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Spatio-Temporal Self-Attention Weighted VLAD Neural Network
for Action Recognition

Shilei CHENG†a), Mei XIE†, Zheng MA†, Siqi LI†, Song GU††, Nonmembers, and Feng YANG†, Member

SUMMARY As characterizing videos simultaneously from spatial and
temporal cues have been shown crucial for video processing, with the short-
age of temporal information of soft assignment, the vector of locally aggre-
gated descriptor (VLAD) should be considered as a suboptimal framework
for learning the spatio-temporal video representation. With the develop-
ment of attention mechanisms in natural language processing, in this work,
we present a novel model with VLAD following spatio-temporal self-
attention operations, named spatio-temporal self-attention weighted VLAD
(ST-SAWVLAD). In particular, sequential convolutional feature maps ex-
tracted from two modalities i.e., RGB and Flow are receptively fed into
the self-attention module to learn soft spatio-temporal assignments param-
eters, which enabling aggregate not only detailed spatial information but
also fine motion information from successive video frames. In experi-
ments, we evaluate ST-SAWVLAD by using competitive action recogni-
tion datasets, UCF101 and HMDB51, the results show our proposed ap-
proach achieves outstanding performance. The source code is available
at:https://github.com/badstones/st-sawvlad.
key words: human action recognition, video representation, VLAD, self-
attention module

1. Introduction

Human action recognition is one of the fundamental prob-
lems in computer vision with applications ranging from
video understanding to Human-Computer interaction. The
methods of incorporating the spatio-temporal information
have been shown crucial in different tasks of video anal-
ysis [1]. Early typical methods such as Improved Dense
Trajectories (iDT) [2] and HOG3D [3] are both dependent
on hand-crafted spatio-temporal descriptors and then en-
code them through Vector of Locally Aggregated Descrip-
tors (VLAD) [4] to form the final video representations.

With promising success in image classification, deep
learning methods also show excellent performance in action
recognition tasks. Typically, Two-Stream [1] and Temporal
Segment Networks (TSN) [5] both of which decompose the
video into RGB and Flow streams to respectively model the
appearance changing and dynamic motions are superior to
iDT over several challenging datasets. Along with the cue of
space and time, another primary CNN architecture, named
C3D [6], which aims to learn the spatio-temporal features
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by using 3D CNNs is capable of modeling appearance and
motion simultaneously. While both approaches have been
made rapid progress, Two-Stream architectures have gen-
erally outperformed the spatio-temporal convolution which
requires the pre-trained model on large video datasets such
as Kinects [7] and Sports1M [8].

However, both architectures largely disregard the long-
term temporal structure of the video and essentially learn
a classifier that operates on an individual frame or short
blocks of frames (16 for C3D), it is quite difficult to model
the complex spatio-temporal structure of human actions. To
address this issue, ActionVLAD [9] was proposed to build a
trainable video-level representation architecture, which ag-
gregates simultaneously appearance and motion features. In
detail, each video descriptor is assigned to one of the action
words, while the method computes their sum inside each
of the visual centers according to the assignment, which is
computed individually for each frame and loses much tem-
poral information in the successive frames. One possible so-
lution to address this drawback is to utilize Long Short-Term
Memory (LSTM) units [10], [11] to capture long-range tem-
poral dependencies, however, this method requires repeating
local operations, which may cause huge memory cost and
optimization difficulties.

Attention mechanism plays a significant role in the
field of natural language processing and image recogni-
tion [12]. But it is still an ascendant research topic in human
action recognition. Inspired by the recent works [12], [13],
in this work, the spatio-temporal weighted VLAD is pro-
posed, to further boost the performance of action recog-
nition by introducing a self-attention module used as soft
assignments between video snippets. One important dis-
tinction between non-local neural networks [13] and ours is
that our method computes the response as a weighted sum
of residual vectors between features and cluster centers in-
stead of using the response as video representation directly.
The characteristics of our ST-SAWVLAD are summarized
as follows:

• Compared with Two-Stream and TSN methods, our ap-
proach not only utilizes self-attention module to learn
the temporal contents from successive video frames,
but also fully takes advantage of both spatial and tem-
poral information to aggregate the discriminative video
representations.
• Compared with ActionVLAD, the ST-SAWVLAD is

capable of modeling the spatio-temporal relationships
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between local descriptors and action words by our pro-
posed self-attention module, rather than simply com-
puting the sum of the aggregation results of each frame,
which ignores the temporal dependencies of sequential
frames.

The main contributions of this paper are summarized
in two aspects. Firstly, an effective spatio-temporal self-
attention weighted VLAD neural network is proposed to
capture spatio-temporal characteristics, instead of stacking
a certain number of recurrent operations. Secondly, each
stream of proposed ST-SAWVLAD can be optimized with
end-to-end manner and excellent performance is achieved
on UCF-101 and HMDB-51 datasets.

2. Spatio-Temporal Self-Attention Weighted VLAD
(ST-SAWVLAD)

As VLAD/NetVLAD encoding only aggregates local infor-
mation of spatial context of images, it is not straightfor-
ward to extend these methods to the tasks of video pro-
cessing. We introduce the ST-SAWVLAD network which
specifically contains a self-attention module (the green box
diagram of Fig. 1). The self-attention module is similar
with the non-local block [13], given the feature maps x =
[x1, x2, · · · , xC] ∈ RT×C×H×W , they are first convolved with
kernel Wθ and Wϕ to generate attention features, θ(xi) =
Wθ ∗ xi, ϕ(x j) = Wϕ ∗ x j, where ∗ denotes convolution
operation, xi, x j ∈ RT×H×W . Wθ and Wϕ are the weight
matrices with K channels to be learned. Both θ(xi) and
ϕ(x j) represent attention features which integrate different
information from spacetime. Then the attention map can
be calculated as σ(x) = exp(s)∑K

i=1 exp(s)
, where s = θ(xi)Tϕ(x j),

and σ(x) ∈ RT HW×T HW is the attention map, which indi-
cates the weights of all positions in the attention features.
We define the soft-assignment from self-attention module as
α = σ(x)g(x) with the shape of T K×H×W, g(x j) = Wg∗ x j,

Fig. 1 The flowchart of the proposed ST-SAWVLAD framework, which
is essentially based on Two-Stream architecture. Our self-attention is de-
scribed in the green box diagram, where “⊗” denotes matrix multiplication,
the softmax operation is employed to generate the attention map of every
position, and the blue boxes denotes 3 × 3 × 3 convolutions.

where Wg is also a 3D trainable kernel with the same size as
Wθ and Wϕ. Note that σ(x) has the form of so f tmax func-
tion, thus the formulation of soft-assignment can be rewrite
as:

α = so f tmax(xT WT
θ Wϕx)g(x) (1)

As Fig. 1 shown, we first utilize the segment-based
strategy [5] to divide the video into several segments with
equal duration, and then pick up one snippet randomly from
its corresponding segment to form a snippet group which
retains the sequentiality of original video frames. We take
this snippet group as a batch to feed the CNN, thus it en-
sure the temporal structure even with shuffle process. As
Fig. 1 shown, T snippets for one iteration are prepared and
put into a CNN model to extract feature maps which will
be stacked along the temporal dimension to form the input
of self-attention module, whose output, the trainable spatio-
temporal soft assignment are utilized as the weights for ag-
gregating local descriptors to certain visual centers. The fi-
nal representations of our ST-SAWVLAD are formulated as

vk =

T∑
t=1

W∑
j=1

H∑
i=1

αk
t (i, j)(xt(i, j) − ck) (2)

where xt(i, j) is a D-dimensional descriptor at location
(i, j, t), αk

t (i, j) denote the assignment weight of aggregating
the descriptor at location (i, j) of t-th frame to the k-th visual
word. Thus we have α = {αk

t (i, j)}T×K×H×W . ck indicates k-
th visual word. From Eq. (2), we can observe that the video
representations have both spatial and temporal characteris-
tics. Finally, we concatenates vk over K visual words to form
the video representation with shape K × D.

3. Implementation Details

Network architecture: We incorporate the spatio-temporal
self-attention module into general CNNs to form end-to-
end attention networks for action recognition. We investi-
gate VGGNet-16 and BN-Inception as backbone networks
respectively.
Training: We train our networks with a single-layer linear
classifier on top of the ST-SAWVLAD network. Through-
out, we set a dropout of 0.5 over the representation to avoid
overfitting. The number of cluster centers is empirically set
to 64. Data argumentation is done as the same as previous
work [5]. All the parameters of our whole model including
the backbone network, ST-SAWVLAD model, and the clas-
sifier are optimized by SGD with a momentum of 0.9. We
also adopt a two-stage optimization scheme [9], for the first
stage, only the parameters in the ST-SAWVLAD model and
the classifier could be trained, and in the next stage, all the
parameters of the whole model are optimized. For the RGB
stream, we set 90 and 120 epochs for the first and the second
stage, respectively. The initial learning rate is set to 0.03 and
decreased to its 0.1 on the 80th and 160th epochs. For the
Flow stream, there are 70 epochs for the first stage, while



222
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.1 JANUARY 2021

300 epochs for another. The initial learning rate is 0.01, and
decreased to its 0.1 on the 70th and 220th epochs.
Test: In the testing stage, we report our performance using
10 crops which contains 4 corners and 1 center cropping,
and their flips for every testing video.

4. Experiments and Analysis

We evaluate the proposed ST-SAWVLAD with the vari-
ous network architectures on standard action recognition
benchmarks. We conduct experiments on two popular
trimmed action recognition benchmarks, UCF101[14] and
HMDB51[15] respectively. UCF101 contains 13320 sports
video clips with 101 action categories, and HMDB51 con-
sists of 6766 varied and realistic video clips from 51 action
classes. The pre-defined three train/test splits are utilized for
evaluation. We first visualize the soft assignment obtained
by the self-attention module, and then evaluate the effect of
varied input length on both UCF101 and HMDB51 dataset
split1, finally, we compare our method with outstanding
methods and evaluate the generality of the proposed net-
work.

4.1 Visualization Analysis

We visualize what the proposed self-attention module pays
attention to over the frames and from different spatial posi-
tions. We draw the soft assignment as a heat map and re-
spectively weight to the RGB and Flow frames which are
sampled by temporal segment strategy [5] (T = 3). From
Fig. 2 (c)-(d), we can observe that the weight is largely dis-
tributed on the key positions of actions, such as arm and
eyes. While as (e)-(f) of Fig. 2 shown, the weight of soft
assignment obtained by a 2D convolution layer, i.e., Action-
VLAD, is almost uniformly distributed over frames.

4.2 Evaluation on Different Time Steps

We vary the number of time steps T = [4, 6, 8, 10, 12, 14]

Fig. 2 Visualization of soft assignment in different frames from ap-
pearance (RGB) and motion (Flow) streams. (a) denotes RGB modality
frames, (b) denotes the corresponding Flow modality frames, (c)-(d) re-
spectively represent soft assignment obtained from self-attention module
and weighted on RGB frames and Flow frames, while (e)-(f) represent soft
assignment produced by a single 2D convolution and weighted on RGB
frames and Flow frames respectively. The samples are the 23th, the 62th
and the 102th frames respectively from action ‘ApplyEyeMakeup’.

and evaluate the recognition performance using the same
test approaches. The results are illustrated in Fig. 3 from
which we observe that it will lead to better performance with
increasing the number of time steps. For instance, the per-
formance of ST-SAWVLAD with T = 10 is remarkably out-
performed than that with T = 4 for both two datasets. This
improvement implies that using more input length will help
to capture richer context information to better model long-
range temporal structure. However, with the increasing of
the input length, the greater memory size is required, con-
sidering the limited memory size and the trade-off between
computational burden and recognition performance, we set
T = 12 in the following experiments.

4.3 Comparison with the Outstanding Methods

In this subsection, we first investigate the generality of our
self-attention module, we respectively plug it into VGGNet-
16 and BN-Inception. The late fusion approach means that
the prediction scores of the RGB and Flow stream are av-
eraged as the final action classification. To compare with
our self-attention module, we also use a single 2D convolu-
tion layer as a baseline to capture the soft assignment. We
evaluate the performance on HMDB51 split1 and report the
result in Table 1. For VGGNet-16, our proposed module re-
spectively promotes 2.4%, 1.3%, 1.5% on RGB/Flow/Late
fusion on the HMDB51 split1. For BN-Inception, our model
respectively increases 3.0%, 1.3%, 2.2% on RGB/Flow/Late
fusion. The improved results with our self-attention mod-
ule demonstrate the generality of our layer for general deep
networks. Furthermore, the evaluation results of VGGNet-
16 show that our method outperforms with another similar
framework like ActionVLAD.

Next, we compare the proposed approach to varieties

Fig. 3 The performance of action recognition with varied frame length
(T = {4, 6, 8, 10, 12, 14}) on UCF101 and HMDB51 split1 respectively.

Table 1 Performance of the proposed self-attention module on popular
networks. lconv2D denotes 2D convolution layer, mattn denotes self-attention
module.

Stream VGGNet-16(%) BN-Inception(%)

RGB + lconv2D 51.2 51.9
RGB + mattn 53.6 54.9

Flow + lconv2D 58.4 60.2
Flow + mattn 59.7 61.5

Late fusion + lconv2D 66.9 68.1
Late fusion + mattn 68.4 70.3
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of recent action recognition methods that use a compara-
ble base architecture to ours. As Table 2 shows our model
outperforms all previous approaches on both UCF101 and
HMDB51 averaged over 3 splits. Since our ST-SAWVLAD
takes both still images and stacked optical flow as inputs,
we first compare ST-SAWVLAD with Two-Stream based
methods (see the first block of Table 2) which also utilize
the same modalities. In detail, our model with VGGNet-
16 outperforms Two-Stream (VGGNet-16) about 1.5% on
UCF101 and 3.0% on HMDB51, compared with TSN (BN-
Inception, 2-modality) which also utilizes the same pre-
trained BN-Inception networks to extract features of video
frames, ST-SAWVLAD improves the performance about
0.7% and 1.8% on UCF101 and HMDB51 respectively. Ac-
tionVLAD which ignores the temporal information in com-
puting soft assignment of aggregation, however, the evalu-
ation results are respectively lower about 2.0% on UCF101
and 3.4% on HMDB51. As the sequential modeling abil-
ity of LSTM makes them appealing to capture long-range
temporal dynamics in videos, we compare our method with
two LSTM-based benchmark methods over all three split1
of UCF101 and HMDB51, as the second block of Table
2 shown, we observe that our method outperforms LSTM-
based methods by a large margin. This experiment demon-
strates that our devised spatio-temporal soft assignment
which captures the long dependencies in spacetime has pos-
itive effects on performance improvement for action recog-
nition.

At last, we compare our method with the non-local
based methods, since our self attention module is similar
with the non-local block. Table 3 indicates the evaluation
results, for fair comparison, the Resnet50 network is used as
the backbone. For Resnet50 + 1 non-local block, we add 1
non-local block into res4 stage. For Resnet50 + 5 non-local
blocks, we add 5 blocks (3 to res4 and 2 to res3, to every
other residual block), then we respectively load the weights
for these model, which have been pre-trained on the Kinet-
ics dataset [7], finally we fine-tune the model on UCF101

Table 2 Comparison with the outstanding methods on UCF101 and
HMDB51 averaged over three splits.

Method UCF101 HMDB51

Two-Stream Fusion (VGGNet-16) [1] 92.5 65.4
TSN (BN-Inception, 2-modality) [5] 94.0 68.5

ActionVLAD (LateFuse, VGGNet-16) [9] 92.7 66.9

Two-Stream+LSTM [11] 88.6 -
VideoLSTM [10] 89.2 56.4

Ours (VGGNet-16 + Late fusion) 94.0 68.4
Ours (BN-Inception + Late fusion) 94.7 70.3

Table 3 Comparison with the non-local (NL) based methods

Methods UCF101(%) HMDB51(%)

Resnet50 + 1-NL-block (pretrained) 89.4 65.3
Resnet50 + 5-NL-block (pretrained) 92.5 70.1

Resnet50 + Ours 90.8 66.2
Ours + 5-NL-block 94.8 72.7

and HMDB51 benchmark, the details of the implement are
similar with the work descripted [13]. We report the results
with late fusion approach, the first block of Table 3 shows
the best performance is achieved when 5 non-local block are
plugged into resnet50 with about 2% and 4% accuracy in-
creasing on UCF101 and HMDB51 benchmarks compared
with our method. The improvement may imply that multiple
non-local blocks add depth to the baseline model and better
perform long-range multi-hop communication. Note that
our model also outperforms Resnet50 + 1 non-local block
with Kinetics pre-training by 1.4% and 0.9% on UCF101
and HMDB51 respectively. Furthermore, we adjust our self-
attention module to make it has the same shape between
input and output, i.e.,T × K × H × W, and thus the self-
attention module evolves to the non-local block.

We further stack 5 non-local blocks as the ST-
SAWVLAD module to evaluate the performance of long-
range spatio-temporal characteristics. As the second block
of Table 3 illustrated, this approach achieves the best perfor-
mance among the comparison methods. We argue that there
are two reasons, firstly, 5 stacked non-local blocks can get
better spatio-temporal characteristics than single one, sec-
ondly, the trainable VLAD neural network precisely quan-
tify the residual between feature vectors and cluster centers,
which are distinguished to model the long temporal range
sequences.

5. Conclusion

In this paper, we propose a novel model with VLAD follow-
ing spatio-temporal self-attention operations, named spatio-
temporal self-attention weighted VLAD (ST-SAWVLAD).
Our method is an end-to-end trainable network and can learn
a video representation with long-temporal dependencies.
Experimental results on benchmark datasets have shown the
outstanding performances of our method. In future work,
we devote to further reduce the number of parameters of
our self-attention module and explore the deeper spatio-
temporal information by a structured self-attention model.
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