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CJAM: Convolutional Neural Network Joint Attention Mechanism
in Gait Recognition

Pengtao JIA†a), Nonmember, Qi ZHAO†b), Member, Boze LI†, and Jing ZHANG†, Nonmembers

SUMMARY Gait recognition distinguishes one individual from others
according to the natural patterns of human gaits. Gait recognition is a chal-
lenging signal processing technology for biometric identification due to the
ambiguity of contours and the complex feature extraction procedure. In
this work, we proposed a new model - the convolutional neural network
(CNN) joint attention mechanism (CJAM) - to classify the gait sequences
and conduct person identification using the CASIA-A and CASIA-B gait
datasets. The CNN model has the ability to extract gait features, and the at-
tention mechanism continuously focuses on the most discriminative area to
achieve person identification. We present a comprehensive transformation
from gait image preprocessing to final identification. The results from 12
experiments show that the new attention model leads to a lower error rate
than others. The CJAM model improved the 3D-CNN, CNN-LSTM (long
short-term memory), and the simple CNN by 8.44%, 2.94% and 1.45%,
respectively.
key words: image classification, gait recognition, deep learning, convolu-
tional neural networks, attention mechanism

1. Introduction

Biometric recognition, which identifies individuals using
biometric features, is an essential field of computer vision.
Biometric recognition includes iris recognition [1], finger-
print recognition [2], face recognition [3] and gait recogni-
tion [4]. In law enforcement scenarios in which suspects are
being arrested, it is difficult for the police and related institu-
tions to obtain the fingerprints or facial features of strangers.
However, with the help of security cameras, the gait video
of suspects cab be obtained effortlessly. Hence, gait recog-
nition, as a new biometric method, requires more research.
Gait recognition also has potential applications in fields such
as person re-identification, visual surveillance and object de-
tection. Nevertheless, since the contours of humans may be
blurred and images may appear stumpy and poorly defined,
recognizing an individual by gait presents more difficulties
than other recognition methods.

Gait recognition is a major public problem, and the cru-
cial points focus on utilizing the contour information and
temporal information among the former and latter frames
in a sequence. There are two sorts of approaches for gait
recognition: traditional methods and neural network meth-
ods. Traditional methods often use manually notated fea-
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Fig. 1 CJAM for gait recognition. A) The input is the key frames of a
sequence of RGB-D videos. B) The raw pixels are preprocessed, includ-
ing graying, binarization and compression. C) Binary images are passed
through the CNN to obtain the gait signatures. D) An attention model gives
various values to different parts. E) A final decision is formed by a softmax
classifier and an identification result is output.

tures to complete the identification. Therefore, the tradi-
tional process is a painstaking and time-consuming task that
requires manual preprocessing to extract gait features and
cannot effectively use gait information. Neural network
methods could extract gait features automatically, although
the accuracy of recognition depends on the structure of the
neural network. Although there are abundant images in a
person’s gait sequence, neural networks can solve the chal-
lenging task by distinguishing a person automatically and
effortlessly. A key frame in a gait sequence has two kinds of
pixels: important pixels and unimportant pixels. The unfit
and useless images, which are named “unimportant” pix-
els, may be very similar to other people’s contours. The
unimportant pixels cannot show a person’s feature and, as
a result, they may have serious impacts on the predictive
power of a neural network model. The vital points of data
are named “important” pixels since they can show the gait
features effectively. Common convolutional neural network
models cannot eliminate the influence of unimportant infor-
mation on the images in a sequence, which may lead to a bad
result. Therefore, we proposed a model, named the convo-
lutional neural network joint attention mechanism (CJAM),
that joins an attention mechanism and a convolutional neu-
ral network (CNN) together, and it is depicted in Fig. 1.
This model can be used to discern between “important” and
“unimportant” pixels.

A CNN is adept at extracting useful features from the
initial input, and an attention mechanism is essentially a
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weight assignment that allows a computer to focus the pic-
ture in a manner similar to that of human eyes. Hence, the
model has the ability to ignore those “unimportant” pixels in
a sequence and set high weights for those “important” pix-
els. The CJAM extracted features of the initial gait images’
contours with the CNN and then used the attention mecha-
nism to recognize those features and finalize the classifica-
tion.

The rest of this paper structured as follows. In Sect. 2,
the related works and background knowledge section, we
introduce the formal research studies on gait recognition,
including traditional methods and neural network methods,
and provide basic background knowledge of the attention
model. In Sect. 3, the CJAM model, including a CNN en-
coder for feature extraction and an attention model for clas-
sification, that is used for image sequence classification is
explained. The experimental results and analysis are pre-
sented in the experiment section, which is Sect. 4 of this pa-
per. In Sect. 5, we conclude our studies and present an ex-
pectation about the field of gait recognition and potentially
related areas.

2. Related Works and Background Knowledge

2.1 Related Works

Studies associated with gait recognition began later but have
produced promising results for challenging classification
problems. In terms of the feature extraction approaches,
gait recognition studies can be divided into two stages: the
traditional stage and the neural network stage. The tradi-
tional stage was based on methods that extract gait features
manually while neural network methods have become more
popular, especially when deep learning was introduced. The
neural network methods auto extract gait features using neu-
ral networks and then implement classification. In this part,
we will introduce traditional methods and then concentrate
on studies based on neural networks for gait recognition.

Traditionally, there are three main types of established
traditional methods used in image classification tasks. It is
well known that the performance of any learning algorithm
is heavily dependent on the choice of the data representa-
tion. The first approach to recognize gait sequences depends
on some traditional models. For example, Kale et al. ap-
plied a hidden Markov model to human body contours to
classify humans [5]. Derltka M and Bogdan M ensembled
the kNN classifiers for human gait recognition and reached
the 97.3% accuracy [42]. Sharma et al. applied the artificial
neural networks for gait recognition and compared the per-
formance with BPNN (Back Propagation Neural Network),
that ANN performance of the recognition method depends
significantly on the quality of the extracted binary silhou-
ettes [43]. The second way approach classifies the gait se-
quence using manually extracted features. Han and Bhanu
first took the mean contour of the whole gait cycle, called
the gait energy image (GEI) [6], as an effective feature. The
GEI is basically equal to the average silhouette over one

gait cycle. The GEI, or the average silhouette representa-
tion, has been widely adopted due to its simplicity and effec-
tiveness. The GEI saves both computation time and storage
space. Wang et al. represented feature information with hu-
man body contour column mass vectors [7] and used a sup-
port vector machine to conduct recognition and improve the
accuracy. These authors used principal component analysis
to reduce the dimensionality of the input feature space and
to extract the unique gait features. More recently, Chen et
al. proposed a gait recognition method based on tracking the
center of gravity [8]. The third is using fused features, which
are built to make up for the deficiency that a single feature
might lose gait information, for gait recognition. For ex-
ample, Li et al. applied canonical correlation analysis after
the gait features were fused for classification and recogni-
tion [9]. Chai el al. introduced the dynamic region variance
feature (DRV) [10] to describe the motion of body parts, and
then feature-level and decision-level strategies were respec-
tively used to fuse three types of features.

Although traditional methods have made significant
achievements for the task of gait recognition, these methods
cannot extract feature automatically, while neural network
could deal those problems easily. The neural methods are
introduced below.

Lecun was the first to use the backpropagation algo-
rithm on the convolution neural network and improved the
performance of the CNN so that it could be applied in prac-
tical work [11]. However, due to the limitations of hard-
ware computing abilities and other constraints, neural net-
works were not given more attention. In 2006, Hinton
and others proposed a method that could train deep belief
networks fast [12], and they published an article in “Sci-
ence” [13], which opened up the field of deep learning. In
2012, Krizhevsky et al. won the ImageNet championship.
These authors obtained a particularly good result with deep
convolutional neural networks [14], piquing the interests of
industry and academics in deep learning.

Convolutional neural networks have become a better
way to extract the spatial information of images since these
researcher studies were conducted. Furthermore, a CNN
was adopted to carry out image recognition and other re-
lated aspects of this work.

Many more studies on gait recognition using deep con-
volutional neural networks have been carried out [15], [16].
Wu and his research group trained a general deep convolu-
tional neural network to recognize the most discriminative
changes in a human’s identity, and the method achieved a
state-of-the-art 94% recognition rate only under the con-
dition that the cross-view angle was no less than 36 de-
grees [17]. An empirical comparison of the 2D-CNN, 3D-
CNN and ResNet using the CASIA-B dataset was con-
ducted by Castro et al. [18], and the results show that mul-
timodel feature fusion could achieve the best image classi-
fication. The accuracy and performance of the algorithm
mostly depends on the neural network architecture, but it
could achieve much better results than using human eyes to
examine the various model structures to identify gaits.
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Fig. 2 The transformer structure proposed at [29].

Most convolutional neural networks are 2D networks
specializing in two-dimensional problems with spatial rela-
tions such as image classification. However, the common
deep learning methods used to recognize image sequences
are the 3D-CNN or CNN-LSTM. The 3D convolution has
the ability to combine temporal and spatial information to
handle the relevant multiframe pictures, so it could be used
to address image sequence recognition tasks, such as mo-
tion and gait recognition. In 2012, Ji et al. first proposed the
3D convolutional neural network to resolve the problem of
human motion recognition [19]. In addition, in 2014, Karpa-
thy et al. applied the 3D convolution to changed frames of
videos [20]. In 2016, the Google DeepMind team applied
a 3D convolution neural network called LipNet to lip read-
ing at the sentence level [21]. In addition, Thomas Wolf et
al. applied the 3D convolution neural network to the field
of multiview gait recognition and achieved remarkable re-
sults [22].

Unlike convolutional neural networks, recurrent neural
networks (RNNs) are more suitable for dealing with time se-
ries problems, such as generating text or speech recognition,
but RNNs also perform well in computer vision tasks. While
a general RNN unit cannot eliminate the problem of long-
distance dependence, Jürgen Schmidhuber et al. proposed
LSTM [23], which can prevent the vanishing and explod-
ing gradients caused by RNN training over a long distance.
Once LSTM was proposed, many scholars applied it to di-
verse fields. For example, Fei Li et al. used the bidirectional
LSTM model to classify relationships [24]. Yi et al. used
the bidirectional GRU (a variant of LSTM) to study Chi-
nese classical poetry and achieved excellent results [25]. To
achieve better performance and accuracy, researchers also
joined an ordinary 2D CNN and RNN together to address
video sequence-related tasks. Donahue et al. first put a CNN
and LSTM together to present a new model for visual recog-

nition and description [26]. Medel et al. used a CNN-LSTM
network architecture for the first time to achieve the auto-
matic prediction of video sequences [27]. Recently, Zhang
Z et al. proved that the CNN-LSTM could achieve better
performance than a simple CNN model [28]. The attention
model, which was proposed by Google in 2017, has been
proved to achieve significant results in time series problems.
In this paper, a combined CNN and attention model was pro-
posed for gait recognition, and satisfactory results were ob-
tained by our experiments.

2.2 Attention Model of Transformer

The attention mechanism has been widely used in natu-
ral language processing. Vaswani et al. 2017 introduced
a model called a transformer [29] that used self-attention.
Self-attention is an attention mechanism relating different
positions of a single sequence in order to compute a repre-
sentation of the sequence.

An attention function can be described as mapping a
query and a set of key-value pairs to an output, where the
query, keys, values and output are all vectors. The output is
computed as a weighted sum of the values, where the weight
assigned to each value is computed by a compatibility func-
tion of the query with the corresponding key.

The inputs of the attention encoder consist of a set of
key-value pairs (K, V), including the keys of dimension dk

and values of dimension dv. In the decoder, the transformer
computes the dot products of the queries with all keys, di-
vides each by

√
dk, and applies a softmax function to obtain

the weights on the values and pack a set of queries together
into a matrix Q. The keys and values are also packed to-
gether into matrices K and V . The transformer adopts the
scaled dot-product attention. The outputs can be computed
using Eq. (1).
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Attention(Q,K,V) = so f tmax(
QKT

√
dk

)V (1)

Rather than only computing the attention once, the
multihead mechanism computes the scaled dot-product at-
tention multiple times in parallel, as shown in Fig. 2. The
queries, keys and values are linearly projected h times with
different, learned linear projections to dk, dk, and dv dimen-
sions, respectively. For each of these projection versions of
queries, keys and values, the multihead attention performs
the scaled dot-product attention function in parallel. These
independent attention outputs are concatenated and trans-
formed into expected dimensions, resulting in the final val-
ues that are calculated using Eq. (2).

MultiHead(Q,K,V) = Concat(head1, . . . , headh)

where headi = Attention(QWQ
i ,KWK

i ,VW f
i )

(2)

In the transformer, the encoder and the decoder are
both stacked to N=6 sublayers, and the multihead mecha-
nism runs h=8 parallel scaled dot-product attention layers.
For each of these layers, the dimensions of the keys, val-
ues and output dk = dv =

dmodel

h = 64. Each encoder attention
sublayer is a self-attention layer with a fully connected feed-
forward network. All of the keys, values and queries come
from the same input.

This paper proposed a new CJAM structure, based on
the experience of predecessors and the combination of a
CNN and an attention model, to conduct gait recognition.
By conducting comparison experiments between the CJAM
structure, the 3D-CNN and the CNN-LSTM, we analyzed
the performance of various network structures on the gait
recognition task.

3. CNN Joint Attention Mechanism

3.1 The Description of CNN Joint Attention Mechanism

The attention mechanism has been largely adopted in the
field of language modeling, but too little work has been de-
voted to the application of the attention model in image se-
quence tasks. Since the transformer is designed for machine
translation, which is a sequence-to-sequence classification
problem, it cannot work for simple image sequence classifi-
cation, such as gait recognition. Therefore, by modifying
the transformer from machine translation, we proposed a
new attention model for image sequence classification and
applied to gait recognition. We altered the transformer by
eliminating its decoder and adding a randomly initialized
decoder query vector. The CJAM uses the CNN model to
transform the initial input image sequences into feature vec-
tors since the input of the attention model must be vectors.
The attention model in the CJAM also has an encoder for
encoding sequence information and a decoder for decoding
the information. The CNN model and the attention model
are illustrated in detail in the following sections.

Fig. 3 Samples that some key frames of continuous gait sequence in
CASIA-A.

3.2 CNN Model for Feature Extraction

The CNN structure is used to extract image features so that
each image will be transformed into a vector after the CNN
model.

A human’s gait sequence, as shown in Fig. 3, contains
many continuous image frames. In our CASIA-A experi-
mental dataset, the number of key frames of each sequence
ranges from 27 to 127. Because the temporal complexity
to process an original sequence is a bit longer, we divided
it into several segments instead of using the whole original
sequence as the input, and each segment becomes a shorter
subsequence of the original sequence. The length of the sub-
sequence is a crucial factor affecting the accuracy and effi-
ciency of the model. If the length is too short, the model may
not learn sufficient information; but if the length is too long,
the training procedure will be very slow. However, the most
relevant features for gait sequence frames are only relevant
with a short temporal range and are not actually associated
with other temporally distant frames. In our approach, the
frame sequences overlap within the test or training set as
in Wolf et al. 2016 [22]. Considering both the performance
and the accuracy, we set the length of each subsequence at a
moderate length of 5 frames. Therefore, the CNN accepted
5 preprocessed gait images at a time and encoded them via
several layers. Assuming that there are 75 frames in our ini-
tial gait sequence, the initial gait sequence would be divided
into clips that have five frames each, such as frame (1-5),
(6-10), (11-15), . . . (71-75). Using the five frames of every
subsequence in the same initial long sequence, we calculate
the mean value of the class probabilities as the final predic-
tion of the test set and use the max probability class as the
exact class recognized by the CJAM.

The encoded vectors of images would be transmitted
to the attention model in temporal order. Using encoded
vectors as the attention mechanism’s input, we can finish
the classification task using the CJAM.

The architecture of the CNN in the CJAM is shown
in Fig. 4, and the description of the CJAM is given in the
following paragraph.

The 1st layer: The input layer of the CJAM accepts
data with the format of [batch size, 5, 120, 176]. The first
parameter, the batch size, is the size of batch in the training
step. The “5” indicates that the number of neighboring im-
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Fig. 4 Convolutional neural network for gait feature extraction. The in-
put image is our preprocessed silhouettes gait photos, which compressed to
176×120 pixels. Linear CNN with three 2D convolutions, two max pool-
ing, and 1 fully connected layers and output the gait feature to attention
model for sequence classification.

ages in temporal order is 5. The “120” and the “176” repre-
sent the size of the compressed images (see the details in the
experimental section), which has transformed into 120×176
matrices. Then, the input data would be transformed into the
format of [batch size×5, 120, 176, 1], which was convenient
to for the CNN to calculate as its input.

The 2nd layer: The second layer is a convolutional
layer with a filter size of 3×3 and a stride size of 1, and
it outputs 48 feature maps.

The 3rd layer: The third layer conducts the max pool-
ing operation, where the pooling window size and the stride
size are both 2.

The 4th and the 5th layers: The fourth and fifth layers
are two additional convolutional layers, and the parameters
of both are consistent with those of the first layer.

The 6th layer: The sixth layer is the second pooling
layer, and its operation is equal to that of the third layer.

The 7th layer: The seventh layer is a fully connected
layer that is accountable for transmuting the previous 6th
layer’s output into vectors with a length of 512. After this
transformation, the CNN model modifies the input with the
format of [batch size, 5, 120, 176] into the output with a
format of [batch size×5, 512]. It can be seen that the input
images have been encoded into vectors with a length of 512
using the CNN.

All of the layers make up the entire CNN model archi-
tecture in the CJAM. The attention structure of the CJAM
was designed similar to that of the CNN architecture, which
will be described in Sect. 3.3.

3.3 Attention Model for Sequence Classification

In this work, a special attention model combined with the
CNN was designed to classify sequences, and the model is
depicted in Fig. 5.

Fig. 5 Attention model for sequence classification. We take advantage
of N=2 identical layer as the encoder and our decoder contains only one
layer.

The difference between attention model in the CJAM
and the transformer in Google is that the CJAM’s encoder
inputs are the CNN’s outputs instead of word embeddings
being used. Simply, the CJAM take advantage of N=2 iden-
tical layers as the encoder. The two encoder attention sub-
layers both could be considered as a self-attention layer with
a fully connected feedforward network. The decoder of the
CJAM contains only one layer. In the transformer, all of the
keys, values and queries come from the same place. How-
ever, in the CJAM, the keys and values of the decoder come
from the output of the encoder, and the queries come from
a randomly initialized vector, which can be modified dur-
ing training. Furthermore, the attention model in the CJAM
adopted a residual connection around the encoder and the
decoder, followed by layer normalization.

Similarly and conveniently, the CJAM adopted the
multihead attention, which is described in Sect. 2.2. In
this work, the CJAM has 8 parallel attention layers, and
dk = dv =

dmodel

h = 64 in each of these layers.
After the decoder, the output would make a transforma-

tion with a linear operation and then acquire the predictions
using a softmax function since gait recognition must handle
hundreds and thousands of classes.

4. Experiment and Discussion

4.1 Dataset

We had tested the CJAM model using CASIA dataset A [31]
and CASIA dataset B [32], which were collected by the In-
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Fig. 6 Samples of CASIA-A. The dataset contains 20 people’s gaits,
each person has 12 image sequences in three different moving directions
(00, 45, 90 degree).

telligent Recognition & Digital Security Group. CASIA
dataset A was constructed and released in 2001. As shown
in Fig. 6, this dataset contains 20 people’s gait data, and each
person has 12 image sequences in three different moving di-
rections. The sequences are 0, 45, and 90 degrees to the
image plane, respectively, with 4 sequences for each direc-
tion. The length of the sequences depends on the different
moving speeds. For each sequence, we divided the origi-
nal sequence into several subsequences that have 5 differ-
ent frames. Namely, the CASIA-A have 240 sequences that
divided to 3828 sub-sequences. To avoid the influence of
clothes and color, the contour data are only used in our ex-
periments, and the contour images are shown in Fig. 3. The
images only consist of values of 0 and 1, where 0 represent
black pixels and 1 represents white pixels.

In our experiments, the dataset, CASIA-A, was divided
into two mutually exclusive parts, a training set and a test
set, at a ratio of 9:1 ratio via cross-validation. For each
10 sub-sequences, we picked 9 sub-sequences for training
and 1 for testing. To obtain more precise data of every an-
gle, these gait sequences were separated into different an-
gles to train or test specific tasks. For example, the model
trained using the 0 degree images could test various gait se-
quences without considering the angle or the index of the
sequence. All the gait sequences, which encompass 3828
sub-sequences and 19139 total frames, were divided into
the training set and the test set, which contain 3441 sub-
sequences that 17205 frames and 386 sub-sequences that
1930 frames, respectively.

CASIA-B [32] dataset is a popular and comprehensive
gait dataset. It contains 124 subjects (labeled in 001-124),
3 walking conditions and 11 views (0, 18, . . . , 180). The

Fig. 7 The procedure of data preprocessing, which include 5 functional
model, the transformation from RGB to gray image, the binarization, image
morphology processing, the extraction of body contours and the compres-
sion.

walking condition contains normal (NM) (6 sequences per
subject), walking with bag (BG) (2 sequences per subject)
and wearing coat or jacket (CL) (2 sequences per subject).
Namely, each subject has 11 × (6 + 2 + 2) = 110 sequences.
As there is no official partition of training and test sets of
this dataset, we conduct experiments on the settings which
are popular in current literatures. The first 74 subjects were
used for training and the rest 50 subjects were leaved for
test. Given a probe sequence, the goal is to retrieve all the
sequences with the same identity in gallery set. In the test
sets of all three settings, the first 4 sequences of the NM
condition (NM #1-4) are kept in gallery, and the rest 6 se-
quences are divided into 3 probe subsets, i.e. NM subsets
containing NM #5-6, BG subsets containing BG #1-2 and
CL subsets containing CL #1-2.

4.2 Data Preprocessing

The initial CASIA contour data include 240×352 images.
To effectively use the data to train and calculate the model,
the initial images have to be preprocessed. We transform the
initial 240×350 images into new 120×176 contour images,
which means that the height and width of the new images
are both halved compared with the initial images.

In the preprocessing, as shown in Fig. 7, the main cod-
ing aimed to achieve 5 functional steps, which include the
transformation from RGB to grayscale images, the binariza-
tion, the morphological processing, the extraction of body
contours and the compression.

The common format of color image is RGB, with a
24-bit image bit depth. Due to the massive of information
contained in the picture, the calculations require substantial
temporal and spatial resources. The purpose of grayscale
and binarization is to convert the RGB image into a bi-
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Fig. 8 Compression algorithm. A) Give the different weights to specific
pixel position. B) Examples of our compression algorithm, the new value
calculated by the equation v=a+2b+4c+8d.

nary image. Although the operations will lose the color and
grayscale values of the original image, for portrait images,
it still retains the outline texture information of the portrait.
Furthermore, the operations are improved due to the extreme
reduction in the size of the image data, and the efficiency is
improved for subsequent processing.

Morphology was originally denoted as the study of the
morphology and structure of living things. In graphics, it
is mainly used to represent the content of digital morphol-
ogy. Mathematical morphology is used as a tool to extract
the useful components of an image’s expression and the
shape of the depicted area, such as the boundaries, skele-
tons, and convex hulls. As shown in Fig. 7, after obtaining
the grayscale image, there are defects in the human body
and the connected parts that should not appear in the im-
age. For this case, the opening and closing operations were
performed on the defective images.

To further increase the speed of the operations, the bi-
narization reduced amount of calculation of the pixels in-
side the contour on the premise of preserving the shape and
size of human figures. The edge part in the grayscale im-
age is caused by the discontinuous or sudden change of the
grayscale value of the adjacent area. Generally, the edge
was detected by the first and second derivatives. At the edge
position, the amplitude value of the first derivative will ap-
pear at the local extreme value, and the amplitude value of
the second derivative will appear at the zero crossing point.
Hence, the edge position can be determined by calculat-
ing the grayscale derivative and detecting the local extreme
point or zero crossing point. There are three general types
of edge detection operators: the Sobel, Laplace and Canny
operators. This contour extraction uses the edge detection
of the Sobel operator [33] (structure shown in Fig. 7) to per-
form edge detection on the person and then obtain the con-
tour information.

The compression algorithm combines the adjacent four
pixels into a new pixel. Because the value of the pixel is 0 or
1 in 4 positions, there are 16 combinations for four pixels.
Our data compression method is showed in Fig. 8. Every
digit of the four adjacent pixel values has a different weight.
If we stipulate that the position identification and weight of
four pixels is as that shown in Fig. 8 A), the novel pixel value
would be v=a+2b+4c+8d. Hence, the novel value would be
one digit from 0 to 15.

For the example in Fig. 8 B), there is a block of pixel
values in the initial image. The four values in the upper left

corner make up a novel value v=. . . = 10. Similarly, the
new value composed of the four right values would be 14.
According to the equation described in Fig. 7 A), all of the
gait contour pixels could be condensed after converting the
240×350 images into 120×176 images. Compared with the
original images, the compressed images have fewer param-
eters, thus greatly reducing the time and spatial complexity.
Moreover, the compression algorithm can guarantee the in-
tegrity of the information while the neural network is calcu-
lating. After the compression, each novel pixel value was
divided by 15 and normalized into values from 0 to 1. Then,
the normalized value of each pixel was subtracted from that
pixel’s value as the final data processing procedure.

4.3 Experimental Procedures

The CASIA-A dataset described in Sect. 4.1 contains 20
people’s gait contours and 12 gait sequences with 3 an-
gles: 0◦, 45◦ and 90◦. The experiment runs on two GPUs,
GeForce GTX TITAN X, in the Linux server. The proce-
dures on CASIA-A was described as follows.

Step 1: Using the cross-validation method, each gait
sequence in the dataset was divided into a training set and a
test set at a ratio of 9:1. Then, the method was trained using
the first three sequences and tested with the last sequence
and the other sequences of each angle in the following steps.

Step 2: The gait images have to be preprocessed and
condensed, as described in Sect. 4.2, to optimize the perfor-
mance of the training and testing processes.

Step 3: Three difference approaches were applied to
train the gait recognition method using images from vari-
ous angles. The first experiment identified gait sequences
using the 3D-CNN, which could make complete use of the
temporal and spatial information. Nevertheless, the number
of parameters causes it to train slowly and require substan-
tial memory space. The convolution window size is 5 in
the temporal dimension, representing a set of five frames in
each group. The second experiment used the CNN-LSTM.
The CNN model was used to extract the features of a minor
sequence and the LSTM model was used to classify the gait
sequence to conduct person identification. In the last experi-
ment, the CJAM approach we mentioned before was trained
to conduct gait recognition. In order to observe how the At-
tention model affects the efficiency of the gait recognition,
we removed the attention layers for experimentation.

Step 4: Test the performance of every model using dif-
ferent cross-views.

Step 5: The performance and the accuracy of each
model was compared.

After completing the experiments on the CASIA-A
dataset, we used the same experimental method as Gait-
Set [39] and GaitNet [40] to conduct experiments on the
CASIA-B dataset.

4.4 Experimental Results and Discussion

In the experiments, the CJAM approach was used for the



1246
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

Fig. 9 The quantity of training and testing data on each cross view in
CASIA-A.

Table 1 Comparison on CASIA-A with cross view and conditions.
Three models are trained and tested for different cross view.

Training
angle

Testing
angle

Testing accuracy on different models
CJAM
(ours)

3D-
CNN [22]

CNN-
LSTM [30] CNN [41]

0◦
0◦ 100 95 99.2 96.1
45◦ 72.5 57.5 76.25 28.1
90◦ 30 11.25 16.25 25.8

45◦
0◦ 75 72.5 82.5 40.0
45◦ 100 90 100 97.6
90◦ 70 51.25 53.75 55.9

90◦
0◦ 12.5 21.25 13.75 15.3
45◦ 10 12.5 12.5 14.7
90◦ 99.8 80 90 96.5

All All 97.8 92 95.3 96.35
Average
accuracy 66.76 58.325 63.825 56.635

Average accuracy
with similar training

and testing angle
99.93 88.3 96.4 96.73

identification of the gait dataset. We considered the accu-
racy of the model to evaluate the performance. Through a
comparative experimental analysis, a conclusion could be
drawn that the effect of each model depends on the cross-
view of data. Furthermore, as the amount of data to be pro-
cessed increases, the effect of the CJAM model becomes su-
perior to those of the other models.

First, the whole dataset is separated by 9-fold cross val-
idation (K-CV) [34] into mutually exclusive parts: the train-
ing set and the testing set. The cross-validation effectively
makes use of the limited data. Furthermore, the evaluation
results can be as close as possible to the performance of the
model on the test set, and an indicator can be taken advan-
tage of for model optimization. The specific sizes of the
separated data set can be shown in Fig. 9 as follows. The
size of each training set and testing set is subject to the ratio
we mentioned in Sect. 4.1, and the all item includes various
00, 45 and 90 degree images.

Perhaps the most important part of this section is that

comparisons of the various approaches were made over the
course of the 12 experiments and the results are shown in
Table 1. In order to reflect the superiority of the CJAM,
we compared with the more popular models, 3D-CNN [22]
and CNN-LSTM [30]. Moreover, in order to highlight the
improvement of the model’s performance by the attention
mechanism, we conducted a comparative experiment be-
tween simple CNN [41] and CJAM. Obviously, the CJAM
can perform better than others regarding accuracy. How-
ever, the 3D-CNN has a partial advantage for the 90 degrees
training and 0 degrees testing groups and the CJAM and
the CNN-LSTM have significant advantages for the other
groups; furthermore, the CJAM reached the highest average
accuracy overall.

When the training and testing sets are from the same
direction, the CJAM has the best accuracy with 100% on
both the 0 and 45 degree subsets and 99.8% on the 90 de-
gree subset. Compared with other methods, the CJAM could
learn the features more effectively. When training all angle
sequences were used at once, the CJAM can achieve a recog-
nition rate of up to 97.8%.

Regardless of the training set, the empirical evidence
shows that the CJAM is always the best for the 90 degree
images, which means the attention model in the CJAM has
the ability to address the irrelevant details to some extent.
There are significant variances between the 0 degree and 90
degree images in that 0 degree images vary due to the dis-
tinctive locations and gestures, but the 90 degree images are
often similar to each other. It is difficult to recognize 90 de-
gree images through the model trained on 0 degree images.
The 3D-CNN and CNN-LSTM only achieved accuracies of
11.25% and 16.25%, respectively, in this scenario. How-
ever, the CJAM achieved better accuracy at 30%. The rea-
son that our model has the best predictions is that attention
model could ignore those irrelevant images in a sequence
and set high weights on those “important” images. The 3D-
CNN consumes substantial computing time and memory re-
sources, which significantly increases the spatial complexity
and time complexity. The CNN-LSTM model cannot elim-
inate the influence of those unimportant images which may
lead to a slightly worse result. In the 45 degree training
set and the 90 degree testing set, the CJAM achieved 70%
accuracy but the 3D-CNN and CNN-LSTM only achieved
51.25% and 53.75%, respectively. When all of the gait data
in CASIA-A were used for training and testing, the CJAM
still had the best accuracy of 97.9% compared with 92% and
95.3%, respectively.

Obviously, the evidence on CASIA-A have shown that
the architecture of CJAM is superior to the 3D-CNN and
CNN-LSTM. Table 2 depicts the accuracy of the normal
walking condition on CASIA-B with various training and
testing angle. When the training angle and the testing angle
are similar, the CJAM always achieve the perfect recogni-
tion accuracy of 100%. Moreover, the CJAM could got the
significant accuracy when the cross-view of camera below
54◦. For example, the model trained in 54◦-126◦ has 100%
rank-1 accuracy to recognize the 90◦ gait sequences.
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Table 2 The accuracy on the normal walking condition of CASIA-B in various angle.
��������

Training
angle(◦)

Testing
angle(◦)

0 18 36 54 72 90 108 126 144 162 180

MEAN
(Include
Training
Angle)

MEAN
(Exclude
Training
angle)

0 100.0 100.0 92.0 74.0 56.0 52.0 58.0 68.0 78.0 90.0 96.0 78.55 76.4
18 98.0 100.0 100.0 92.0 74.0 68.0 66.0 80.0 82.0 92.0 88.0 85.45 84.0
36 84.0 100.0 100.0 100.0 98.0 76.0 76.0 90.0 88.0 86.0 76.0 88.55 87.4
54 64.0 88.0 100.0 100.0 100.0 94.0 92.0 94.0 86.0 68.0 56.0 85.64 84.2
72 54.0 80.0 96.0 98.0 100.0 100.0 98.0 96.0 88.0 60.0 42.0 82.9 81.2
90 56.0 68.0 90.0 100.0 100.0 100.0 100.0 100.0 96.0 58.0 48.0 83.28 81.6
108 52.0 68.0 84.0 90.0 100.0 100.0 100.0 98.0 96.0 68.0 58.0 83.1 81.4
126 56.0 78.0 86.0 92.0 96.0 98.0 100.0 100.0 100.0 90.0 60.0 86.9 85.6
144 74.0 80.0 92.0 94.0 90.0 90.0 94.0 100.0 100.0 98.0 78.0 90.0 89.0
162 86.0 86.0 88.0 72.0 62.0 62.0 72.0 92.0 96.0 100.0 92.0 82.55 80.8
180 92.0 84.0 70.0 58.0 46.0 40.0 44.0 68.0 68.0 92.0 100.0 69.3 66.2

Table 3 Average accuracy(%) of cross-view gait recognition on CASIA-
B. Excluding identical view cases.

Gallery NM#1-4 0◦-180◦
mean

Probe View(◦) 0 54 90 144 180

NM#5-6

LSTM [37] 63.6 83.8 60.0 - - 69.1
3D-CNN [38] 87.1 94.6 88.3 96.5 85.7 92.1
GaitSet [39] 90.9 96.9 91.7 98.9 85.8 95.0
GaitNet [40] 91.2 95.6 92.6 92.9 89.0 91.6
CJAM(ours) 88.55 95.64 93.28 97.64 87.3 92.48

BG#1-2

3D-CNN [38] 64.2 76.9 63.1 82.2 61.3 72.4
GaitSet [39] 83.8 88.8 81.0 92.2 79.0 87.2
GaitNet [40] 83.0 86.6 74.8 85.8 - 82.6
CJAM(ours) 86.5 83.52 83.9 91.54 85.51 86.2

CL#1-2

3D-CNN [38] 37.3 61.1 54.6 58.9 39.4 54.0
GaitSet [39] 61.4 77.3 70.1 73.5 50.0 66.46
GaitNet [40] 42.1 70.7 70.6 69.4 - 63.2
CJAM(ours) 65.4 73.4 72.6 74.0 58.3 68.74

A comprehensive comparisons between the CJAM and
the state-of-art gait literatures on CASIA-B are shown in
Table 3. Except of ours, other results are directly taken from
their original papers. Most of the methods compared are
both neural networks instead of traditional machine learning
methods. All of the results are averaged on the 11 trained
views and the identical views are excluded, for that identical
view always made 100% recognition accuracy. The CJAM
model is superior to most of the current mainstream models
in deep learning for gait recognition, and the attention model
has more potential to better performance.

On the CASIA-A dataset and on average, the CJAM
still achieved the best performance among the three neural
network methods. Although the CJAM has many advan-
tages for a great majority of the angles, more studies are still
required to improve the performance for the 0 degree train-
ing set, the 90 degree training set and the 0 and 45 degree
test sets, which may be due to overfitting.

5. Conclusion

To reduce the impact of the distorted pixels on gait recog-
nition, it is important to develop a novel approach to as-
sign higher weights to vital pixels. In this paper, we pro-
pose a novel CJAM approach for gait recognition, where the
features of images are extracted and classified by a CNN

and an attention mechanism, respectively. An extensive
method to preprocess and condense the initial image was
applied so that the neural network model can be more effi-
ciently trained. Extensive experiments on the CASIA-A and
CASIA-B gait datasets in tasks shows the great advantages
of our proposed CJAM model compared with two other
main deep learning methods, namely, the 3D-CNN and the
CNN-LSTM.

In the future, the approaches mentioned above could
be applied to other databases or sequencing problems. The
attention mechanism ignoring irrelevant details is also prac-
ticable in many other fields. Furthermore, we intend to ex-
tend the domain of the proposed models to specific scenar-
ios, such as generalized recognition from any angle.
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