
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020
2713

LETTER

DVNR: A Distributed Method for Virtual Network Recovery

Guangyuan LIU†a), Member and Daokun CHEN††, Nonmember

SUMMARY How to restore virtual network against substrate network
failure (e.g. link cut) is one of the key challenges of network virtualization.
The traditional virtual network recovery (VNR) methods are mostly based
on the idea of centralized control. However, if multiple virtual networks fail
at the same time, their recovery processes are usually queued according to
a specific priority, which may increase the average waiting time of users. In
this letter, we study distributed virtual network recovery (DVNR) method
to improve the virtual network recovery efficiency. We establish exclusive
virtual machine (VM) for each virtual network and process recovery re-
quests of multiple virtual networks in parallel. Simulation results show that
the proposed DVNR method can obtain recovery success rate closely to
centralized VNR method while yield ∼70% less average recovery time.
key words: network virtualization, distributed virtual network recovery,
parallel, recovery efficiency

1. Introduction

In today’s social life, the Internet is playing an increasingly
important function. The number of users on the Internet
has grown exponentially each year. However, as the most
widely distributed public network, the huge scale and cov-
erage of the Internet poses obstacles to the introduction of
new network technologies. In order to overcome the ossi-
fication of the Internet, the network virtualization [1], [2] is
proposed as an innovative technology. This technology pro-
vides an effective way to build virtual network that allows
multiple network architectures and applications to run si-
multaneously on the same substrate network. Virtual net-
works can support different kinds of network topologies,
network services, and network experiments. However, each
network application provided by the virtual network is ac-
tually provided by the substrate network devices [3]. These
virtual networks and substrate devices must communicate in
a reliable manner to ensure end-user requirements and QoS.

Once the virtual network fails, its corresponding net-
work service will also be interrupted, resulting in the end-
user needs not being met. Therefore, how to recovery the
virtual network effectively is a key challenge to the sub-
strate network providers. The previous VNR methods are
mostly based on the virtual network remapping [4]. When

Manuscript received April 1, 2020.
Manuscript revised July 6, 2020.
Manuscript publicized August 26, 2020.
†The author is with School of Information Science and Tech-

nology, Shijiazhuang Tiedao University, Shijiazhuang, Hebei
050043, China.
††The author is with Institute of Software Chinese Academy of

Sciences, Beijing 100190, China.
a) E-mail: gyuanliu@163.com

DOI: 10.1587/transinf.2020EDL8050

the substrate network fails, the substrate network manage-
ment device remaps the failed virtual network to the avail-
able substrate devices. The traditional virtual network con-
struction algorithm (e.g. [5]–[9]) provides a theoretical basis
for VNR. Furthermore, these methods assume that there is
a centralized entity that has a global view of the entire net-
work, which contains information about all network nodes
and network links. Based on this assumption, this central-
ized entity can obtain real-time network configuration infor-
mation and helps the recovery of the virtual network. How-
ever, the real network environment is complex, dynamic,
and changeable. The number of substrate devices in the net-
work is huge and the structure is diverse. Therefore, cen-
tralized processing methods will face scalability limitations,
barriers to information updates, and the impact of high la-
tency. For example, if multiple virtual networks fail, their
recovery processes are usually queued according to a spe-
cific priority, which may increase the average waiting time
of users. Especially for real-time services, these services
can greatly affect functionality due to long periods of unre-
sponsiveness. Therefore, distributed VNR method may be
more adapted to the needs of Internet development.

In this letter, we propose a novel VNR method called
DVNR. The DVNR is based on the distributed idea and pro-
cess recovery requests of multiple virtual networks in paral-
lel. We establish exclusive virtual machine (VM) for each
virtual network. The virtual network’s recovery request is
processed by its own virtual machine. When the network re-
source owned by the local virtual machine is insufficient to
recover the virtual network, the virtual machine can forward
the recovery request to the adjacent virtual machine and per-
form resource consolidation to complete the entire recov-
ery process. The simulation results show that the DVNR
can obtain recovery success rate closely to centralized VNR
method while yield ∼70% less average recovery time. We
believe it will make sense for the network service with real-
time requirement and will make a complementary to the pre-
vious studies on the recovery method of virtual network.

2. Method Design

In this section, we give the details of distributed adaptive
virtual network recovery method. In general, the design
goals of method are as follows: (1) Restore the failed vir-
tual networks in parallel; (2) Divide the substrate network
into several subnets in units of virtual machines, periodically
detecting substrate network failures and performing VNR

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



2714
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Fig. 1 DVNR overview

autonomously; (3) Each virtual machine of virtual network
can exchange information and merge resources with the ad-
jacent virtual machine to help the virtual network recovery.

2.1 DVNR Overview

Figure 1 gives an overview that the substrate network uses
the DVNR method to recover virtual networks. In the vir-
tualization environment, the heterogeneous virtual networks
can share the substrate network resources, such as node ca-
pacity and link bandwidth. There are two virtual networks
(e.g. VN1 and VN2), which map onto the substrate network
in Fig. 1. We define the virtual networks that share the sub-
strate network resources (e.g. substrate node or substrate
link) as adjacent virtual network. Obviously, VN1 and VN2

share substrate node B, substrate node C, and substrate link
BC. Therefore, they are adjacent. At the same time, we se-
lect two substrate nodes associated with VN1 and VN2 to run
the virtual machine of two virtual networks (e.g. A, D in the
figure). When VN1 and VN2 fail because of the substrate
network failure, DVNR can complete the recovery of the
virtual network according to predefined operational rules in
virtual machine.

2.2 Virtual Machine Information

The virtual machine (e.g. V M1 and V M2) stores global in-
formation with corresponding virtual network (e.g. VN1 and
VN2), including:
(1) Virtual network topology Gv = (Nv, Lv,Cv

N ,C
v
L), where

Nv represents the set of virtual node, Lv represents the set
of virtual link, Cv

N represents the capability requirement of
virtual node, and Cv

L represents the bandwidth requirement
of virtual link.
(2) The substrate network sub-graph Gp

sub = (N p
sub, L

p
sub,

Cp
N ,C

p
L), which N p

sub represents a set of substrate nodes, Lp
sub

represents a set of substrate links, Cp
N represents the pro-

cessing power of the substrate node, and Cp
L represents the

bandwidth of the substrate link. For example, the sub-graph

information stored in the virtual machine V M1 about VN1 is
Gp

1 = ({A, B,C}, {AB, BC, AC},Cp
N ,C

p
L) in Fig. 1.

(3) The virtual machine location index set of adjacent virtual
network I = {IV M1 , IV M2 , . . . , IV Mn } where IV Mi (1 ≤ i ≤ n)
represents the physical location index of the virtual machine.

The information of all the virtual networks is stored
on each virtual machine in a distributed manner. Compared
with centralized information storage, distributed informa-
tion storage averages the storage space and improves the
access efficiency of information. Each virtual machine has
a part of independent information and a part of shared in-
formation, which facilitates information interaction between
virtual machines.

2.3 Virtual Network Recovery Request Forwarding Mech-
anism

In general, due to the limitation of the local substrate net-
work resources, the DVNR needs to forward the recovery
request of the virtual network between the virtual machines,
and complete the recovery of the virtual network by merging
the substrate network resources. Therefore, a sophisticated
message forwarding mechanism is essential. The message
forwarding mechanism of DVNR includes three parts: for-
warding strategy, subnet merging and message feedback:
(1) Forwarding strategy: DVNR use virtual network re-
covery request forwarding strategy with breadth-first. The
breadth-first policy can forward the virtual network recov-
ery request to all the adjacent virtual machines until the hop
limit is reached, or each possible forwarding path can no
longer be extended.
(2) Subnet merge: DVNR uses the strategy of merging sub-
net resources to improve the success rate of virtual network
recovery in the process of recovery request forwarding. For
example, assume a recovery request req0 from a virtual ma-
chine of a virtual network VN0 has been forwarded k times
(that is, req0 is forwarded by the virtual machine of the vir-
tual network VN1,VN2, . . . ,VNk−1 in turn). When req0 is
received by the virtual machine of the next virtual network
VNk, the virtual machine of VNk will be able to obtain the
substrate subnet resources owned by the previous k virtual
network from VN0 to VNk−1 when attempting to recover the
virtual network VN0.
(3) Message feedback: If the virtual network successfully
recovers by forwarding the recovery request and merging
the subnet resources, the virtual machine that completes the
virtual network recovery will feed back a successful recov-
ery message to its previous hop virtual machine. After the
message is fed back to the previous hop virtual machine, the
virtual machine continues to feed back the information to its
previous hop virtual machine. This process continues until
the feedback message arrives at the source virtual machine
that sent the virtual network recovery request. If the virtual
network fails to be restored when the recovery request of the
virtual network reaches the forwarding hop limit, the current
virtual machine will feed back a failure recovery message
hop by hop in the same way on the message forwarding path



LETTER
2715

Fig. 2 The substrate network and virtual machine logical topology

Fig. 3 Breadth-first message forwarding sequence

until the message arrives at the source virtual machine.

2.4 DVNR Virtual Network Recovery Instance

Figure 2 (a) shows an example of virtual network recovery
using DVNR. Each virtual network Vi (1 ≤ i ≤ 5) has 3
virtual nodes, denoted as ai, bi, ci. The solid line in the
figure represents the substrate link, and the number on the
substrate link represents the available bandwidth. The dot-
ted line in the figure represents the virtual links have mapped
on the substrate link currently, and the number on the virtual
links represents the bandwidth requirement of the existing
virtual links (For a better illustration of the example, only
the bandwidth requirement of the virtual link b3c3 is shown
in the figure), and the number on the substrate links rep-
resents the remaining available bandwidth value after map-
ping an existing virtual link. Since there are five adjacent
virtual networks share certain substrate resources (e.g. the
virtual node a2 of V1 and the virtual node b1 of V2 share
the substrate node C, and the virtual link b1c1 of V1 and the
virtual link a2c2 of V5 share the substrate link BC), the vir-
tual machines of the five virtual networks can be abstracted
into the topology shown in Fig. 2 (b). Assuming a substrate
link GF fails unexpected, which will cause the virtual link
b3c3 mapped on GF to not work, resulting in the virtual net-
work V3 fail. After detecting this failure, the virtual machine
of V3 will first attempt to remap the virtual link b3c3 with
local network resources. Figure 2 (c) shows the substrate
subnet that the virtual machine of V3 can perceive. Obvi-
ously, the resources of the substrate subnet cannot meet the
bandwidth requirements of the failed virtual link, and the
virtual machine forwards the recovery request to the adja-
cent virtual machine. Figure 3 shows the process of virtual

Fig. 4 Breadth-first subnet merge order

network recovery using the breadth-first forwarding strat-
egy. The forwarding strategy will generate three forwarding
paths V3V5, V3V2, V3V4 at the same time. However, only the
network bandwidth resources on the forwarding path V3V4

meet the remapping requirement of the virtual link b3c3.
Therefore, the virtual machine of V4 remapped the virtual
link b3c3 to the substrate link GDEF (the subnet merge or-
der is shown in Fig. 4). After the virtual network V3 is suc-
cessfully restored, the virtual machine updates the substrate
subnet topology information.

3. Experimental Details

The The substrate network topology was generated by the
GT-ITM [9]. We chosen the set of parameters conforms with
the ones used in the research literature [10]. There were 50
nodes and each pair of substrate nodes were randomly con-
nected with probability 0.5. The capabilities of the substrate
nodes and the bandwidth of the substrate links were uni-
formly distributed between 50 and 100. The probability that
multiple substrate links fail within a period of time obeyed a
Poisson distribution, and the average time interval between
failures was set to 20 seconds.

Before the start of the simulation experiment, a total of
30 virtual networks with random topology in the network
environment run on the shared substrate network. The ca-
pacity requirements of the virtual nodes and the bandwidth
requirements of the virtual links were uniformly distributed
between 0 and 50. The simulation experiment lasted for
2200 seconds to obtain stable experimental results.

We compared the performance of DVNR-2 (the num-
ber of message forwarding hop is less than or equal to 2),
DVNR-3 (the number of message forwarding hop is less
than or equal to 3), DVNR-4 (the number of message for-
warding hop is less than or equal to 4) and the central-
ized virtual network recovery method CVNR that we imple-
mented based on [5] in terms of recovery success rate and
recovery efficiency.



2716
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

4. Results and Analysis

As shown in Fig. 5, with the number of message forward-
ing hops increasing, the recovery success rate of DVNR is
closer to that of the centralized VNR method. This is be-
cause the substrate network resources that DVNR can obtain
are continuously expanded with the increasing of the num-
ber of message forwarding hops and the recovery success
rate is correspondingly increased. If the DVNR does not
limit the number of forwarding hops, the DVNR will even-
tually perceive the resources of the entire network, thereby
being equivalent to the network resources that the central-
ized VNR method can perceive.

More importantly, the recovery efficiency of DVNR
is significantly higher than that of the centralized VNR
method. As shown in Fig. 6, the average recovery time

Fig. 5 Virtual network recovery success rate

Fig. 6 Virtual network recovery efficiency

of CVNR is about 2.4 seconds and the average recovery
time of DVNR-4 is about 0.7 seconds. This means DVNR
method can reduce the virtual network recovery time by
about ∼70% on average. This is because virtual network
recovery can be performed by DVNR in parallel, while the
CVNR can only rely on serial recovery. We believe that
this result is important for services or applications that have
strict requirements for recovery time.

Acknowledgments

This work is support in part by National key research and
development of China (No.2018YFB1701403), Natural sci-
ence foundation of Hebei province (No.F2017210118), Col-
leges and universities in Hebei province science and tech-
nology research fund (No.QN2016270).

References

[1] N.M.M.K. Chowdhury and R. Boutaba, “A survey of network virtu-
alization,” Computer Networks, vol.54, no.5, pp.862–876, 2010.

[2] NSF Research: ‘GENI,’ http://www.geni.net/
[3] A. Fischer, J.F. Botero, M.T. Beck, H. de Meer, and X. Hesselbach,

“Virtual network embedding: A survey,” Commun. Surveys Tuts.,
vol.15, no.4, pp.1888–1906, 2013.

[4] S. Colman-Meixner, C. Develder, M. Tornatore, and B. Mukherjee,
“A survey on resiliency techniques in cloud computing infras-
tructures and applications,” Commun. Surveys Tuts., vol.18, no.3,
pp.2244–2281, 2016.

[5] P. Zhang, H. Yao, M. Li, and Y. Liu, “Virtual network embedding
based on modified genetic algorithm,” Peer-to-Peer Networking and
Applications, vol.12, no.2, pp.481–492, 2019.

[6] X. Siya, L. Peng, G. Shaoyong, and X. Qiu, “Fiber-wireless net-
work virtual resource embedding method based on load balancing
and priority,” IEEE Access, vol.6, pp.33201–33215, 2018.

[7] N. Ogino, T. Kitahara, S. Arakawa, and M. Murata, “Virtual net-
work embedding with multiple priority classes sharing substrate re-
sources,” Computer networks, vol.112(C), pp.52–66, 2017.

[8] M. Chowdhury, M.R. Riaihan, and R. Boutaba, “ViNEYard: Virtual
network embedding algorithm with coordinated node and link map-
ping,” IEEE/ACM Trans. Netw., vol.20, no.1, pp.206–219, 2012.

[9] E.W. Zegura, K.L. Calvert, and S. Bhattacharjee, “How to model
an internetwork,” Proc. IEEE INFOCOM, San Francisco, March
2010:594-

[10] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
ACM SIGCOMM Computer Communication Review, vol.41, no.2,
pp.39–47, 2011. 602.

http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://dx.doi.org/10.1109/surv.2013.013013.00155
http://dx.doi.org/10.1109/comst.2016.2531104
http://dx.doi.org/10.1007/s12083-017-0609-x
http://dx.doi.org/10.1109/access.2018.2848919
http://dx.doi.org/10.1016/j.comnet.2016.10.007
http://dx.doi.org/10.1109/tnet.2011.2159308
http://dx.doi.org/10.1145/1971162.1971168

