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A Highly Reliable Compilation Optimization Passes Sequence
Generation Framework
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SUMMARY We propose a new framework named ROICF based on re-
inforcement learning orienting reliable compilation optimization sequence
generation. On the foundation of the LLVM standard compilation opti-
mization passes, we can obtain specific effective phase ordering for differ-
ent programs to improve program reliability.
key words: compilation optimization sequence, reinforcement learning,
reliability, LLVM

1. Introduction

At present, the research on compilation optimization se-
quence generation mainly focuses on program performance,
power consumption, code size, etc. For example, in [1]
the authors optimize the ordering for HLS programs and
achieve an improvement in circuit performance and in [2]
the authors achieve a better speedup by optimizing the
search space. However, there is a small amount of research
on program reliability [3], [4]. Compared with program
performance-oriented research, in the ROPO (Reliability
Oriented Phase Ordering) problem, the factors affecting the
evaluation index are more complicated, and the acquisition
of the evaluation index is more time-consuming. In or-
der to find the approximate solution of the ROPO problem,
it is necessary to explore in the compilation optimization
space. The most commonly used exploration technology
is iterative compilation technology. The iterative compila-
tion optimization technology starts from an initial state, and
through continuous trial, evaluation, and screening, finds the
approximate solution of the optimal compilation optimiza-
tion sequence. Iterative compilation optimization technol-
ogy can be used alone [5] or combined with machine learn-
ing technology [6], [7], it can also be combined with some
search strategies and heuristics. Based on the LLVM com-
pilation framework, we design and implement an iterative
compilation optimization framework named ROICF (Relia-
bility Oriented Iterative Compilation Framework) for pro-
gram reliability, then a reinforcement learning-based ap-
proach ROPOACER was designed as a targeted resolution
of ROPO problem, which interacts with ROICF through
multiple asynchronously running agents, and continuously
adjust their own behavior mode according to the reward
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given by the environment, so as to learn to obtain high-
reward value policy. For a certain program, we do not know
which compilation optimization sequence is the most effec-
tive for it. We need an autonomous agent that will execute
the compilation optimization pass (or sequence) as an ac-
tion to interact with the environment, and through the inter-
action, the reward will return to an agent as a quantifiable
scalar feedback signal, to evaluate the quality of an action.
In this article, we continuously improve our behavior based
on the reliability gain on the foundation of total variable
alive time.

2. ROICF Approach

Based on the LLVM compilation framework, we have de-
signed and implemented the ROICF for program reliability.
This framework can be combined with reinforcement learn-
ing technology to solve the phase ordering problem. The
agent obtains information from the ROICF framework to
form a strategy-exploring agent. Benchmarks are the set of
target programs that are generated compilation optimization
passes.

ROICF consists of seven components: Program ran-
dom selector, Intermediate code generator, Compilation op-
timizer, Feature extractor, Counter of sequence-length, Reli-
ability analysis tool, and History manager. The functions of
each component are as follows. Program random selector:
responsible for selecting a target program from benchmarks
as a round of exploration, each target program can contain
multiple source code files and input data required when the
program is running; Intermediate code generator: respon-
sible for converting and merging target program code into an
LLVM intermediate representation (IR); Compilation opti-
mizer: responsible for compiling and optimizing the current
IR file and generating a new IR file; Feature extractor: re-
sponsible for extracting the features of the current IR file and
forming a feature vector; Counter of sequence-length: re-
sponsible for recording the number of compilation optimiza-
tion passes (or subsequences) that the current IR file passes,
that is, the length of the compilation optimization sequence
currently that has been explored; Reliability analysis tool:
reliability analysis of current IR files, using a combination
of dynamic analysis and static analysis; History manager:
responsible for managing IR files and IR features generated
under the compilation optimization passes that have been
explored. The history includes data such as features, reli-
ability gains, etc. So that they can be quickly provided to
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agents when the same compilation optimization passes are
explored again. Before the compilation optimizer, feature
extractor and reliability analysis tools perform their respec-
tive analyses through the historical accessor.

When receiving an action command action-x, ROICF
first determines whether the received motion action-x is a
STOP command. If it is a STOP command, a reliability
analysis tool is used to perform a reliability analysis on the
current IR file to obtain its reliability gain, return to the agent
as a reward; if it is not a STOP command, then action-x must
correspond to a compilation optimization pass or a compi-
lation optimization sub-sequence, and ROICF will perform
the following operations: (1) Compilation optimizer per-
forms compile optimization on the current IR file accord-
ing to the compile optimization pass (or subsequence) cor-
responding to action-x, generates a new IR file instead of the
original IR file, and stores the original IR file in the histor-
ical database; (2) Extracting the features of the current IR
file by feature extractor and sending it to the agent in a vec-
tor form; (3) Counter of sequence-length add 1; (4) Deter-
mine whether sequence-length exceeds the preset maximum
compilation optimization sequence length M. If it does not
exceed, return reward = 0; otherwise, analyze the reliability
gain of the current IR file with a reliability analysis tool and
return it to the agent as the value of the reward.

3. Reinforcement Learning Model

Through a series of interactions with the ROICF (sending
action commands to the ROICF, observing the IR feature
vectors returned by the ROICF, obtaining Reward, etc.), the
agent learns the ability to solve the problem of reliability-
oriented compilation optimization sequence generation in
the exploration. The process from when the agent issues a
Reset command to when the agent issues a STOP command
or the number of compilation actions sequence-length ex-
ceeds M is called a round of exploration. Because the Reset
command is only executed at the beginning of each round of
the exploration process, each round of the exploration pro-
cess can only be performed for the same target program.
At the end of each round of exploration process, the agent
will explore a compilation optimization sequence and a re-
ward value corresponding to it. During a round of explo-
ration, each interaction between the agent and the ROICF
is called an iteration step. As shown in Fig. 1, in the iter-
ation step t, the agent collects actions from the action set
A = {α1, α2, α3, . . . , αn−1,STOP} according to the current
IR feature Xt, and send it to ROICF for execution. The ac-
tion at will affect the IR feature Xt+1 in the next iteration step
of ROICF and the reward value that the agent will get at the
end of this round of exploration as shown in Fig. 1. The pro-
cess can be regarded as the task T that the agent interacts in
the environment E (ROICF). The goal of task T is to enable
the agent to obtain the largest cumulative reward value in the
interaction. Task T can be formally described as a Markov
decision process through a five-tuple 〈S,A, ρ, f , γ〉:

Fig. 1 Agent exploration process.

1. Define a state space S and use the current IR feature
vector Xt to represent the environment state st, that is,
for any st ∈ S, there is st = Xt;

2. The action space A is the set of actions that the agent
can perform. In task T, A = {α1, α2, α3, . . . , αn−1,
STOP}, where each αi ∈ A is a compilation optimiza-
tion pass (or subsequence), STOP is the end action
command;

3. ρ : S × A → R is the reward function. rt = ρ(st, at)
represents the immediate reward value obtained by the
agent performing the action at in the state st, in task
T, when at is the STOP command or sequence-length
> M, the reward value is the current reliability gain of
IR, otherwise the immediate reward value rt is 0;

4. f : S ×A × S→ [0, 1] is the state transition probability
distribution function, f (st, at, st+1) represents the prob-
ability of the agent transitioning to the state st+1 after
performing the action at in the state st in task T, the
distribution of state transitions is implicit in the compi-
lation optimization sequence and IR characteristics;

5. γ is a predefined loss discount factor, and γ ∈ [0, 1],
which reflects the degree of attenuation of the current
action’s impact on future returns. γ = 0 means that the
current action can only affect the current reward value,
and γ = 1 means the impact of the current action on fu-
ture returns is determined. Generally, γ takes a value of
0.9 or 0.99, which means that the current action will af-
fect future returns, but the influence gradually weakens
as the iterative step progresses.

Among many reinforcement learning methods,
ACER [8] is widely used for its high efficiency, simplicity,
and stability. ACER algorithm is based on the reinforce-
ment learning algorithm Actor-Critic (AC) [9]. Actor-Critic
is a Temporal Difference (TD) algorithm that combines the
advantages of two types of reinforcement learning methods,
value-based and policy-based. The Actor maintains a pol-
icy function π(at |st; θ), and perform action selection based
on the current state st. Critic maintains a value function
V(st; θV ), which is responsible for estimating the value of
state st. Based on the traditional Actor-Critic algorithm,
ACER utilizes the parallel capabilities of multi-core CPUs
to run multiple agents asynchronously to learn separately.
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Each thread has an agent running in the copy of the environ-
ment. Each step generates a gradient of parameters. These
gradients of multiple threads are added up and the shared
parameters are updated together after a certain number of
steps. Then introduces the advantage function, experience
replay and off-policy training, which greatly improves the
learning efficiency and sample utilization efficiency. We de-
scribe the ROPO problem as a Markov decision process that
the agent explores under the working environment ROICF.
Based on this description, we build a model orienting ROPO
problem named ROPOACER. In order to alleviate the prob-
lem of perceived confusion, ROPOACER uses LSTM [10],
and historical observation, action and feedback sequences
are included in the calculation range and participate in ac-
tion selection together.

4. Program Reliability Measure

During the program execution, a variable can be read or
written. The variable is alive from the first write (followed
by a read) to the last read (before the next write or the end-
ing of the program), otherwise, it is dead. When a variable
is dead, its content is irrelevant to the correct program exe-
cution since it will be either rewritten or never used again.
In basic block, the positions between adjacent sentences are
called points, and the positions before the first sentence and
after the last sentence are also called points [11]. The path
from point P1 to point Pn is such a sequence of points P1,
P2, . . . , Pn. For a statement S, we define the point imme-
diately before S as the entry point of the statement and the
point immediately after S as the exit point of the statement.
Based on this we define several sets:
in[S]: Set of alive variables at the entry point of statement S;
out[S]: Set of alive variables at the exit point of statement S;
def[S]: Set of variables defined in statement S and not ref-
erenced in S before the definition;
use[S]: Set of variables referenced in the statement S and
not defined in S before the reference;
according to the above definition of the set, we can get two
data flow equations, S N is all successors of S:

in[S] = use[S] ∪ (out[S] − def[S]) (1)

out[S] = ∪ in[SN] (2)

In this way, we can get the set of alive variables at the exit
of each statement in the intermediate code.

Mukherjee et al. [12] divided all the bits in the system
and all points in the space formed by the execution cycle into
ACE (Architecturally Correct Execution) bits and un-ACE
bits. The concept of ACE bits formalizes this notion. Let us
assume that a program runs for 10 billion cycles through a
microprocessor chip. Out of these 10 billion cycles, let us
assume that a particular bit in the chip is only required to be
correct 1 billion of those cycles. In the other 9 billion cycles,
it does not matter what the value of that bit is for the pro-
gram to execute correctly. The bit is an ACE bit—required
for ACE—for 1 billion cycles. For the rest of the cycles,

the value of the bit is unnecessary for ACE and therefore
termed un-ACE. We introduce the idea of the ACE bits into
variables. Similarly, the longer the alive time of a variable,
it belongs to the ACE variables in more instruction cycles,
and it will be stored in registers in more instruction cycles
and even more vulnerable to soft errors like SEU. The more
ACE variables in a cycle, the more vulnerable the program
is. We consider that each LLVM instruction is executed in
one clock cycle, in the foregoing, we defined that there is
an alive variable set out[S] at the exit of each statement S
(equivalent to LLVM instruction here), and each alive vari-
able in out[S] is alive during the period in which S is exe-
cuted, so in the cycle where S is executed, the number of
alive variables is the quantity of out[S]. For an LLVM in-
struction S, we define that during the complete execution of
the program, the total number of alive variable cycles cor-
responding to this instruction is the product of the quantity
of out[S] and the total number of S executions. Then for the
entire program, during the complete execution of the pro-
gram, the total number of variable alive cycles is the sum of
the number of variable active cycles corresponding to each
instruction. Our experiment will discuss the RG (reliability
gain) brought by the compilation optimization sequence to
the program on the basis of TNVAC (total number of vari-
able alive cycles). We define the RG of a program after com-
pilation optimization sequence C for a given target program
P as:

RGP,C = 1 − TNVACP,C

TNVAC baselineP
(3)

where TNVACP,C refers to the corresponding TNVAC under
program P and compilation optimization sequence C, and
TNVAC baselineP refers to TNVAC when program P is not
optimized.

5. Experiment and Results

The ROPOACER model was fully implemented based on
the ROICF framework, and the ROPOACER algorithm
framework is implemented by the Coach [13]. We randomly
selected 200 programs from the Singlesource (Contains test
programs that are only a single source file in size) and Multi-
source (Contains subdirectories which entire programs with
multiple source files) collections in the LLVM test suite,
while expanding the number of programs in each category
in Mibench [14] to 10. IR features include 123 pieces of
information in 4 categories: instruction technical informa-
tion, data-dependent information, memory dependent infor-
mation, and alias information. We can directly use the in-
formation provided by LLVM to save the time overhead of
extracting program features from raw code [15]. We apply
the trained ROPOACER model to the test set, and generate a
compilation optimization sequence for each program in the
test set, and the reliability gain calculated from the previous
definition is compared with the GA (Genetic Algorithm)-
based [16] and the SA (Simulated Annealing Algorithm)-
based [17] compilation optimization sequence generation.
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Fig. 2 Comparison of RG on the LLVM test suite.

Fig. 3 Comparison of RG on Mibench.

In our experiments, the subsequence partitioning method
proposed in [18] is followed. According to the function
of the compilation optimization pass, the compilation op-
timization pass or sequence is divided into four categories:
C1-code modification, C2-code motion, C3-code elimina-
tion, and C4-loop-related optimization. The number of
passes (or subsequence) contained in the four categories is
35, 6, 20, and 14. The compilation optimization subse-
quence and the end command STOP constitute the action
space A = {C1,C2,C3,C4,STOP}. On this basis, we do not
want to have too many repeated subsequences in the compi-
lation optimization sequence. In addition, each subsequence
has a chance to appear at least once, so the maximum com-
pilation optimization sequence length is set to 5. The results
are shown in Figs. 2 and 3. The data set is divided accord-
ing to the LLVM test suite and Mibench, and every data set
is divided into a training set, a validation set, and a test set
according to a ratio of 8 : 1 : 1.

6. Conclusion

From the experimental results, in terms of reliability ori-
ented compilation optimization sequence generation, our
framework ROICF based on reinforcement learning has bet-
ter results than SA and GA. On the LLVM test suite, the
geomean RG improves by 0.0208 than SA and 0.018 than
GA, on Mibench, the geomean RG improves by 0.0233 than
SA and 0.0453 than GA. And our model has a good gener-
alization ability. The model trained on small-scale programs

is applied to large-scale programs with an accuracy rate of
95%.

The advantages of reinforcement learning in the se-
quential decision have been reflected. Compared with
the previous work that leverages RL to tackle the phase-
ordering problem to optimize for performance, our research
combines reinforcement learning methods with iterative
compilation, and it is well known that program reliability
measurement costs a lot. We set the optimization goal as
program reliability, which provides a powerful reference for
software reinforcement research.
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