
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019
2377

PAPER Special Section on Parallel and Distributed Computing and Networking

A Software-based NVM Emulator Supporting Read/Write
Asymmetric Latencies∗∗

Atsushi KOSHIBA†∗a), Takahiro HIROFUCHI††, Nonmembers, Ryousei TAKANO††,
and Mitaro NAMIKI†††, Members

SUMMARY Non-volatile memory (NVM) is a promising technology
for low-energy and high-capacity main memory of computers. The char-
acteristics of NVM devices, however, tend to be fundamentally different
from those of DRAM (i.e., the memory device currently used for main
memory), because of differences in principles of memory cells. Typically,
the write latency of an NVM device such as PCM and ReRAM is much
higher than its read latency. The asymmetry in read/write latencies likely
affects the performance of applications significantly. For analyzing behav-
ior of applications running on NVM-based main memory, most researchers
use software-based emulation tools due to the limited number of commer-
cial NVM products. However, these existing emulation tools are too slow
to emulate a large-scale, realistic workload or too simplistic to investigate
the details of application behavior on NVM with asymmetric read/write
latencies. This paper therefore proposes a new NVM emulation mecha-
nism that is not only light-weight but also aware of a read/write latency gap
in NVM-based main memory. We implemented the prototype of the pro-
posed mechanism for the Intel CPU processors of the Haswell architecture.
We also evaluated its accuracy and performed case studies for practical
benchmarks. The results showed that our prototype accurately emulated
write-latencies of NVM-based main memory: it emulated the NVM write
latencies in a range from 200 ns to 1000 ns with negligible errors from 0.2%
to 1.1%. We confirmed that the use of our emulator enabled us to success-
fully estimate performance of practical workloads for NVM-based main
memory, while an existing light-weight emulation model misestimated.
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asymmetric read/write latencies, write-back awareness
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1. Introduction

Recent trends of high-speed and many-core processors lead
to an increasing demand for larger memory capacity. Mod-
ern computer systems use DRAM for main memory while
scaling up DRAM capacity is becoming difficult due to its
refresh energy. Because a DRAM cell holds its data as elec-
tric charge in a capacitor, periodically refreshing the cell is
necessary to prevent data loss. This energy overhead rapidly
increases as DRAM scales up its capacity. It is predicted
that the refreshing energy occupies 50% of the overall power
consumption of a 64 GB DRAM module [1]. It is also re-
ported that a server computer with 128 GB DRAM con-
sumes more than 40% of its energy consumption for its main
memory [2]. This energy-greedy characteristic of DRAM is
an obstacle for future large capacity memory systems.

Non-Volatile Memory (NVM) is the key to overcome
this energy constraint. Some NVM devices with fast ac-
cess latencies will have the potential to be used for the main
memory of computers [3]. In addition, NVM does not re-
quire refreshing to keep its data, unlike DRAM. This non-
volatility prevents memory subsystems from wasting a large
amount of energy. Recent NVM technologies have attracted
much attention not only in academia but also in the indus-
try; new NVM products such as 3D-Xpoint are being de-
veloped [4]. For these reasons, NVM products are expected
to achieve high-capacity and energy-efficient main memory
systems.

Although NVM is effective for energy reduction, cur-
rent applications and system software, designed for DRAM-
based main memory, will not efficiently work for future
NVM-based main memory, due to its performance charac-
teristics. In particular, the gap between read latency and
write latency is generally significant. For example, phase
change memory (PCM) [6] represents the state of a 1-bit
cell (e.g., high or low) by changing its cell phase either of
two phases: an amorphous phase (low) and a crystalline
phase (high). A read operation to a PCM cell just senses
its resistance while a write operation applies an electrical
pulse to the cell to heat it and change its phase. Particu-
larly, PCM recrystallization (changing from the amorphous
phase to the crystalline phase) requires a long duration of
pulsing. Therefore, writing PCM typically requires much
longer latency than reading. The ITRS roadmap [3] reports
that the write latency of a typical PCM device is approx-
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imately 10x higher than its read latency. It also forecasts
that writing PCM will be still 5x slower than reading it in
2026. This gap possibly leads to performance degradation
of write-intensive application programs. For example, the
results of our preliminary experiments (shown in Sect. 4.3
in this paper) showed that write-intensive workloads such
as milc and libquantum experienced nearly 2x slower per-
formance with NVM-based main memory in comparison to
DRAM-based main memory.

To make use of future main memory with NVM, sev-
eral researchers have tackled to find out new system soft-
ware support and memory subsystems which are appropriate
for NVM characteristics [7]–[9]. However, no NVM-based
main memories are commercially available.

Memory emulation tools are therefore essential for re-
searchers to analyze/evaluate the performance of their pro-
posals without actual NVM devices. Although several sim-
ulation/emulation tools for NVM devices have been pre-
sented, these tools have problems for practical software re-
search. Cycle-accurate simulators [10], [11] are widely used
among researchers. While they can set read and write laten-
cies independently in nanoseconds, these simulators are not
appropriate for large-scale workloads because they are very
time-consuming for system software emulation. In contrast
to heavy-weight simulators, Volos et al. proposed Quartz,
which is a software emulator for NVM devices [12]. Quartz
emulates NVM-based main memory using a computer with
DRAM-based main memory. It estimates the delays of the
execution of a target process caused by accesses to an em-
ulated NVM device and slows down the target process. It
uses the performance counters of a CPU processor to get
information of memory accesses. This emulation mecha-
nism, slowing down a target process running on an operating
system, is basically light-weight. However, Quartz is un-
aware of the read/write latency gap of NVM devices. Most
CPU processors implement a write-back caching mecha-
nism. The CPU cores of a processor are not responsible for
write-back to the main memory. Instead, a cache controller
handles it. Quartz, using the performance counters of CPU
cores, does not incorporate write-back information into the
emulation model.

To overcome these shortcomings of existing emulation
tools, this paper presents a light-weight NVM emulator that
takes the read/write latency gap into account. Unlike Quartz
approach, our emulator classifies cache misses of a target
process into two types: read-only and write-back. The for-
mer performs only reading data from NVM, and the lat-
ter performs both reading and writing. On NVM systems,
write-back cache misses are expected to cause longer CPU
stall cycles than the other. To estimate the number of write-
back cache misses, our emulator monitors not only CPU
cache misses, but also the behavior of other components
(prefetchers and cache controllers). The emulator then cal-
culates the additional delays caused by the two types of
cache misses (read-only and write-back) respectively for
the read/write latencies of an emulated NVM device. This
write-back aware emulation model enables an accurate em-

ulation of NVM devices such as PCM.
To clarify the effectiveness of the proposed emulator,

we developed a prototype of the proposed emulator on an In-
tel Xeon processor and conducted three experiments. First,
we evaluated the accuracy of the prototype. We found that
our prototype emulates the write latencies of NVM-based
main memory in the range of 200 ns to 1000 ns with negli-
gible errors of 0.1% to 1.1%. Second, we applied our em-
ulator to various workloads selected from SPECCPU 2006.
The results demonstrated that the use of our emulator suc-
cessfully estimated the execution time of these workloads.
Third, we compared the proposed mechanism with Quartz
using an in-memory database program, Memcached, as a
case study of a realistic application. In the experiment, we
executed the original Quartz on our evaluation environment
and applied it to Memcached. We compared the evalua-
tion results with our emulator. We found that the use of
Quartz misestimated the performance of Memcached run-
ning with NVM-based main memory. These results show
that our write-back aware mechanism has clear advantages
in emulating NVM devices with asymmetric read/write la-
tencies.

2. Motivation

In this section, we introduce the overview of memory access
mechanisms and then explain how the gap of read/write la-
tencies potentially impact on the performance of computers.

2.1 Memory Access Mechanism

We briefly explain a typical memory access mechanism in
computers. Figure 1 shows the hardware structure of recent
multi-core computer systems. CPU cores are implemented
in a multi-core processor and every CPU core has local

Fig. 1 Memory system structure of modern multi-core computer sys-
tems. Every CPU core of state-of-the-art processors may have more local
cache levels (e.g., L3). We assume that NVM-based main memory is pro-
vided through memory modules and managed by the memory controller in
the same manner as DRAM.
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caches (e.g., L1, L2). Each CPU core has memory prefetch-
ers, and it also executes instructuions in an out-of-order
manner. With these functions, two or more load/store in-
structions are sometimes performed concurrently and CPU
cores avoid long stalls to access to the memory modules.
All CPU cores share the Last Level Cache (LLC), which is
larger than local caches. The LLC coherency among CPU
cores is maintained by the LLC controller of the processor.
The LLC controller is also responsible for issuing read/write
requests to the main memory when LLC misses occur. The
memory controller of the processor, receiving read/write
requests from the LLC controller, operates main memory
modules. Note that CPU cores of recent processors have
hardware performance counters, which measure the number
of performance events (e.g., cache misses, stall cycles). We
assume that NVM-based main memory is byte-addressable
in the same manner as DRAM-based main memory. We
also assume that both NVM and DRAM-based main mem-
ory modules are write-back cacheable; the caches in the pro-
cessor hold modified data in cache lines and do not write
the data to main memory modules until the cache lines are
evicted.

In this memory architecture, memory references reach-
ing to the main memory mostly occur when load/store in-
structions cause LLC misses. A CPU core, executing a pro-
gram, accesses memory data with load/store instructions.
When a CPU core executes a load or store instruction, it
refers to a source or destination address of the main memory,
which is specified by the instruction. Because the data cor-
responding to the address may exist in caches, the CPU core
first refers to its L1 cache. If the data does not exist in the L1
cache, the CPU core refers to the next cache level (e.g., L2
and then LLC). If the data does not exist even in the LLC,
the CPU core triggers an LLC miss event. It fetches a cache
line of data (i.e., typically 64-bytes data) from the mem-
ory module. When an LLC miss occurs, a cache controller
selects an LLC line where new data should be maintained
according to a certain cache management scheme (e.g., n-
way set associative). At the same time, the old data on the
selected LLC line is evicted to make room for new data.

The procedure of an LLC miss differs depending on
the state of the evicted LLC line. If the state of the line
is clean or invalid, the cache controller reads the new data
from the memory module and overwrites it to the cache line.
On the other hand, if the state of the line is modified, the
controller not only reads new data from the module but also
writes the modified line to the module in order to reflect
the change to the main memory. Therefore, we can find
two types of LLC misses; one that just reads data from the
memory module, and the other that induces a write-back.
We define the former and the latter as a read-only LLC miss
and a write-back LLC miss, respectively.

2.2 Impacts of Higher Write Latency

The two types of LLC misses lead to the same latency
with DRAM-based main memory because reading a new

Fig. 2 The performance penalty upon an LLC miss in DRAM-based and
NVM-based main memory systems, respectively. An NVM-based system
likely experiences significant penalty upon a write-back LLC miss.

line and writing an old line are executed in parallel [13].
Upon a write-back LLC miss, the LLC controller simulta-
neously starts reading a new line and writing an old line. In
DRAM-based main memory, the duration of a write-back
LLC miss is the same as that of a read-only LLC miss, be-
cause read/write latencies of DRAM are the same. However,
if NVM devices such as PCM are used for main memory, the
additional duration will be necessary upon a write-back LLC
miss due to its higher write latency. Figure 2 shows the dif-
ference of penalty time per one LLC miss between DRAM
and NVM. The upper part of Fig. 2 shows the DRAM case
where the write latency is almost the same as the read la-
tency. On the other hand, the lower part of Fig. 2 shows
the NVM case where the write latency is much longer than
the read latency. We assume that a write-back LLC miss
in NVM-based main memory requires a longer period be-
cause the controller waits for the eviction of an old line.
Although the controller can temporarily hold write requests
in a request queue to prevent write requests from interfer-
ing read requests, the queue will not work well for write-
intensive applications because of its limited size. Thus,
if write-back LLC misses occur frequently, the CPU core
that causes a write-back is forced to keep stalling until the
old data eviction finishes. This problem possibly influences
the performance of application programs depending on their
memory-access behavior. For instance, our experimental re-
sults in Sect. 4.3 show that the execution time of libquantum,
a write-intensive benchmark, becomes nearly 2x slower on
NVM than on DRAM.

2.3 Problem of Existing Work

As described above, the read/write latency gap of NVM-
based main memory possibly has a great impact on appli-
cation performance. Analyzing its impact on performance
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Fig. 3 The mechanism to delay the execution of a target process in
Quartz.

is therefore indispensable for developing future NVM sys-
tems. Because there are few numbers of commercial NVM
products, researchers are forced to use emulation/simulation
tools for their experiments.

However, there are some issues in existing tools to em-
ulate the read/write latency gap. The most common tool is
cycle-accurate simulators. These simulators are used with
other CPU simulators and simulate full system behavior
with NVM per CPU cycle [10], [14]. This approach can set
read/write latencies of main memory respectively, while it
is too slow to emulate large-scale workloads. For instance,
we experienced that a simulation system using NVMain [10]
with gem5 [15] took more than eight hours to finish a sim-
ulation of a tiny program, whose execution took only one
second in reality.

On the other hand, Quartz [12] is a light-weight emu-
lation mechanism using hardware performance monitoring
counters implemented in CPU cores of Intel processors. To
emulate a given NVM latency, Quartz inserts delays to the
execution of a target process. The inserted delays are based
on the number of DRAM references obtained through per-
formance counters of CPU cores. Figure 3 shows the Quartz
emulation model. Quartz measures the number of DRAM
accesses caused by the target process using performance
counters implemented in CPU cores at a specific interval
named Epoch. It then calculates the additional delay, Δ,
that is expected to be involved if the target process is exe-
cuted with NVM-based main memory. After the calculation,
Quartz suspends the process execution until Δ elapses. The
overhead of this emulation mechanism is negligible for most
use-cases.

The Quartz emulation model defines Δi, the additional
delay in Epochi, as Eq. (1):

Δi = MAi × (NV Mlat − DRAMlat) (1)

where MAi is the number of LLC misses during Epochi,
which have caused CPU stalls of the CPU core executing
the target process. NV Mlat and DRAMlat represents NVM
access latency and DRAM access latency, respectively. It
should be noted that thanks to memory prefetching and out-
of-order execution, an LLC miss does not necessarily in-
volve a CPU stall. Thus, we need to count the number of the
LLC misses involving CPU stalls, not the number of LLC
misses. To obtain MAi, Quartz divides the number of the
CPU stall cycles induced by LLC misses by DRAM access
latency (in cycles):

MAi =
LLC S T ALLi

DRAMlat
(2)

where LLC S T ALLi represents the total cycles of CPU core
stalls caused by LLC misses. The documentation of Intel
CPUs [13] provides the equation to calculate LLC S T ALLi

as follows:

LLC S T ALLi = L2stalls

× W × LLCmiss

LLChit +W × LLCmiss

(3)

where L2stalls is the total number of core stall cycles caused
by L2 cache misses, and LLChit and LLCmiss are the numbers
of LLC hits and LLC misses of the core, and W is the ratio
of the LLC miss latency (DRAM access latency) to the LLC
hit latency.

Although the Quartz approach has an advantage on the
processing overhead over cycle-accurate simulators, it does
not take the read/write latency gap into account. The dif-
ficulty to support the latency gap stems from the lack of
the capability in monitoring write-back activities through
CPU cores; CPU performance counters implemented in re-
cent processors (e.g., Intel processors) do not support a per-
formance event to measure write-back LLC misses of each
CPU core. The reason is considered that a modern processor
assuming DRAM-based main memory does not need to pay
attention to the write-back latency since DRAM write-back
operations are completely hidden behind its read operations
as shown in Fig. 2. This fact makes it difficult for the emu-
lation approach using CPU performance counters to analyze
the impact of higher write latencies on the performance of
a certain process. To overcome this issue, we propose an
emulation mechanism estimating per-core write-back LLC
misses, which is not directly countable.

3. Write-Back Aware NVM Emulator

This section proposes a light-weight emulation model that
distinguishes write-back LLC misses and read-only LLC
misses.

3.1 Basic Idea

We assume that write-back LLC misses lead to longer CPU
stalls than read-only LLC misses. To take the difference be-
tween read and write latencies into account, our emulation
model monitors two types of LLC misses respectively un-
like the Quartz emulation model. Our model allows users
to evaluate applications performance with NVM devices
whose read/write access latencies are asymmetric.

Our emulator injects delays into a target process de-
pending on the number of LLC misses in the same man-
ner as Quartz. However, unlike Quartz, our model divides
LLC misses into two types; one just reads data from mem-
ory modules (read-only) and the other induces both reading
and writing (write-back) as shown in Fig. 4. MAWB

i in Fig. 4
is the number of write-back LLC misses, and MARO

i is the
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Fig. 4 The mechanism to delay the execution of a target process in the
proposed emulation model. It distinguishes LLC misses into two types:
read-only and write-back. The latter, LLC misses inducing write-backs,
are expected to cause longer CPU stalls than the former.

number of read-only LLC misses within Epochi. Note that
MAWB

i and MARO
i represents the number of LLC misses that

actually cause CPU stalls. These two types of LLC misses
satisfy the following condition:

MAi = MAWB
i + MARO

i (4)

We assume that the write-back LLC misses make CPU cores
stalled for a longer period than the read-only LLC misses.

Let NV MWrite
lat be the average NVM write latency

and let NV MRead
lat be the average NVM read latency

(NV MWrite
lat � NV MRead

lat ), our model represents the addi-
tional delay Δ

′
i as follows:

Δ
′
i = MAWB

i × (NV MWrite
lat − DRAMlat)

+ MARO
i × (NV MRead

lat − DRAMlat)
(5)

To calculate the value of Δ
′
i , the emulator needs to periodi-

cally estimate MAWB
i and MARO

i of the target process at run-
time. However, performance counters of CPU cores cannot
measure the number of write-back LLC misses because of
the cache architecture. Therefore, we present a way to es-
timate the number of write-back LLC misses and achieve a
write-back aware NVM emulator.

3.2 Run-time Estimation of Read-only/Write-back Mem-
ory Accesses

This section describes how to calculate the two types of
LLC misses (MARO

i and MAWB
i ) respectively. Our emula-

tion model enables the calculation by making use of perfor-
mance counters of the LLC controller in addition to infor-
mation obtained from performance counters of CPU cores.
Our model defines MAWB

i and MARO
i as shown in Eq. (6):

MAWB
i =

LLC S T ALLWB
i

DRAMlat
,

MARO
i =

LLC S T ALLRO
i

DRAMlat

(6)

where LLC S T ALLWB
i and LLC S T ALLRO

i are the total cy-
cles of CPU core stalls caused by write-back LLC misses
and read-only LLC misses, respectively. To calculate
LLC S T ALLWB

i and LLC S T ALLRO
i , our model extends

Eq. (3). LLCmiss in Eq. (3) can be classified into two types
(write-back and read-only) as we have already described

in Sect. 2.1. Our model then defines LLC S T ALLWB
i and

LLC S T ALLRO
i as Eq. (7) and Eq. (8):

LLC S T ALLWB
i = L2stalls

× W × LLCWB
miss

LLChit +W × LLCmiss

(7)

LLC S T ALLRO
i = L2stalls

× W × (LLCmiss − LLCWB
miss)

LLChit +W × LLCmiss

(8)

where LLCWB
miss is the total number of write-back LLC

misses.
Due to the lack of performance monitoring events of

CPU cores, LLCWB
miss cannot be counted directly. Therefore,

our model estimates LLCWB
miss using other available monitor-

ing functions. To estimate LLCWB
miss, there are two key fac-

tors: (1) the number of write-backs within a certain period,
and (2) the degree of contribution of the target process to
these write-backs. To measure the factor (1), our model uses
an uncore performance counter implemented on the cache
controller. Intel processors such as Intel Xeon have LLC
controllers called LLC coherency engines (CBo) [16]. Be-
cause CBo counters monitor the number of cache lines writ-
ten back to the memory modules, they enable our model to
measure the factor (1) directly. Next, to estimate the fac-
tor (2), our model measures the number of all LLC misses
caused by CPU cores and their prefetchers in the system. We
expect that the degree of contribution of a certain CPU core
to write-backs can be estimated based on the proportion of
its LLC misses to the whole. Assuming that a certain core
causes 40,000 LLC misses in an epoch and the total number
of LLC misses in the same epoch is 200,000, the number
of LLC misses caused by the core occupies 20% of all the
LLC misses. Since write-back requests are induced by LLC
misses, the number of write-backs caused by the core in this
epoch is expected to be 20% of all the write-backs. Thus, if
the total number of write-backs in this epoch is 50,000, the
number of write-back LLC misses of the core is expected to
be 10,000. Based on these considerations, our model esti-
mates LLCWB

miss with Eq. (9):

LLCWB
miss = WB

× LLCmiss
∑n−1

i=0 LLCmiss,cpui +
∑n−1

i=0 LLCmiss,PFi

(9)

where WB is the total number of write-back operations by
the cache controller, n is the number of CPU cores of a
processor,

∑n−1
i=0 LLCmiss,cpui is the sum of the numbers of

LLC misses caused by every CPU core,
∑n−1

i=0 LLCmiss,PFi

is the sum of the numbers of LLC misses caused by every
prefetcher. Equation (9) calculates the ratio of LLC misses
of the target process to LLC misses of the whole system
and then multiplies the ratio and the number of write-backs.
Thus, the equation gives us the estimated number of write-
back LLC misses caused by a specific process.



2382
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

3.3 Applying to an Intel Processor

We implemented a prototype of our emulator for the In-
tel Haswell architecture. Table 1 shows the performance
counter events corresponding with the variables of the above
equations [16], [17]. DRAMlat and W are static values rely-
ing on the performance of a given machine and can be mea-
sured using a tool such as Intel Memory Latency Checker
(MLC) [18].

Figure 5 shows the execution flow of the controller dae-
mon of the emulator. Both the controller daemon and the
emulated process are running on the same multi-core pro-
cessor during the emulation. The controller daemon peri-
odically calculates and injects an additional delay at every
fixed interval (Epoch). When Epoch elapses, the controller
daemon suspends the execution of the target process. It then
reads performance counters of CPU cores and the LLC con-
troller to obtain values of performance events shown in Ta-
ble 1. It calculates the additional delay from the obtained
values using our emulation model. The target process is
suspended until its idle time reaches the calculated delay.
Finally, the controller daemon resumes the target process
and waits for the next Epoch. The controller daemon uses
POSIX signals to suspend the process execution and to re-
sume it. Our prototype is portable because other Intel pro-
cessor families are equipped with performance counters that
support the equivalent events.

Table 1 The performance monitoring events of the Haswell architecture
family used in the proposed emulator.

Performance events of CPU counters [17]

L2stalls CYCLE ACTIVITY:STALLS L2 PENDING
LLChit MEM LOAD UOPS L3 HIT RETIRED:

XSNP NONE
LLCmiss, MEM LOAD UOPS L3 MISS RETIRED:
LLCmiss,cpui LOCAL MEM
LLCmiss,PFi+ OFFCORE RESPONSE 0
LLCmiss,cpui (offcore rsp: 0x3FB84003F7)

Performance events of CBo (LLC controller) counters [16]

WB LLC VICTIMS.M STATE

Fig. 5 The overview of the emulation mechanism of our emulator.

4. Evaluation

To verify the effectiveness of our emulation model, we eval-
uated the prototype of the proposed emulator using a com-
puter with an Intel Xeon E2637 v3 processor. The processor
is the Intel Haswell architecture. Table 2 shows the detail of
our evaluation environment. We used Intel MLC to measure
the values of DRAMlat and W. In the experiments, we con-
figured the Epoch parameter so that our emulator can make
a good balance between accuracy and calculation overhead.
Because setting a longer Epoch value will increase the possi-
bility that the emulator fails to track short temporal changes
of memory access behavior of a workload, a shorter Epoch
value is preferable in this sense. Although, a shorter Epoch
value results in the increase of CPU load due to the calcula-
tion overhead. We observed that in the experiments 20 ms
of Epoch was appropriate to accurately emulate NVM with
negligible calculation overhead. In other situations, it may
be necessary to tune up an Epoch value to obtain sufficient
accuracy, especially for workloads whose memory access
behaviors frequently change. We will conduct further inves-
tigation on the relationship between the emulation accuracy
and Epoch in future work.

We used the machine exclusively for the emulation and
also configured the operating system to stop unnecessary
services. We consider that the cache hit ratio in the ex-
periments will be close to that of a machine with a real
NVM device. We focus this paper on the evaluation of
our emulator for single-threaded (or single-process) work-
loads. However, if the emulator is applied to multi-threaded
(or multi-processes) workloads, the temporal suspension of
each thread may change the behavior of cache contention.
This may result in the difference in the cache hit ratio and
degrade the accuracy of emulation. We will report the feasi-
bility of the emulator for such applications in our upcoming
work.

4.1 A Tool to Measure Write-Back Latency

To evaluate the precision of our model emulating the NVM
write latency, we developed a tool named wbbench that mea-
sures the average latency of write-back LLC misses. Fig-
ure 6 shows the pseudo code of wbbench. In order to ac-
curately measure cache miss latencies, wbbench is carefully
designed to suppress the effect of prefetching and out-of-
order execution. First, wbbench calls malloc() to reserve
a certain amount of memory region. It then calls gener-
ate random address list() to split the memory region into a

Table 2 Our Evaluation Environment

Processor Intel Xeon E5-2637 v3
OS CentOS 6.10 (Linux 2.6.32)
Memory 32GB DDR4 RAM @2400MHz
Epoch 20 ms
DRAMlat 121.7 ns
W 4.14
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Fig. 6 Pseudo code of wbbench.

linked list of cache-line aligned objects (i.e., struct cache-
line). Each cache line object is aligned to the size of an LLC
line (64 bytes). The cacheline objects of the linked list are
arranged in a random order; a cacheline object points to the
next one likely located at a distant address. While execut-
ing the while() loop, wbbench writes a value to the cache
line object that is currently referred by a pointer (clp). Next,
it calls get nextline from list() to refer to the address of the
next cache line object in the list and store it in the pointer,
which causes an LLC miss with a line eviction. Since
the cache line objects in the list are arranged randomly,
wbbench suppresses the effect of memory prefetching and
out-of-order execution. The memory access prefetching is
not effective for random access to cache lines. The out-of-
order execution of CPU does not work effectively for the
pointer traversal of a link list. The size of the memory re-
gion is set to be sufficiently larger than the size of LLC; at
each iteration of the while() block, a write-back LLC miss
occurs at a high probability. Wbbench measures the total
elapsed time during the while() loop and calculates the av-
erage write-back latency.

We also implemented robench, a tool to measure the
average latency of read-only LLC misses. Robench code is
almost the same as the wbbench code. The only difference
is that robench does not modify a cache line (i.e., skips the
line marked as (a) in the pseudo code). Since LLC misses
caused by robench do not induce write-backs, robench can
measure the read-only LLC miss latency.

To confirm the accuracy of latency measurement of
wbbench and robench, we measured the LLC miss laten-
cies of a computer with DRAM-based main memory. The
read-only and write-back latencies should be the same in
a DRAM reference. For comparison, Intel MLC was also
used to measure a DRAM latency, which does not distin-
guish read/write latencies. Table 3 shows DRAM access
latencies measured on our experimental environment. Mea-
surement errors of wbbench and robench in comparison with
Intel MLC is 1.5 ns (1.2%) and 0.9 ns (0.7%), respectively.
We observed that their output results are very close to those
of the Intel’s proprietary measurement program. The results
indicate that our latency measurement programs are suffi-
ciently accurate.

Table 3 DRAM access latencies measured with different tools. *Intel
MLC does not distinguish the read/write latencies.

Intel MLC Our tools

Measured read latency 121.7 ns 122.6 ns (with robench)
Measured write latency * 123.2 ns (with wbbench)

Table 4 NVM latencies configured by our prototype and measured with
wbbench/robench.

Configured wbbench robench
read/write lat. Measured lat. error Measured lat. error

122 ns/200 ns 202.1 ns 1.1 % 125.3 ns 2.7 %
122 ns/300 ns 300.4 ns 0.1 % 125.6 ns 3.0 %
122 ns/400 ns 399.2 ns -0.2 % 125.8 ns 3.1 %
122 ns/500 ns 497.8 ns -0.4 % 126.4 ns 3.6 %
122 ns/1000 ns 988.7 ns -1.1 % 128.6 ns 5.4 %

4.2 Validating Accuracy of Emulation

We evaluated the accuracy of the proposed emulation
mechanism using wbbench and robench. We set target
read/write latencies of the emulator and then measured
actually-emulated latencies by wbbehcn and robench, i.e.,
wbbench or robench were executed in our latency emu-
lator. If our prototype can accurately emulate the write
latency of NVM, a target write latency and its actually-
emulated latency become very close. To ensure that every
get nextline from list() call induces an LLC miss, we set the
size of the memory region reserved by wbbench/robench to
30 MB, which is twice as large as the LLC size of our envi-
ronment (15 MB).

Table 4 shows the evaluation results. The emulated
write latency was changed from 200 ns to 1000 ns while
the read latency is the same as the actual DRAM latency.
When applying our emulator to wbbench, the NVM write
latencies were emulated with errors of 0.1% to 1.1%. In ad-
dition, when applying our emulator to robench, the NVM
read latencies were emulated with errors of 2.7% to 5.4%.
These results show that our mechanism can emulate asym-
metric read/write latencies with negligible errors.

4.3 Applying to Various Workloads

To show the effectiveness of our emulation model for esti-
mating the performance of future NVM devices, we evalu-
ated the performance of various workloads when emulating
NVM-based main memory. We executed benchmark pro-
grams of SPECCPU 2006 and applied our prototype to them
to emulate their behavior in NVM-based main memory. We
measured the execution time of each benchmark program
in the emulation. We used 28 benchmark programs mix-
ing compute-intensive and memory-intensive workloads in
the experiment. We also measured memory write through-
put of each benchmark program to see the intensity of write
memory accesses. We used an internal performance counter
of the memory controller to measure write throughput. The
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Fig. 7 Execution time of SPECCPU 2006 benchmark programs when emulating the read/write asym-
metric latencies of NVM. The results are normalized to the no emulation case. The target NVM write
latencies were set to higher values than the DRAM latency (300 ns, 500 ns, and 1000 ns) while the target
NVM read latency was always set to the same as the DRAM latency (122 ns).

Fig. 8 Write throughput of each benchmark program in the emulation. The experimental condition is
the same as Fig. 7.

counter measures the total bytes written in the memory mod-
ules. The average write throughput was calculated by divid-
ing the total written data size by the total execution time of
the benchmark.

Figure 7 shows the execution time of each benchmark
program in the latency emulator. Figure 8 shows their aver-
age write throughput. In the experiments, we set the target
NVM read latency to the same value as the DRAM read la-
tency, while we set the target NVM write latency to 300 ns,
500 ns, and 1000 ns. According to the results, compute-
intensive workloads such as 416.gamess, 435.gromacs, and
444.namd keep their performance the same as DRAM-based
main memory because they cause a small number of write-
backs. On the other hand, write-intensive workloads such as
433.milc, 459.GemsFDTD and 462.libquantum lead to the
increase of the execution time and the degradation of the
write throughput due to the high NVM write latency. These
results indicate that our model can emulate the behavior of
practical workloads running with NVM-based main mem-
ory according to their memory access characteristics.

Some workloads in Figs. 7 and 8 are not sensitive to
their write intensiveness. For instance, 437.leslie3d and
470.lbm are the third and fourth most write-intensive of
all the benchmarks. However, the slow down of their ex-

Fig. 9 Proportions of LLC misses induced by CPU cores to all the LLC
misses during the experiments.

ecution time in the emulation was less than other write-
intensive workloads. On the other hand, 458.sjeng and
471.omnetpp are less write-intensive while their execution
time more sharply increased as the higher write latency was
emulated. Thus, the intensity of memory write is not only
the factor that determines how a write latency impacts on
workload performance. The effectiveness of prefetchers ex-
plains the results of these applications. Figure 9 shows the
proportions of LLC misses induced by CPU cores to all the
LLC misses during the experiment. The graph shows the
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Fig. 10 Execution time of SPECCPU 2006 benchmarks when setting the emulated NVM read/write
latencies to 500 ns. The results are normalized to no emulation.

values of the selected five write-intensive benchmarks in
addition to 437.leslie3d, 470.lbm, 458.sjeng, and 471.om-
netpp. As we described in Sect. 2.3, LLC misses is induced
by not only CPU cores but prefetchers. As shown in Fig. 9,
the proportion of CPU-induced LLC misses at the execu-
tion of 437.leslie3d and 470.lbm was quite small because
of the prefetchers. Contrary, LLC misses occurred when
executing 458.sjeng and 471.omnetpp were more likely in-
duced by CPU cores themselves. These results show that
our emulator is effective to estimate the performance impact
of memory-level parallelism on NVM systems.

Since Quartz does not distinguish read/write latencies,
users possibly obtain erroneous results when using it for em-
ulating an NVM device with asymmetric read/write laten-
cies. Thus, we examined how each SPECCPU benchmark
program behaved differently when we do not distinguish
read/write latencies. Figure 10 shows the results when we
configured both NVM read/write latencies to 500 ns in the
emulation. When setting both read/write latency to 500 ns,
several benchmark programs such as 429.mcf, 433.milc, and
471.omnetpp experienced more serious performance degra-
dation than the case of setting only the write latency to 500
ns. Since read-only LLC misses induced by these workloads
are more dominant than write-back LLC misses, setting both
emulated NVM read/write latencies to 500 ns resulted in
the worse performance than setting only the write latency
to 500 ns. This fact indicates that the capability in emulat-
ing read/write latencies independently is indispensable for
accurate emulation of NVM devices.

To clarify the slowness of cycle-accurate simulators,
we measured the elapsed time of a cycle-accurate simula-
tion for SPECCPU 2006 benchmark programs. We set up
a cycle-accurate simulation system comprising a CPU sim-
ulator (gem5 [15]) and a memory simulator (NVMain [10]).
We executed the 444.namd and 462.libquantum benchmark
programs of SPECCPU2006 on it. Because the simulation
system is too time-consuming, we used smaller datasets to
execute the benchmark programs than those used in other
experiments. Table 5 shows the evaluation results. As
shown in the table, the simulation is several thousand times
slower than our emulator. The results indicate that our emu-
lator is more light-weight than cycle-accurate simulators.

Table 5 Elapsed time to perform the NVM emulation/simulation. In the
emulation/simulation, the NVM write latency was configured to 300 ns.

bare execution our emulator NVMain&gem5

444.namd 14.4 sec 14.7 sec 81210.8 sec
462.libquantum 8.8 sec 9.1 sec 61917.5 sec

4.4 A Case Study Using a Realistic Workload

As a case study with a realistic workload, we applied our
emulator prototype to Memcached, an in-memory key-value
store database. We also chose memaslap as a client applica-
tion of Memcached. Memaslap randomly generates get/set
requests following a given set/get proportion and sends them
to a Memcached server during a given time period. We ex-
ecuted memaslap for one minute and measured the average
throughput (operations per second). In the experiment, a
Memcached server program and our emulator were executed
on the machine shown in Table 2. The number of Mem-
cached worker threads was set to one†. Besides, memaslap
was executed on another machine with Intel Xeon CPU
E5-2650 v4 @2.2GHz. The number of memaslap worker
threads was set to eight. The key and value sizes of each re-
quest were set to 128 bytes and 2048 bytes, respectively††.

Figure 11 shows the throughput of memaslap when set-
ting emulated NVM read/write latencies to the same value.
We compared our model with Quartz. In this experiment,
we also executed the original Quartz on our evaluation en-
vironment and applied it to Memcached. The evaluation
results of Quartz is also shown in the figure. It should be
noted that memaslap achieves the best performance when
the ratio of set:get is 5:5. Thus, most results in the figure
have peek throughput at set5:get5. The figure shows that the
throughput of memaslap decreased as the latency of NVM
set higher. When emulating the same latency, we observed
nearly the same throughput in our emulator and Quartz. This

†We focus this paper to the validation of the emulation accu-
racy for single-threaded workloads. The emulation accuracy of
multi-threaded workloads are discussed in future work.
††We chose these parameter values so that the memcached

workload would cause a sufficient number of LLC misses.
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Fig. 11 Throughput of memaslap when setting the emulated NVM
read/write latencies to the same value using two emulators: ours
(wb aware) and an existing emulator (quartz). The experiments were con-
ducted at different ratios of set/get operation. For example, set1:get9 means
the ratio of set/get is 1:9.

Fig. 12 Throughput of memaslap when setting 300 ns to the NVM write
latency with our emulator (wb aware). The result is compared with Quartz
setting 300 ns to NVM read/write latencies.

Fig. 13 Throughput of memaslap when setting 500 ns to the NVM write
latency with our emulator (wb aware). The result is compared with Quartz
setting 500 ns to NVM read/write latencies.

fact indicates that our emulator and Quartz are accurate to
emulate main memory with symmetric read/write latencies.

Figures 12, 13 and 14 show the throughput of
memaslap when the emulators were intended to emulate an
NVM device with asymmetric read/write latencies. We tried
to emulate an NVM device with the read latency of 122 ns
(i.e., the same as DRAM) and the write latency of 300 ns.
Since Quartz does not distinguish read/write latencies, we
have no choice but to set its latency to 300 ns. As shown
in the results, there is a significant performance difference
between our emulator and Quartz; in all the three figures,
the throughput emulated by Quartz are lower than our em-
ulator. Our emulator only delays LLC misses that are ex-

Fig. 14 Throughput of memaslap when setting 1000 ns to the NVM
write latency with our emulator (wb aware). The result is compared with
Quartz setting 1000 ns to NVM read/write latencies.

pected to induce write-backs. On the other hand, Quartz
delays both read-only and write-back LLC misses since it is
not aware of the difference between the two types of LLC
misses. This indicates that our emulator has great advan-
tages in emulating read/write asymmetric memory devices.
The use of Quartz likely under-estimates application perfor-
mance for such NVM devices.

5. Related Work

Cycle-accurate simulators such as NVMain, DRAMSim2,
and NVSim are widely used to evaluate software perfor-
mance on NVM systems [10], [14], [19]. In general, these
memory simulators are combined with processor simulators
such as Gem5 and MARSS [15], [20]. They calculate the
full-system behavior of target architecture per CPU cycle.
This approach can set NVM read/write latencies indepen-
dently while the time required for a simulation is enormous.
Our experiment found that the full-system simulation with
NVMain and gem5 is approximately three orders of magni-
tude slower than the light-weight emulation of our proposed
emulator.

Some researchers customized the hardware of com-
modity computer systems to accurately imitate the behav-
ior of NVM-based main memory. Persistent Memory Em-
ulation Platform (PMEP) enables NVM latency emulation
with special CPU microcode of an Intel Xeon processor and
a customized BIOS system [8]. The microcode monitors a
batch of LLC misses and injects additional delays to emulate
higher NVM latency. Lee et al. integrate an FPGA-based
NVM emulator on an ARM System-on-Chip board [21]. A
hardware module implemented in the FPGA part monitors
read/write requests issued from CPU cores to a DRAM con-
troller and inserts additional delays to each request. These
hardware-based mechanisms can emulate slow NVM ac-
cesses with small performance overhead while such hard-
ware customization is not easy for software researchers.

LEEF [22] is an NVM emulation platform that pro-
vides both full-system simulation and light-weight emula-
tion. The emulation mode of LEEF supports several emula-
tion models based on existing work [8], [23], [24]. However,
the accuracy of these emulation models heavily depends on
types of workloads; it is reported that LEEF causes emula-
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tion errors of approximately 30% to 40% in the worst case.
To complement the accuracy of these models, LEEF also
proposes a regression method to select an optimal emula-
tion model according to the type of a workload. However,
the detail of the regression method is not clear in this paper.

Quartz [12] is similar work to our emulator as we de-
scribed before, while Quartz is lack of support for asym-
metric read/write latencies. HME is another software-based
emulator using CPU performance counters [25]. HME also
tries to emulate slow NVM writes by counting the number of
LLC lines written back to main memory modules. Their em-
ulation model calculates a delay to be inserted to the execu-
tion of a target process, from the total number of write-back
requests. It, however, evenly distributes the delay to each
CPU core. This approach is not accurate because it does not
consider important factors such as the per-core difference of
LLC miss frequency and memory-level parallelism. In con-
trast, our emulation model can cover these factors.

6. Conclusion

In this paper, we presented a software-based emulation
mechanism supporting asymmetric read/write latencies of
NVM-based main memory. It can emulate the behavior
of NVM-based main memory, using normal DRAM-based
computers. The emulation model of our emulator inserts a
delay to the execution of a target process. It calculates the
delay from the number of LLC misses and write-back op-
erations using performance counters of the CPU cores and
the LLC controller in a processor. We implemented a pro-
totype of the emulation model for an Intel processor family
(i.e., Haswell) and evaluated its accuracy through experi-
ments. The results of the experiments showed that our pro-
posed mechanism successfully emulated target read/write
latencies with negligible errors of 0.1% to 1.1%. We con-
firmed that the use of the existing emulator without the sup-
port of asymmetric latencies (i.e., Quartz) seriously under-
estimated the performance of several workloads. The use
of our emulator, thanks to the modeling of the write-back
mechanism of a processor, successfully generated realis-
tic performance for these workloads. Because emerging
NVM devices such as PCM, ReRAM, and MRAM basi-
cally have asymmetric read/write latencies, our emulator has
great advantages on the emulation of main memory com-
prising NVM.

In future work, we furthermore evaluate the accuracy
of the proposed mechanism using actual NVM devices that
are supposed to be available in the upcoming years. Since
the energy consumed by reading and writing NVM is differ-
ent, we assume that our write-back aware emulation model
is also effective for evaluating the energy performance of
NVM devices. We will clarify the effectiveness of our model
for the energy asymmetry of NVM.
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