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Unconstrained Facial Expression Recognition Based on Feature
Enhanced CNN and Cross-Layer LSTM*

Ying TONG', Rui CHEN'®, Nonmembers, and Ruiyu LIANG', Member

SUMMARY  LSTM network have shown to outperform in facial ex-
pression recognition of video sequence. In view of limited representation
ability of single-layer LSTM, a hierarchical attention model with enhanced
feature branch is proposed. This new network architecture consists of tra-
ditional VGG-16-FACE with enhanced feature branch followed by a cross-
layer LSTM. The VGG-16-FACE with enhanced branch extracts the spa-
tial features as well as the cross-layer LSTM extracts the temporal relations
between different frames in the video. The proposed method is evaluated
on the public emotion databases in subject-independent and cross-database
tasks and outperforms state-of-the-art methods.
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1. Introduction

Automatic facial expression recognition has made signif-
icant progress in the past two decades, and most previ-
ous databases and studies are limited to posed facial be-
havior under controlled conditions. But in real world, a
large amount of images from different events and social
gatherings in unconstrained environments have been cap-
tured [1], [2]. It brings challenges and opportunities for Fa-
cial Expression Recognition (FER).

Traditional FER algorithms use handcrafted features
for feature extraction, such as LBP (Local Binary Patterns),
HOG (Histogram of Oriented Gradients), LPQ (Local Phase
Quantization), PCA, and etc. Since the handcrafted fea-
tures are extracted for specific application, they often lack
required generalizability in cases where there is high varia-
tion in lighting, views, resolution, subjects’ ethnicity, etc.
Fortunately, the emerging deep learning techniques have
advanced unconstrained FER to a new state-of-the-art [3].
Moez et al. presented the first deep Convolution Neural Net-
work (CNN) to automatically recognize facial expression
by learning features [4]. Then, Yao et al. presented several
CNN models to illustrate the correlation between facial ex-
pression features and facial expression recognition [5]. Con-
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nie T et al. [6] used a hybrid CC-SIFT network to improve
the accuracy of expression recognition. By combining CNN
and SIFT, the hybrid classifier is established, which can have
a good recognition effect on small samples and the recogni-
tion rate achieves 99.4% on the CK+ database. To improve
the recognition speed, Jeon et al. [7] used the HOG feature
to detect the face, and used CNN to extract the deep fea-
ture, achieving 70.7% recognition rate and 6.5fps speed on
FER-2013 database.

The above methods mainly consider still images inde-
pendently while ignore the temporal relations of the con-
secutive frames in a video sequence which are essential
for recognizing subtle changes in the appearance of facial
images especially in transiting frames between emotions.
PPDN (Peak-Pilot Deep Network) [8] was presented to su-
pervise the intermediate feature responses for a sample of
non-peak expression (hard sample) of the same type and
from the same subject. Based on PPDN, Yu et al. [9] pro-
posed a deeper cascaded peak-piloted network to enhance
the discriminative ability of the learned features and em-
ployed an integration training method called cascade fine-
tuning to avoid overfitting. Jung et al. [10] proposed a joint
fine-tuning network method based on two different models
to improve the recognition accuracy. One is used to extract
time-varying features from the video sequence, the other is
used to extract geometric shape changing features from the
facial key points of a single frame image.

Recently, a hybrid network which combines CNN and
long short term memory (LSTM) network is applied to
model the temporal and spatial changes of facial expres-
sion in video. By combining the powerful perceptual vi-
sion representations learned from CNNs with the strength
of LSTM for variable-length inputs and outputs, Jain et
al. [11] proposed a both spatially and temporally deep model
which cascades the outputs of CNNs with LSTMs for vari-
ous vision tasks involving time-varying inputs and outputs.
However, the algorithm was only validated on laboratory-
controlled databases, such as CK+ and MMI. In this pa-
per, we propose an end-to-end framework which includes an
enhanced CNN and a cross-layer LSTM for unconstrained
FER, named as ECNN-LSTM. To avoid heavy comput-
ing overhead and improve the recognition rate, we widen
the CNN width instead of increasing the network depth.
The cross-layer LSTM network is used to obtain temporal
features which helps to reduce the risk of gradient disap-
pearance. The cross-layer structure can ensure the effective
transmission of relevant information between video frames,
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and obtain the accurate inter-frame temporal features.
2. Proposed Framework
2.1 Framework

The overall framework of our proposed ECNN-LSTM is de-
picted in Fig. 1, including a feature-enhanced CNN module
and a cross-layer LSTM module. The former is a deep hier-
archical spatial feature extractor and the latter is a temporal
module that characterizes temporal information. These two
modules are cascaded for end-to-end training which can ef-
fectively improve the recognition ability of unconstrained
facial expression features. Finally, the learned deep seman-
tic features are mapped into the sample tag space by the fully
connected layer for classification.

2.2 Enhanced CNN

The enhanced CNN We use VGG-16[12] network as the
backbone network of CNN. Due to the limited layers of
VGG-16, it has poor recognition rate when processing the
unconstrained facial expression data. The samples in the
training set are interfered by many factors, such as illumi-
nation, posture changes, occlusions, accessories, and so on.
Moreover, the degree of the same emotion of the subjects
is also different due to the individual culture. Considering
of complexity, VGG-16 network is widened instead of in-
creasing the network depth. Specifically, we introduce an
enhanced branch into the backbone CNN network to inte-
grate different level features. The structure of the enhanced
branch is depicted in Fig. 2.

As we can see from Fig.2, the enhanced branch in-
cludes 5 layers. The first convolution layer uses 7 X 7 ker-
nel for larger receptive field to obtain more spatial features.
The second convolution layer uses 1 X 1 kernel to compress
the high-dimensional features for further integrating the fea-
tures and reduce the complexity. The batch normalization
layer is used to normalize the features to improve the sta-
bility of the feature distribution and speed up the learning of
the model. The flatten layer is to quantize multi-dimensional
features in one dimension for connection with the full con-
nection layer. The detail parameter setting of each layer is
shown in Table 1.

The enhanced CNN uses large input data dimension
for spatial learning, and utilizes transfer learning with pre-
trained weights from VGG-Face model [13] which was
trained on LFW database.

2.3 Cross-Layer LSTM Network

To preserve the temporal dimension as its dynamics is cru-
cial for recognizing facial movements, we use a cross-layer
LSTM to learn the sequential input, which is shown in
Fig.3.

According to the structural characteristics of LSTM,
the input needs to be sequence information. At the same
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Fig.2  The structure of feature enhanced CNN

Table 1  Parameters setting of the enhanced branch
Layer Output size Kernel size
Conv2_1 28 X28X1024 7X7TX1024
BN1 28X28X1024
Pooling 13X 13x1024
Conv2_2 13x13x14 Ix1x14
BN2 13x13x14
Flatten 2366
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Fig.3  Cross-layer LSTM network

time, the end-to-end training needs CNN model provide at
least two consecutive facial features. Then, we input n con-
secutive facial images at a time. Each facial image shares
the same CNN weights for feature extraction. Because the
complexity and parameters of the model are increased by
processing multiple face images at a time, we set n = 10 to
avoid memory overflow. Furthermore, the video segment in
the same video overlaps with the front and back segments
by 5 frames to augment the training data and strengthen the
model learning ability. As shown in Fig. 2, the CNN outputs
a feature vector with length of 4,096, then the input data
dimension of the first LSTM layer is 104,096.



LETTER

3. Experiments
3.1 Databases

CK+[14]: The Extended CohnKanade (CK+) database is
the most extensively used laboratory-controlled database for
evaluating FER systems. It contains 593 video sequences
from 123 subjects, where 327 sequences from 118 subjects
are labeled with seven basic expression labels.

AFEW [15]: The Acted Facial Expressions in the Wild
(AFEW) database contains video clips collected from dif-
ferent movies with spontaneous expressions, various head
poses, occlusions and illuminations. Samples are labeled
with seven expressions: anger (An), disgust (Di), fear (Fe),
happiness (Ha), sadness (Sa), surprise (Su) and neutral (Ne).
The AFEW 7.0 is divided into three data partitions in an in-
dependent manner in terms of subject and movie/TV source:
Train (773 samples), Val (383 samples) and Test (653 sam-
ples), which ensures data in the three sets belong to mutually
exclusive movies and actors.

SFEW [14]: The Static Facial Expressions in the Wild
(SFEW) was created by selecting static frames from the
AFEW database by computing key frames based on facial
point clustering. The SFEW 2.0 is divided into three sets:
Train (958 samples), Val (436 samples) and Test (372 sam-

ples).
3.2 Cross-Layer LSTM Network Experiment

The CNN-LSTM network is trained on Keras platform
and VGG-16 model preloads VGG-16-FACE weights. The
training data is from the video frame provided by AFEW
database. Since AFEW is from the EmotiW challenge, the
test set does not have the corresponding expression label. So
we divide the training set into training and validation sets
according to 8 : 2, and take the validation set as the test set
during the training process.

We use the classic VGG-16 network, and the results
of LSTM with different layers and parameters on AFEW
database are shown in Table 2. The first two lines are the
results of single layer LSTM, and the last three lines are the
results of two layers of LSTM. The values in brackets rep-
resent the output eigenvector dimensions outputting of each
LSTM. As we can see, the maximum F1-score of two-layer
LSTM network is 0.3279, which is better than that of single
layer LSTM network (i.e. 0.2954). For two-layer LSTM, we
set different output parameters respectively, and the experi-
mental results show that CNN-LSTM (2048, 2048) has the
highest F1-score. So, we adopt LSTM (2048, 2048) for the
cross-layer LSTM network.

For the cross-layer LSTM, we carried out end-to-end
training and experiments on AFEW and CK+. The results
are shown in Table 3. It can be seen that the end-to-end
training outperform than non-end-to-end training (i.e. inde-
pendent training). The cross-layer LSTM network can fur-
ther improve the accuracy of unconstrained FER.
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Table 2 Performance of LSTM with different layers and parameters on
AFEW database
LSTM layer model Fl-score Accuracy
Single-layer CNN-LSTM(2048) 0.2895 33.69%
LSTM CNN-LSTM(3000) 0.2954 32.88%
CNN-LSTM(3000,3000) 0.3069 34.77%
Two-layer
LSTM CNN-LSTM(2048,2048) 0.3279 34.50%
CNN-LSTM(2048,1024) 0.2950 34.23%
Table 3  Performance of cross-layer LSTM on AFEW and CK+
databases
Database Model Accuracy
Non-end-to-end CNN-LSTM 34.50%
AFEW End-to-end CNN-LSTM 38.57%
End-to-end CNN & cross-layer LSTM 39.89%
Non-end-to-end CNN-LSTM 95.14%
CK+ End-to-end CNN-LSTM 95.71%
End-to-end CNN & cross-layer LSTM 95.92%
Table 4  Confusion matrix of the end-to-end CNN & cross-layer LSTM

network on CK+ (%)

An Di Fe Ha Ne Sa Su
An  97.32 2.31 0.00 0.00 2.07 3.16 0.00
Di 0.00 91.54  0.00 0.00 0.00 0.00 0.00
Fe 2.68 2.31 97.00  0.00 0.00 0.00 0.00
Ha 0.00 0.00 0.00 94.70 0.00 3.16 0.00
Ne 0.00 3.85 0.00 2.65 97.93 0.00 0.00
Sa 0.00 0.00 0.00 2.65 0.00 93.67  0.00
Su 0.00 0.00 3.00 0.00 0.00 0.00 100

Table 5  Confusion matrix of the end-to-end CNN & cross-layer LSTM
network on AFEW (%)
An Di Fe Ha Ne Sa Su
An  54.68 2250 36.36 6.35 18.33 16.67  40.00
Di 1.56 12.50 2.27 4.76 8.33 333 2.22

Fe 9.38 7.50 18.18 1.59 10.00 8.33 4.44
Ha 7.81 20.00 1591 80.95 1500 21.67 20.00
Ne 3.13 17.50  11.36 6.35 35.00 16.67 13.33
Sa 15.63 17.50 13.64 0.00 10.00  30.00 222
Su 7.81 2.50 2.27 0.00 3.33 3.33 17.78

The confusion matrices of the proposed method on
CK+ and AFEW are shown in Table 4 and Table 5, respec-
tively. It can be seen that the results on CK+ are better than
on AFEW. For “surprise”, only 17.78% are classified cor-
rectly, while 40% are classified incorrectly as “angry”. This
is due to the people’s mood is a mixture of many emotions,
such as “anger”, “disgust” and “sadness” are usually accom-
panied by each other, and the facial morphological changes
of “fear”, “surprise” and “happiness’ have some similarities.
The multimodal expression recognition method can help im-
prove the accuracy.

3.3 ECNN and Cross-Layer LSTM Experiment
To evaluate the proposed ECNN & cross-layer LSTM net-

work, we have done experiments on CK+ and AFEW re-
spectively, and the results are shown in Table 6. (FC1, 5 x5)
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Table 6
AFEW

Database

Performance of ECNN & cross-layer LSTM on CK+ and

Fl-score Accuracy

94.74%

ECNN & cross-layer
LSTM (FC1, 5%5)
ECNN & cross-layer

LSTM (FC1,7x7)
ECNN & cross-layer
LSTM (FC2, 5%5)
ECNN & cross-layer
LSTM (FC2, 7x7)

Baseline —
ECNN & cross-layer
LSTM (FC1, 5X5)
ECNN & cross-layer
LSTM (FC1,7X7)
ECNN & cross-layer
LSTM (FC2, 5X5)
ECNN & cross-layer
LSTM (FC2, 7X7)

0.9425
0.9718 97.47%
CK+
0.9551 95.68%

0.9623 96.53%

38.81%

0.3733 40.16%

0.3816 41.25%

AFEW

0.3514 39.34%

0.3763 40.44%

Table 7  Performance comparison on CK+ and SFEW

Method Accuracy (%)
3DCNN-DAP[17] 92.35
STC-NLSTM [18] 93.88

DTAGN[10] 96.43
The proposed 97.47
3DCNN-DAP[17] 24.7
STC-NLSTM [18] 31.73
DTAGN][10] 26.14
Inception[12] 47.7
The proposed 54.37

Database

CK+

SFEW

represents the enhanced branch is fused with FC1 layer, and
the convolution kernel size of convl in enhanced branch is
5% 5% 1024 (shown in Fig. 2 and Table 1). Similarly, (FC2,
7 x 7) represents the enhanced branch is fused with FC2
layer, and the convolution kernel size of convl in enhanced
branch is 7 X 7 x 1024. It can be seen that ECNN & cross-
layer LSTM (FC1, 7 x 7) has the best performance, outper-
form the official baseline 2.44% on AFEW.

The performance comparisons of recognition accu-
racy with the state-of-art on CK+ and SFEW databases are
shown in Table 7.

4. Conclusion

In this letter, we present a hybrid framework for facial ex-
pression recognition of video sequence. By combining the
enhanced CNN and cross-layer LSTM, we obtain better per-
formance in terms of Fl-score and Accuracy. Due to the
samples in AFEW and SFEW databases are gathered in un-
constrained environments, our future work will focus on op-
timizing the proposed framework and image preprocessing
to further improve recognition accuracy and speed.
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