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SUMMARY Differentiable neural architecture search (DARTS) is now
a widely disseminated weight-sharing neural architecture search method
and it consists of two stages: search and evaluation. However, the original
DARTS suffers from some well-known shortcomings. Firstly, the width
and depth of the network, as well as the operation of two stages are dis-
continuous, which causes a performance collapse. Secondly, DARTS has a
high computational overhead. In this paper, we propose a synchronous pro-
gressive approach to solve the discontinuity problem for network depth and
width and we use the 0-1 loss function to alleviate the discontinuity prob-
lem caused by the discretization of operation. The computational overhead
is reduced by using the partial channel connection. Besides, we also dis-
cuss and propose a solution to the aggregation of skip operations during the
search process of DARTS. We conduct extensive experiments on CIFAR-
10 and WANFANG datasets, specifically, our approach reduces search time
significantly (from 1.5 to 0.1 GPU days) and improves the accuracy of im-
age recognition.
key words: NAS, DARTS, skip operation, synchronous progressive, image
classification

1. Introduction

Image classification is one of the basic tasks in the field of
computer vision. In 2012, AlexNet [1] improved the accu-
racy of image classification tremendously using an eight-
layer convolutional network and won the ImageNet com-
petition championship. Since then, the convolutional neu-
ral network has become the mainstream approach for im-
age classification, and various networks have been designed
to improve the performance [2]–[5]. In the past, most re-
searchers designed neural networks manually. However, this
situation has changed recently due to the development of
neural architecture search (NAS), which achieved great suc-
cess in image classification. For image classification, NAS
is expected to design the search space, and learn to discover
neural network architectures with good performance auto-
matically. The development of NAS mainly goes through
two stages according to the search strategy. In the first stage,
although the search strategy has achieved good performance
by applying reinforcement learning or evolutionary algo-
rithms, the computational overhead is still considerably high
as it often takes hundreds or even thousands of GPU days,
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which is unaffordable for lots of researchers. Many efforts
explore ways to reduce search time. DARTS [6] brings NAS
into the second stage: differentiable search, which deviates
completely from reinforcement learning and evolutionary
algorithms. DARTS uses multiple cell stacks, each of which
is represented by a directed acyclic graph (DAG) consist-
ing of multiple nodes. A relaxation method is used to train
the mixed operations among nodes by a gradient descent ap-
proach, thus reducing the computational overhead to single-
digit GPU days. NAS aims at searching for the model of the
highest accuracy with the least search time, and the model
size should be as small as possible. DARTS overcomes the
issue of high computational cost in traditional methods and
greatly reduces search time while ensuring model accuracy.
It has become a new focus of research in NAS after rein-
forcement learning and evolutionary algorithms. DARTS
can search for a well-performing model automatically by ap-
plying a search strategy, which costs less computation and
less time. However, DARTS still suffers from many draw-
backs, such as discontinuous network configuration, skip
operation aggregation, etc., which affect the performance
of the search algorithm. Therefore, it is important to in-
vestigate and solve these problems to improve accuracy and
performance.

The rest of the paper is organized as follows. We first
review the related work on NAS in Sect. 2. Then, we pro-
pose SP-DARTS in Sect. 3. We evaluate the performance of
the proposed approaches through extensive experiments on
the CIFAR-10 dataset in Sect. 4. We conclude our work in
Sect. 5.

The main contributions of our work are summarized as
follows:

• We propose an efficient “synchronous progressive
method” for DARTS to bridge the depth and width gap
between search and evaluation, and demonstrate its su-
periority over standard DARTS in terms of accuracy
and search time.
• We apply partial channel connections (PC) and edge

normalization (EN) to reduce computing overhead
caused by the synchronous progressive method. The
search stage in DARTS typically costs 1.5 GPU-days,
and we reduce this time to 0.1 GPU-days without per-
formance loss.
• We explore the impact of channels of the network and

the sampling rate K of the PC method on skip aggre-
gation phenomenon and provide justifications for such
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impact.
• We conduct experiments to show the skip operation ag-

gregation phenomenon caused by DARTS and employ
the Sigmoid activation function to eliminate this phe-
nomenon.

2. Related Work

Some early studies proposed pioneering search architectures
based on reinforcement learning (RL) [7]–[9]. NASNet can
generate strings that represent the structure of neural net-
works through RNN [7], and continuously update the gradi-
ent of strategy to generate a network architecture with bet-
ter performance. However, the procedure is computationally
very intensive and can only process small data sets. NASNet
is among the first that proposed a cell-based search space,
where a cell is a DAG consisting of an orderly sequence of
nodes. NASNet searches for operation types and topological
connections in the cell and repeats the cell to form the entire
network architecture. The depth, width, and sampling oper-
ation of the architecture are all set manually, which greatly
improves the search efficiency of the algorithm compared
with the work in [7]. The approaches based on evolution-
ary algorithms (EA) [10]–[12] have also achieved great per-
formance. Some research efforts applied EA to the search
field to initialize a neural network model population, from
which each individual model is evaluated for its adaptability
on the validation set. The algorithm proceeds to reproduce
and mutate the superior architectures while eliminating the
inferior ones. RL- and EA-based methods generally incur
very high computational overhead. DARTS is the first work
that applies a gradient-based method to the field of NAS and
reduces the search time to 1.5 GPU days. Liu et al. initial-
ized all operations between nodes in each cell and gener-
ated weights using multi-cell stacking. They also relaxed the
search space to be continuous, so that the architecture can be
optimized by gradient descent and reduce the computational
cost in the procedure of search [6]. A significant number of
research efforts are based on [13] to improve differentiable
search. Xin et al. [14] pointed out that the depth discontinu-
ity of the search stage and evaluation stage in [6] causes the
low accuracy of the search model. They also proposed to
divide the search process into multiple stages, increase the
network depth continuously to address the discontinuity of
depth, and discard some of the operations when switching
the search stage to adapt GPU memory. Their result shows
that the accuracy is improved and the search time is reduced
to 0.3 GPU days. GDSA [7] is proposed with a partial op-
timization subgraph method and a new loss function, which
reduced the search time to 0.21 GPU days. In addition, the
work in [7] also mentioned that many architecture search
techniques of reduction cell are very similar, and designed
reduction cell manually, which can reduce search time and
improve search accuracy in the search stage. Xu et al. pro-
posed PC-DARTS to reduce the search time by partial chan-
nel sampling, solved the problem of skip operation aggre-

gation, and utilized edge regularization to solve the problem
of search instability [15]. Chu et al. pointed out the reason
for skip operation aggregation is that the softmax relaxation
method of discrete operations causes unfair competition in
the processing of gradient descent of weight [16]. There-
fore, they used a sigmoid relaxation function to solve this
problem, and proposed a one-zero loss function to acceler-
ate the convergence speed of mixed operation weights.

3. The Proposed Approach

This section introduces a DARTS-based framework of neu-
ral architecture search to address the drawbacks of the orig-
inal DARTS.

3.1 Preliminary: Differentiable Architecture Search
(DARTS)

Our proposed algorithm is based on DARTS [6], which has
two stages for search and evaluation. During the search
stage, a model stacked with L cells is used to search, and the
input of each cell is two previous cells. A cell is defined as
a directed acyclic graph (DAG) consisting of a sequence of
N nodes denoted as {x0, x1, · · · , xN−1}. The number of input
and output channels for each cell except for input node and
output node is denoted as C. There are 8 operations defined
in search space (O), including the operations of 3×3 and 5×5
separable convolutions, 3×3 and 5×5 dilated separable con-
volutions, 3×3 max pooling, 3×3 average pooling, identity,
and zero. Each operation represents some function o(·), and
each edge E(i, j) represents the mixed weighted operation
from node(i) to node( j), where the weights are parameter-
ized by vector α(i, j). We make the search space continuous
using softmax over all operations as follows:

o(i, j)(x) =
∑
oϵO

exp(α(i, j)
o )∑

o′ ϵO exp(α(i, j)
o′

)
o(x). (1)

The output of each intermediate node is expressed as:

x j =
∑
i< j

o(i, j)(x(i)). (2)

The output node of a cell is calculated as:

xN−1 = concat(x2, x3, . . . , xN−2). (3)

The training and valid loss are determined by the ar-
chitecture α and weights w of network, denoted by Ltrain

and Lval. The optimization approach is as follows:

min
α

Lval(w
∗(α), α)

s.t. w∗(α) = argminwLtrain(w, α),
(4)

where the weights w∗ is obtained by minimizing the training
loss Ltrain. In the search stage, the network depth L = 8, and
the initial number of channels C = 16. There are N = 7
nodes in each cell, including two input nodes, four interme-
diate nodes, and one output node. In the evaluation stage,
the structure of each cell remains the same as the search
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stage, but the depth L is increased from 8 to 20 and the
number of channels C is increased from 16 to 36. The opti-
mal model selected from the search stage is determined after
training on the training dataset and evaluation on the valid
dataset.

3.2 Synchronous Progressive DARTS

The network depth and width are not continuous between
the search and evaluation stages of DARTS: the depth is
from 8 cells to 20 cells, and the width (i.e., the initial number
of channels) is from 16 to 36. It is well known in the neu-
ral architecture search algorithm that if the model performs
well in the search stage, it also performs well in the evalua-
tion stage. In other words, the model with good performance
in the search stage performs well with probability P in the
evaluation stage. Therefore, the higher the probability P is,
the better performance of the search algorithm has. How-
ever, the discontinuity of depth and width may reduce the
probability P, as the continuity worsens, and the difference
of performances between the search and evaluation stages is
greater. To address this drawback, we propose an approach
based on DARTS to change the depth and width in a syn-
chronous progressive way during the search stage, referred
to as SP-DARTS (Synchronous Progressive DARTS), which
divides the search process into three stages. The steps of SP-
DARTS are shown in Algorithm 1. The search process in the
original DARTS and our SP-DARTS are shown in Fig. 1 (a)
and (b), respectively, for comparison.

In SP-DARTS, we adopt a staged strategy that splits the
search process into three stages where the depth and width
are gradually increased from 5 to 20, and from 16 to 36, re-
spectively. At the end of each stage, the depth and width
of the model are increased for the next stage. The proce-
dure is provided in Fig. 2. The algorithm divides the search
process into three stages, each of which performs the same
process with different network settings. In the first stage, 3
normal cells and 2 reduction cells are stacked, so the depth
of the network is 5. The number of input and output chan-
nels of each cell is set to 16, so the width of the network is
16. The second stage initializes the network to a depth of 11
and a width of 24. The third stage initializes the network to
a depth of 17 and a width of 32. The same process is carried
out in each search stage: the model parameters and archi-
tecture parameters of the network are optimized by gradient
descent according to Eq. (8). After search, the evaluation
stage initializes the network to a depth of 20 and a width
of 36. This way, the network’s depth and width are gradu-
ally increased, and the discontinuity between the search and
evaluation stages is addressed. However, the computational
cost during the process increases linearly with respect to the
depth of the model, and increases by power of two with re-
spect to the width. Therefore, SP-DARTS cannot run on a
single GPU directly. In order to address this problem, we
use the ”search space approximation” method proposed in
[14], which progressively reduces the operations in differ-
ent stages to fit into a GPU. As shown in Fig. 2, while 0,

Algorithm 1 SP-DARTS
Input: Number of search stages T ; The network depth, channels for stage

t: Layert , Channelt;
The proportion of PC selected channels for stage t: Kt;
Initial architecture α, model weights ω, edge normalization coefficient
β;
Number of saved operations for stage t: Ot;
for t = 1 to T do

Update network configuration to Layert , Channelt , Kt ,
Ot;
Reinitialize architecture α, model weights ω, and EN
coefficient β based on Ot;
while not converged do

Sample a batch of training data Xtrain and a batch of
validation data Xval;
Update α and β by descending ∇α(Lval(ω, α, β)+
ω0−1L0−1), ∇β(Lval(ω, α, β) + ω0−1L0−1);
Update ω by descending ∇ωLtrain(ω, α, β);

end while
end for
Derive the final architecture based on the learned α and β;

Fig. 1 Difference between DARTS and SP-DARTS.

Fig. 2 Search space approximation.

1, 2 and 3 are four intermediate nodes in the cell, the lines
of different colors represent different operations. After the
first stage, four operations with the maximum weight are re-
tained according to the operation weight, while other oper-
ations are discarded. After the second stage, two operations
are retained in the same way, and one operation is retained
after the third stage.

The progressive method in SP-DARTS can learn more
complex representations with the increasing depth of the
network, whereas each layer becomes simpler [17], [18].
Similarly, the network can learn more abundant features
with an increasing width [19]. Because the network depth
and width are different, we propose a synchronous progres-
sive method in the search stage to make the depth and width
approximate to the corresponding values in the evaluation
stage. Therefore, the operations of the final network archi-
tecture are different with a high probability.
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3.3 Problems of Memory Inefficiency and Skip Operations
Aggregation

A drawback of DARTS lies in memory inefficiency [15].
In the search stage, the network width is large so that the
storage of convolution template parameters of intermediate
nodes and the storage of output results take up a large pro-
portion. The batch size of training needs to be limited to
complete the search on a single GPU, which reduces the
search speed and accuracy. Besides, the full channel con-
nections restrict the network’s depth and width from setting
a large number potentially in the search stage, which also
affects the search’s accuracy. Following the partial channel
connections method proposed in [15], we propose the in-
formation flow between nodes in the cell as the following
expression:

fi, j(xi, si, j) =
∑
oϵO

σ(αo
i, j) ·o(S i, j ∗ xi)+ (1−S i, j ∗ xi), (5)

where σ() represents the sigmoid activation on σo
i, j, and

S i, j ∗ xi and (1 − S i, j ∗ xi) denote the selected and masked
channels, respectively. The hyper-parameter K is set to ex-
press the proportion of selected channels by 1/K. The par-
tial channel connections also mitigate the skip operation ag-
gregation problems in DARTS. In the early studies, archi-
tecture search algorithms generally preferred no parameter
or weak parameter operations because they had few param-
eters to train, and thus the output was more continuous. By
contrast, for those operations with more parameters, each
epoch’s update transmits discontinuous information before
all parameters are well optimized. As a result, weak pa-
rameter operations tend to accumulate an enormous weight.
It is difficult for other operations to ”defeat” them, even if
they have been trained to a certain extent. According to the
statistics of the number of skip operations through running
DARTS for 3 times, as can be seen from the Fig. 3, with the
increase of training epochs, DARTS has a severe skip oper-
ation aggregation phenomenon. Partial channel connections
limit the number of skip operations because the operation
between nodes only passes through the partial channel. It
can be more effective by sampling a part of super-net to re-
duce the redundant space without any performance loss.

In this paper, we not only adopt partial channel connec-
tions, but also use a sigmoid function to activate the mixed
operation, which addresses unfair competition between op-
erations in the search stage. It has been pointed out in the
literature that the root cause of the skip operations aggre-
gation and weak parameter operations is the unfair compe-
tition between operations in the search stage [16]. Specif-
ically, softmax relaxation was used for mixing operations
between nodes within a cell in the DARTS. The nature of
the softmax function determines that an increase of one op-
eration weight results in a decrease of the others, affecting
competition between operations in mixed operation. The in-
crease of weight in the early stage of weak parameter opera-
tion greatly weakens the weight of other operations, leading

Fig. 3 The number of skip connections when searching with DARTS.

to the aggregation of weak parameter operations. In addi-
tion, such unfairness affects the operation competition of all
precursor nodes of each node, which greatly inhibits the in-
crease of operation weight, as it might be better in the future
during the search stage, and affects the performance of the
search model. If sigmoid activation function is applied ac-
cording to Eq. (5), the relation between operations is free,
and fair competition is thus established. Even if the activa-
tion value of weight reaches the upper limit of 1, weights
of other operations can continue to update well, so as to
mitigate the weak parameter operation aggregation. Also,
it is proved in [15] that the edge normalization method can
solve the search instability problem caused by partial chan-
nel sampling and improves the search quality. Therefore,
the intermediate node is calculated as:

x j =
∑
i< j

exp(βi, j)∑
k< j exp(βk, j)

· fi, j(xi), (6)

where βi, j denotes the weight from node(i) to node( j), and
fi, j(xi) denotes the value of forward propagation. The rule
that the input weights of precursor nodes of each intermedi-
ate node are equal is broken by using edge normalization.

3.4 Problem of Mixed Operation Discretization

As mentioned before, in the evaluation stage of DARTS,
there are problems of discontinuities of network depth and
width, but there still exists a problem: discretization of
mixed operations. According to the method proposed in [6],
the operation with the largest weight in mixed operation of
all precursor nodes for each intermediate node is selected
first after the search stage, so that there is only one oper-
ation for the edge from each precursor node to this node.
Then two precursor nodes with the maximum weight are se-
lected to determine the cell structure. However, we found
that these weights are very close to each other through run-
ning DARTS. At the end, it is hard to tell which operations
are good and which ones are bad. It is expected that one-hot
architecture will be generated at the end of the search stage
of DARTS, where the selected operation has a weight of 1
and the unselected operation has a weight of 0. Therefore,
we use the sigmoid function and set the activation value to
be either 0 or 1. This way, the difference between the model
after searching and the model after discretization is smaller,
and the performance loss also becomes smaller. The addi-
tional loss function [16] is as follows:

L0−1 = −
1
N

N∑
i

(σ(αi) − 0.5)2, (7)
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where N is the total number of operations in a cell. The
loss of additional function is minimum when σ(αi) is 0 or
1, and the loss is maximum when σ(αi) is 0.5. The weight
σ(αi) converges faster in the direction of 0 or 1 using this
additional loss function, and the muti-hot architecture will
be formed at the end of search. It also expands the solution
space compared to one-hot. In this paper, the optimization
method is as follows:

min
α

Lval(w
∗(α)) + w0−1L0−1

s.t.w∗(α) = argminwLtrain(w, α),
(8)

where w0−1 is the weight of loss function L0−1, and as in
Eq. (4), W represents model parameters, and α represents
architecture parameters. The search algorithm optimizes
model parameters with training dataset, and optimizes the
architecture parameters with validation dataset. The dis-
cretization method after searching is to multiply the weight
activation value σ(αi, j) and the edge normalization coeffi-

cient exp(βi, j)∑
k< j exp(βk, j)

, and then generate the architecture accord-
ing to the discretization method in DARTS. Therefore, the
combined flow of Eq. (3), Eq. (5), Eq. (6) and Eq. (8) consti-
tute our method in this paper; Eq. (5) and Eq. (6) are the cal-
culation methods of intermediate nodes within a cell; Eq. (3)
is the calculation method of the output of each cell, and
Eq. (8) is the optimization goal of the overall algorithm. The
rest of the algorithm is the same as DARTS.

4. Experiments and Results

We conduct experiments on image classification datasets
of CIFAR-10, which has 50k/10k training/testing RGB im-
ages with a spatial resolution of 32 × 32. These images
are equally distributed over 10 classes. The training dataset
is equally split into two subsets in the architecture search
stage, one for tuning network parameters, the other for tun-
ing the architecture. In the evaluation stage, the standard
training/testing is used.

4.1 Architecture Search

The search process consists of 3 stages. The network config-
urations are the same as DARTS, except that the zero oper-
ation is dropped. Since zero operation has no gradient, it is
useless without a softmax function. In the initial stage (stage
1), the network depth L = 5, the initial channel number
C = 16, partial channel sampling K = 4. In the intermediate
stage (stage 2), L = 11, C = 24, K = 4. In the final stage
(stage 3), L = 17, C = 32, K = 4. Meanwhile, the opera-
tion space’s size in three stages is 7, 4, and 2, respectively.
After the final search stage is completed, only one operation
left to generate the model structure. For each stage, we train
the network using a batch size of 256 for 25 epochs. Since
the partial channel sampling is applied, the larger batch size
is allowed for acceleration.In the first 10 epochs, only the
network parameters are tuned at each stage, while the net-
work and architecture parameters are tuned in the remain-

Table 1 Comparison of NAS algorithms on CIFAR-10.

Models
Params

(M)
Test Error

(%)
Search Cost
(GPU-days)

Type

DenseNet-BC[25] 25.6 3.46 - manual
NASNET-A[2]
BlockQNN[26]
AmoebaNet-B[23]
Hireachical Evolution[12]
PNAS[28]
ENAS[27]

3.3
39.8
2.8
15.7
3.2
4.6

2.65
3.54
2.55
3.75
3.41
2.89

2000
96

3150
300
225
0.5

RL
RL

evolution
evolution
SMBO

RL
DARTS(first order)[14]
DARTS(second order)[14]

3.3
3.3

3.00
2.76

1.5
4

gradient-based
gradient-based

SNAS[29]
GDAS[18]
Random search baseline

2.8
3.4
3.2

2.85
2.93
3.29

1.5
0.21

4

gradient-based
gradient-based

random
SP-DARTS(a)
SP-DARTS(b)

3.64
3.66

2.71
2.78

0.11
0.11

gradient-based
gradient-based

Fig. 4 Search result

ing 15 epochs. The architecture parameters are optimized
by Adam optimizer, where the learning rate η = 0.0006,
weight decay wd = 0.001 and momentum β = (0.5, 0.999).
The model parameter optimizer adopts momentum SGD op-
timization. The initial learning rate η = 0.025, which is
decayed to 0 following the cosine rule, and the momentum
β = 0.9, weight decay wd = 0.0003, the weight of loss
function L0−1 w0−1 = 10. The search results of the model
are shown in Table 1. SP-DARTS(a) results from using loss
function L0−1, and SP-DARTS(b) is the result without loss
function L0−1. The experiments are performed on a single
Tesla V100 GPU and cost 0.11 GPU days. Compared with
DARTS, it is clear that the search time is reduced and the
model accuracy is improved. Figure 4 shows the searched
model, where the search depths of (a), (b) and (c) are 5, 11
and 17, respectively, and the initial number of channels is
16, 24 and 32, respectively. We observe that the cell be-
comes more hierarchical as the search progresses. (d) is the
normal cell searched by DARTS v2.

4.2 Architecture Evaluation

The same as DARTS, in the evaluation stage, the model is
stacked with 20 cells and 36 initial channels, and model pa-
rameters are initialized randomly and trained with a batch
size of 128 for 600 epochs. We also use the cutout regular-
ization [20] with the length of 16, Drop-path [21] with a rate
of 0.3 and auxiliary towers [5] with a weight of 0.4. The
standard SGD optimizer and momentum gradient descent
method are adopted, where the weight decay wd = 0.0003,
momentum β = 0.9, and initial learning rate η = 0.025 and
is decayed to 0 using cosine annealing.
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Fig. 5 Weight thermal diagram

4.3 Diagnostic Experiments

4.3.1 Utility of Loss Function

In Eqs. (1), the softmax function is adopted in DARTS to
activate the mixed operation between nodes in the cell, and
the result of weight is in (0,1), which makes the weights of
mixed operations very similar after searching. In this pa-
per, comparative experiments on the activation for opera-
tion weight and whether to add the loss function L0−1 are
conducted additionally. The results are provided in Fig. 5.
The combination of sigmoid activation and L0−1 makes the
difference in operations weights larger. It is easier to distin-
guish the quality of the operation and the architecture struc-
ture is more reasonable.

4.3.2 Discussion of Skip Operation Aggregation

We conduct comparative experiments on partial channel
sampling proportion K. As shown in Fig. 6, the x-axis is the
number of epochs in each training stage. Since the first 10
epochs are only used to tune the model parameters, which
do not affect the architecture parameters, we consider the
epochs starting from 10 to 25 in the experiment. The param-
eters of exp1 in the three stages include the network depth
L = 8−8−8, the initial number of channel C = 16−32−64,
and partial channel sampling proportion K = 4 − 4 − 4. The
parameters of exp2 in the three stages are the network depth
L = 8−8−8, the initial number of channel C = 16−32−64,
and partial channel sampling proportion K = 4 − 8 − 8.
Each experiment is executed twice with a different random
seed. Two conclusions drawn from these two experiments:
1) The skip operations aggregation in DARTS is aggravated
with the increase of the initial number of channels; 2) Par-
tial channel connection inhibits skip operation, and the in-
hibitory effect increases with the increase of K.

The reasons for such conclusions are discussed as fol-
lows: For conclusion 1), with the increasing number of ini-
tial channels, the features that can be extracted are richer, so
the model can achieve the performance with fewer channels
in the case of more skip operations. On the other hand, the
larger the model is, the more discontinuous the output gra-
dient of loss for multi-parameter operations will be. There-
fore, the model will prefer the skip operations that make
the loss function decay rapidly. For conclusion 2), partial
channel sampling is adopted to transmit forward through the

Fig. 6 Comparative experiment on K.

mixed operation. A concatenation operation of other chan-
nels not processed is adopted when reaching the front node,
which is essentially equivalent to skip operation, and more
original information of nodes is retained. Therefore, addi-
tional skip operations are not very necessary in the search
process. However, having no skip operation in the search
result is also one of our approach’s drawbacks. The removal
of the skip operation will affect the capability of the model.
For the architecture search methods such as DARTS, it is
essential to find K, the depth L, and initial channel number
C to balance if partial channel connection is adopted. If K
is too large, the aggregation of weak parameters operation
will be severe. While K is too small, the inhibitory of weak
parameter operation will be strong.

We further apply SP-DARTS to the image resource of
WAN FANG datasets to search for a required image. The
experimental results show that our method performs well on
other datasets and has a good generalization capability.

5. Conclusion

This paper proposed a synchronization progressive ap-
proach based on DARTS for network depth and width and
adopted several effective optimization methods in the lat-
est studies. The experiments are conducted on the CIFAR-
10 and WANFANG datasets, and the results show that the
search time is reduced to 0.1 GPU days with high accuracy.

Meanwhile, we also found some cases in the experi-
ments where the comparative experiments were designed to
make it clear and provide a preliminary explanation. There
are some drawbacks of the proposed method, such as ex-
cessive inhibition of skip operation. The neural architecture
search (NAS) algorithm still has no unified standard. Var-
ious training processes and various parameters make it dif-
ficult to know each step’s exact contribution to the results.
Although the differential scheme greatly reduces the search
time, the training process is still very time-consuming. In
the future, the evaluation stage’s time cost will be greatly
reduced with the development of computing hardware and
the further study of model evaluation. For the improvement
of DARTS, a feasible direction is to break the sharing cell
scheme and the fixed structure of the cell, which will enrich
the search space and be beneficial to searching for a better
model. In conclusion, it is hoped that deep learning will
develop towards automation with the development of NAS,
which can achieve a better model architecture.
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