sign Sign 112 × 112 × 32
2-2 CONV 1-s1 Sign Dither 112 × 112 × 64
3-1 DW-CONV 3-s2 Sign Sign 56 × 56 × 64
3-2 CONV 1-s1 Sign Dither 56 × 56 × 128
4-1 DW-CONV 3-s1 Sign 56 × 56 × 128
4-2 CONV 1-s1 Sign 56 × 56 × 128
5-1 DW-CONV 3-s2 Sign 28 × 28 × 128
5-2 CONV 1-s1 Sign 28 × 28 × 256
6-1 DW-CONV 3-s1 Sign 28 × 28 × 256
6-2 CONV 1-s1 Sign 28 × 28 × 256
7-1 DW-CONV 3-s2 Sign 14 × 14 × 256
7-2 CONV 1-s1 Sign 14 × 14 × 256(*)

8∼12-1 DW-CONV 3-s1 Sign 14 × 14 × 512
8∼12-2 CONV 1-s1 Sign 14 × 14 × 512

13-1 DW-CONV 3-s2 Sign 7 × 7 × 512
13-2 CONV 1-s1 Sign 7 × 7× 1,024
14-1 DW-CONV 3-s1 Sign 7 × 7× 1,024
14-2 CONV 1-s1 Sign 7 × 7× 1,024

- AvePool - 1 × 1× 1,024
15 CONV 1-s1 SoftMax 1 × 1 × 10

In Layer Type, we represent the input layer as
INPUT, standard and pointwise convolutional
layers with k×k kernel and stride s as CONV k-
ss, depthwise convolution as DW-CONV-k-ss,
and an average pooling with 7 × 7 kernel and
window (also known as global average pool-
ing) layer as AvePool. In Activation F., sign
activation function is denoted as Sign, and 1-
directional dithering as Dither. A batch nor-
malization layer is included in each CONV or
DW-CONV layer but is not shown in the table.
All the CONV and DW-CONV layers are in
“same” padding mode.
Output Size refers to (Output height) × (Output
width) × (Output channels).
(*) Although the output size of the layer #7-2 is
14×14×512 in [23], we utilized 14×14×256
due to the resource limitation of the training en-
vironment.

Fig. 6 Prototype array architecture. The arithmetic bit width is denoted as b. (a) Whole PE array with
the input/weight/output RAMs and the controller, (b) a PE to calculate the weighted sum of an input
channel, (c)(d) Act-PEs with/without dithering support to sum the results of PEs in a column and apply
the Sign function to the sum.

The only difference between the two architectures
with/without dithering is the type of Act-PE (without dither-
ing Fig. 6 (c) or dithering (d)) used. The dithering Act-PE
in Fig. 6 (d) has additional multiplexers to select either RE-
SET or DITHER operation at the end of the input accumu-
lation. Repeatedly, the dithering (error diffusion) operation
can be performed as a subtraction (accumulation), for which
the adder in an accumulator of each Act-PE can be used.
Therefore, the overhead of the hardware resource for adopt-
ing the dithering operation would not be significant. In ad-
dition, since the dithering operation is conducted instead of
the accumulator reset operation, no additional clock cycles

are needed, as shown in Figs. 7 and 8.
Here, the implementation results of the architectures

are shown in Table 3. The table includes only the PE array
and its corresponding controllers and RAMs; any other parts
such as data transfer circuits are not included. In this eval-
uation, we used the Xilinx Vivado software and the Zynq-
7000 XC7Z020 FPGA, as mentioned above, with both ar-
chitectures synthesized/PARed by the “Area Exploration”
strategy. As seen in the table, the LUT and register usage
would increase by less than 1% upon adding the dithering
operation, and the RAM usage does not change, because the
dithering operation does not need any additional arithmetic

ANDO et al.: DITHER NN: HARDWARE/ALGORITHM CO-DESIGN FOR ACCURATE QUANTIZED NEURAL NETWORKS
2349

Fig. 7 Timing chart of the PE array without dithering. The channel axes are not shown. W denotes
the output width, ‘Accum.’ is the value of the accumulator, and ‘+’ and ‘V’ means ‘accumulation’ and
‘valid’ respectively.

Fig. 8 Timing chart of the PE array with dithering. ‘E’ in ‘Accum.’ denotes the quantization error
calculated using the previous ‘V’ and ‘Act. Out’ values.

Table 3 Implementation Result of the Prototype Architectures

Resource Avail.
w/o Dither w/ Dither
Util. ←% Util. ←%

LUTs 53,200 18,515 34.8 18,560 34.9
Registers 106,400 19,586 18.4 19,622 18.4

BRAMs
[Tiles] 140 72

51.4
72

51.4
[kb] 5,040 2,592 2,592

Block IOs 200 0 0.0 0 0.0
(Accuracy A [%]) CIFAR-10 85.83 87.14

(Accuracy B [%])
CIFAR-10 73.45 75.15

SVHN 90.91 91.64

* For both architectures, the bit width of the accumulators was set to 12;
the numbers of PE rows and columns were set to 16; and all the RAMs
were 16-bit 4k-word dual-bank.

units. Therefore, the proposed dithering algorithm is proved
to be a hardware-friendly technique that can be utilized with
a very few additional hardware resources.

7. Conclusion

We have proposed the dithering neural network to improve
the accuracy of the quantized neural network models. The
experimental accelerator architectures using binary neural
network have proved that the proposed concept can be ef-
ficiently realized without deviating from the nature of the
quantized neural network on the limited hardware resources.

The proposed method is the first contribution, to the
best of our knowledge, that enhances the quantized neural
network with a very few additional hardware resource re-

quirement by importing the quantization error minimizing
technique from the field of image processing, as the fruit of
the hardware-algorithm co-designing strategy.

As a future work, there is room for exploring the opti-
mal implementation of the inference hardware (such as par-
allelism, memory architecture, etc.) and the optimal model
constructing and training methods (for example, automatic
model optimization framework taking account of the rela-
tionship between the layers with and without dithering).

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
bers JP18J20307, JP18H05288, and JST PRESTO JP-
MJPR18M9.

References

[1] M. Courbariaux and Y. Bengio, “BinaryNet: Training deep neural
networks with weights and activations constrained to +1 or −1,”
CoRR, vol.abs/1602.02830, pp.1–11, 2016.

[2] D. Miyashita, E.H. Lee, and B. Murmann, “Convolutional
neural networks using logarithmic data representation,” CoRR,
vol.abs/1603.01025, pp.1–10, 2016.

[3] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H.
Nakahara, S. Takamaeda-Yamazaki, M. Ikebe, T. Asai, T. Kuroda,
and M. Motomura, “BRein Memory: A single-chip binary/ternary
reconfigurable in-memory deep neural network accelerator achiev-
ing 1.4 TOPS at 0.6 W,” IEEE J. Solid-State Circuits, vol.53, no.4,
pp.983–994, 2018.

[4] K. Ueyoshi, K. Ando, K. Hirose, S. Takamaeda-Yamazaki, J.

http://dx.doi.org/10.1109/jssc.2017.2778702
http://dx.doi.org/10.1109/isscc.2018.8310261

2350
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Kadomoto, T. Miyata, M. Hamada, T. Kuroda, and M. Motomura,
“QUEST: A 7.49TOPS multi-purpose log-quantized DNN inference
engine stacked on 96MB 3D SRAM using inductive-coupling tech-
nology in 40nm CMOS,” 2018 IEEE International Solid - State Cir-
cuits Conference - (ISSCC), pp.216–218, Feb. 2018.

[5] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.J. Yoo, “UNPU:
A 50.6TOPS/W unified deep neural network accelerator with 1b-
to-16b fully-variable weight bit-precision,” 2018 IEEE International
Solid - State Circuits Conference - (ISSCC), pp.218–220, Feb. 2018.

[6] K. Ando, K. Ueyoshi, Y. Oba, K. Hirose, R. Uematsu, T. Kudo, M.
Ikebe, T. Asai, S. Takamaeda-Yamazaki, and M. Motomura, “Dither
NN: An accurate neural network with dithering for low bit-precision
hardware,” 2018 International Conference on Field-Programmable
Technology (FPT), pp.9–16, Dec. 2018.

[7] M. Courbariaux, Y. Bengio, and J. David, “Low precision arithmetic
for deep learning,” CoRR, vol.abs/1412.7024, 2014.

[8] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” Proc. 32nd International
Conference on International Conference on Machine Learning - Vol-
ume 37, ICML’15, pp.1737–1746, JMLR.org, 2015.

[9] B. Moons, B.D. Brabandere, L.V. Gool, and M. Verhelst, “Energy-
efficient convnets through approximate computing,” 2016 IEEE
Winter Conference on Applications of Computer Vision (WACV),
pp.1–8, March 2016.

[10] B. Moons and M. Verhelst, “A 0.3 –2.6 TOPS/W precision-scalable
processor for real-time large-scale ConvNets,” 2016 IEEE Sympo-
sium on VLSI Circuits (VLSI-Circuits), pp.1–2, June 2016.

[11] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “14.2 DNPU: An 8.1TOPS/W
reconfigurable cnn-rnn processor for general-purpose deep neural
networks,” 2017 IEEE International Solid-State Circuits Conference
(ISSCC), pp.240–241, Feb. 2017.

[12] M. Courbariaux, Y. Bengio, and J. David, “BinaryConnect: Train-
ing deep neural networks with binary weights during propagations,”
CoRR, vol.abs/1511.00363, 2015.

[13] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” CoRR,
vol.abs/1502.03167, 2015.

[14] F. Li and B. Liu, “Ternary weight networks,” CoRR, vol.abs/
1605.04711, pp.1–5, 2016.

[15] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
Imagenet classification using binary convolutional neural networks,”
Computer Vision – ECCV 2016, Lecture Notes in Computer Sci-
ence, vol.9908, pp.525–542, Springer International Publishing,
Cham, 2016.

[16] M. Ghasemzadeh, M. Samragh, and F. Koushanfar, “ReBNet:
Residual binarized neural network,” 2018 IEEE 26th Annual In-
ternational Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp.57–64, 2018.

[17] M. Abadi et al., “TensorFlow: Large-scale machine learning on het-
erogeneous systems,” 2015. Software available from tensorflow.org.

[18] F. Chollet et al., “Keras.” https://keras.io, 2015.
[19] “PyTorch.” https://pytorch.org.
[20] Preferred Networks, Inc., “Optuna: Define-by-run hyperparameter

optimization framework.” https://optuna.org/, 2018.
[21] A. Krizhevsky and G. Hinton, “Learning multiple layers of features

from tiny images,” Computer Science Department, University of
Toronto, Jan. 2009.

[22] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A.Y. Ng,
“Reading digits in natural images with unsupervised feature learn-
ing,” NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 01 2011.

[23] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.
Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient con-
volutional neural networks for mobile vision applications,” CoRR,
vol.abs/1704.04861, 2017.

Appendix: Hardware Implementation of Other Quan-
tization Techniques with Dithering

We have discussed and evaluated the dithering mainly in the
binary neural network and its hardware as an example. The
algorithm would be extended to any kind of quantization
methods, such as ternary [14], logarithmic [2], and linear
fixed-point, since any quantization technique produces the
quantization error.

Here, we discuss applying the error diffusion to a typ-
ical hardware architecture for neural networks with fixed-
point and logarithmic quantization. Quite similar method-
ology to the binary accelerator with dithering we used for
evaluation could be utilized here, therefore the hardware
overhead would not be significant even for that quantized
hardware, although they have not been synthesized and eval-
uated.

A.1 Fixed-Point Linear Quantization

Fixed-point linear quantization has been utilized in various
neural network accelerator arcitectures. In the fixed-point
quantization with the Bi-bit integer part and Bf -bit fractional
part (i.e. QBi.Bf format), the multiplication of two numbers
produces the product with the 2Bi integer and 2Bf fractional
bits, and they are then truncated to the original Bi-and-Bf -bit
expression, as shown in Fig. A· 1. Here, the remainder bits
of the integer part corresponds to the arithmetic overflow,
but that of the fractional part is simply ignored, thus this
causes the quantization error.

In a real fixed-point MAC operation, the bit truncation
usually takes place after the completion of the accumulation,
not just after the multiplication, therefore the accumulator
has the bit width for at least 2Bi-and-2Bf -bit number. An ac-
tivation function, such as ReLU, is applied to the produced
sum. Thus the same thing as the binary neural network —
the quantization error occurring at the end of MAC compu-
tation appears also in the fixed-point quantization. The com-
putation of the dithering on the fixed-point number is quite
similar to that of binary, but the biggest difference from the
binary is that the resultant number is still in a multi-level
number. As indicated in Fig. A· 2, the difference between
the accumulated sum and the truncated result is added at the
accumulation of the next output neuron as the quantization
error. Similarly to the case of binary, the method where the
quantization error is accumulated in the accumulator instead
of the reset operation can be used here. If the bit truncation
is implemented as rounding toward zero, the quantization
error can be computed by picking the lower fractional bits
(masking the larger bits and extending its sign bit) with no
explicit subtraction as shown in Fig. A· 3.

A.2 Logarithmic Quantization

Neural network using logarithmic quantization was pro-
posed in [2], where both the activation and weights are rep-

http://dx.doi.org/10.1109/isscc.2018.8310261
http://dx.doi.org/10.1109/isscc.2018.8310262
http://dx.doi.org/10.1109/fpt.2018.00013
http://dx.doi.org/10.1109/wacv.2016.7477614
http://dx.doi.org/10.1109/vlsic.2016.7573525
http://dx.doi.org/10.1109/isscc.2017.7870350
http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1109/fccm.2018.00018

ANDO et al.: DITHER NN: HARDWARE/ALGORITHM CO-DESIGN FOR ACCURATE QUANTIZED NEURAL NETWORKS
2351

Fig. A· 1 Typical procedure of the MAC operation of the fixed-point ac-
tivations and weights.

Fig. A· 2 Dithering operation in the fixed-point computation.

Fig. A· 3 Dithering operation in the fixed-point computation when the
truncation is rounding toward zero.

resented in base-2 logarithm. The advantage of the logarith-
mic quantization is that the multipliers can be eliminated,
because the multiplication between the weight and activa-
tion is replaced by the addition between the logarithms of
them.

Though [2] presented a technique to compute all the
operation including arithmetic addition in the logarithmic
domain, one possible and reasonable realization of the loga-
rithmic quantization is to represent/multiply the activation
and weight in the logarithmic domain and to accumulate
the product in the linear domain. As shown in Fig. A· 4,

Fig. A· 4 Typical procedure of the MAC operation of the logarithmic ac-
tivations and weights. In this example, the scaling factor is omitted for the
simplicity, and the sign is coded in the signed absolute expression.

Fig. A· 5 (a) A typical logarithmic PE (for output-pixel-parallel compu-
tation). (b) Applying the dithering in the logarithmic PE. These PEs are a
straightforward extension from the binary ones in Fig. 3.

after the multiplication (addition between the logalithmic-
represented activation and weight), the product is converted
into the linear expression with proper scaling, and then it is
accumulated in the linear domain, and finally the sum is ac-
tivated and quantized in logarithmic expression as the output
activation at the end of accumulation. Therefore, the quanti-
zation error can be defined as the difference between the lin-
early accumulated sum and the real value of the logarithmic-
represented activation.

Figure A· 5 indicates the ideal and primitive architec-
ture to process dithering in logarithmic neural networks.
Since the accumulation of the products of the activations and
weights is conducted in linear domain, the same processing
method as the case of fixed-point can be used; the quantiza-
tion error to be accumulated is computed as the subtraction
between converted logarithmic-expressed activation and the
accumulator value using the adder of the accumulator.

2352
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Kota Ando received his B.E. and M.E.
degrees in electronics at Hokkaido University,
Japan, in 2016 and 2018, respectively. He is
now pursuing his Ph.D. study at Tokyo Institute
of Technology. His research interests cover re-
configurable architectures, memory-centric pro-
cessing, and hardware-aware algorithms for effi-
cient deep learning processing. He received the
Best Student Presentation Award from the Tech-
nical Committee on Reconfigurable Systems of
IEICE, Japan, in 2016 and 2017, the Best Stu-

dent Poster Award from the Technical Committee on Integrated Circuits
and Devices of IEICE in 2018, and the Best Paper Award at the 2018 In-
ternational Conference on Field-Programmable Technology. He has been a
JSPS Research Fellow since 2018. He is a student member of IEICE and
IEEE.

Kodai Ueyoshi received his B.E. and M.E.
degrees from Hokkaido University, Japan, in
2015 and 2017, respectively. He is currently
pursuing his Ph.D. study on efficient hardware
architecture for machine learning systems at the
same university. Current topics include deep
learning hardware accelerators and memory-
error tolerance analysis for deep learning sys-
tem. He is a JSPS Research Fellow from 2017.
He received the ISSCC Silkroad Award in 2018
and the JSPS Ikushi Prize in 2019.

Yuka Oba received her B.E. degree in
electronics from Hokkaido University, Japan, in
2018. She is now pursuing her M.E. study at the
same university. Her current research interests
are in algorithms for constructing/converting
hardware-ready neural network models.

Kazutoshi Hirose received his B.E. and
M.E. degrees in electronics from Hokkaido Uni-
versity, Japan, in 2017 and 2019, respectively.
He is now pursuing his Ph.D. study at the same
university. He is interested in deep neural net-
works and its hardware-aware algorithms. He
received the Young Researcher Award from the
IPSJ Special Interest Group on System Archi-
tecture and the Best Student Presentation Award
from the Technical Committee on Computer
Systems of IEICE, Japan, in 2017. He has been

a JSPS Research Fellow since 2019.

Ryota Uematsu received his B.E. and M.E.
degrees in electronics from Hokkaido Univer-
sity, Japan, in 2017 and 2019, respectively. He is
interested in high-level hardware optimizer, and
power reduction techniques in backend design
flow. He received the Young Researcher Award
from the Workshop on Synthesis And System
Integration of Mixed Information technologies
of IEEE in 2018.

Takumi Kudo received his B.E. degree in
electronics from Hokkaido University, Japan, in
2018. He is now pursuing his M.E. study at the
same university. His current interest includes
mixed-paradigm neural network models aware
of hardware processing.

Masayuki Ikebe received his B.S., M.S.,
and Ph.D. degrees in electrical engineering from
Hokkaido University, Sapporo, Japan, in 1995,
1997, and 2000, respectively. During 2000-
2004, he worked for the Electronic Device Lab-
oratory, Dai Nippon Printing Corporation, To-
kyo, Japan, where he was engaged in the re-
search and development of wireless communi-
cation systems and image processing systems.
Presently, he is a Professor and leads the Inte-
grated Quantum Systems group at the Research

Center For Integrated Quantum Electronics (RCIQE), Hokkaido Univer-
sity. His current research interests are analog and mixed-signal IC design
with an emphasis on CMOS image sensor, THz imaging devices and intel-
ligent image processing systems. He is a member of IEICE and IEEE.

Tetsuya Asai received his B.S. and M.S. de-
grees in electronic engineering from Tokai Uni-
versity, Japan, in 1993 and 1996, respectively,
and his Ph.D. degree from Toyohashi Univer-
sity of Technology, Japan, in 1999. He is now a
Professor in the Faculty of Information Science
and Technology, Hokkaido University, Sapporo,
Japan. His research interests are focused on de-
veloping intelligent integrated circuits and their
computational applications. Current topics that
he is involved with include emerging research

architectures, deep learning accelerators, and device-aware neuromorphic
VLSIs.

ANDO et al.: DITHER NN: HARDWARE/ALGORITHM CO-DESIGN FOR ACCURATE QUANTIZED NEURAL NETWORKS
2353

Shinya Takamaeda-Yamazaki received the
B.E, M.E, and D.E degrees from Tokyo Institute
of Technology, Japan in 2009, 2011, and 2014
respectively. From 2011 to 2014, he was a JSPS
research fellow (DC1). From 2014 to 2016, he
was an assistant professor of Nara Institute of
Science and Technology, Japan. From 2016 to
2019, he was an associate professor of Hokkaido
University, Japan. Since 2018, he has been a re-
searcher of JST PRESTO. Since 2019, he has
been an associate professor of The University of

Tokyo, Japan. His research interests include computer architecture, high-
level synthesis, and machine learning acceleration. He is a member of
IEEE, IEICE, and IPSJ.

Masato Motomura received the B.S., M.S.,
and Ph.D. degrees in electrical engineering from
Kyoto University, Kyoto, Japan, in 1985, 1987,
and 1996, respectively. In 1987, he joined
the NEC central research laboratories, where
he worked on various hardware architectures
including string search engines, multi-threaded
on-chip parallel processors, embedded DRAM
field-programmable gate array (FPGA) hybrid
systems, memory-based processors, and recon-
figurable systems. From 2001 to 2008, he was

with NEC Electronics where he led research and business development of
dynamically reconfigurable processor (DRP) that he invented. He was also
a visiting researcher at MIT laboratory for computer science from 1991 to
1992. From 2011 to 2019, he was a professor at Hokkaido University. He
has been a Professor at Tokyo Institute of Technology, Japan, since 2019.
His current research interests include reconfigurable and parallel architec-
tures for deep neural networks, machine learning, annealing machines, and
intelligent computing in general. Dr. Motomura is a member of IEICE,
IPSJ, and EAJ. He was a recipient of the IEEE JSSC Annual Best Paper
Award in 1992, the IPSJ Annual Best Paper Award in 1999, the IEICE
Achievement Award in 2011, and the ISSCC Silkroad Award as the corre-
sponding author in 2018, respectively.

