
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020
2709

LETTER

A Machine Learning Method for Automatic Copyright Notice
Identification of Source Files

Shi QIU†a), German M. DANIEL††b), Nonmembers, and Katsuro INOUE†c), Fellow

SUMMARY For Free and Open Source Software (FOSS), identifying
the copyright notices is important. However, both the collaborative manner
of FOSS project development and the large number of source files increase
its difficulty. In this paper, we aim at automatically identifying the copy-
right notices in source files based on machine learning techniques. The
evaluation experiment shows that our method outperforms FOSSology, the
only existing method based on regular expression.
key words: software maintenance, open source software, software copy-
right

1. Introduction

Software copyright grants the copyright owner declared in
the copyright notice a legal right to determine under what
conditions this software can be redistributed, reused, and
modified. Copyright notice is a few sentences mostly placed
in the header part of a source file as a comment or in a li-
cense document in a FOSS project. Identifying the copy-
right notices of source files is important for several reasons:
a) the copyright owner is allowed to change its license or
to grant a commercial one to a third party; b) the copyright
owner is allowed to start legal proceedings to enforce its li-
cense [1]; c) several FOSS licenses (e.g. the BSD family of
licenses) require that the copyright owner of FOSS projects
being reused should be acknowledged in the documentation
and other materials of the system that reuses it [2].

However, copyright notice identification of source files
is difficult. On one hand, different from proprietary soft-
ware, FOSS projects are developed in a collaborative man-
ner, receiving contributions from a large number of develop-
ers who potentially declare the copyright notice. On another
hand, a large FOSS project usually consists of a large num-
ber of source files in which the copyright notices are buried.

To overcome these difficulties, a tool named FOSSol-
ogy∗ has been developed to automatically identify copyright
notice [3]. FOSSology identifies copyright notices in the

Manuscript received June 17, 2020.
Manuscript revised August 28, 2020.
Manuscript publicized September 18, 2020.
†The authors are with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565–0871
Japan.
††The author is with the Department of Computer Science, Uni-

versity of Victoria, Victoria, BC V8P 5C2, Canada.
a) E-mail: qiujitsu@ist.osaka-u.ac.jp
b) E-mail: dmg@uvic.ca
c) E-mail: inoue@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.2020EDL8089
∗https://www.fossology.org/

Table 1 Examples of the identified copyright notices using FOSSology
for bonito64.h.

1 copyright message in any source redistribution in whole or part.
2 Copyright (c) 1999 Algorithmics Ltd
3 Copyright (C) 2001 MIPS Technologies, Inc. All rights reserved.

comments of the source files using regular expression-based
matching. However, some sentences related to copyright
could be wrongly identified as copyright notices by FOS-
Sology. Table 1 shows examples of the identified copyright
notices using FOSSology to a source file named bonito64.h
in the Linux kernel. We can see that sentence 1 is identified
as a copyright notice incorrectly. This is because the tar-
get sentence contained a keyword “copyright”, and FOSSol-
ogy’s regular expression matches this keyword and all the
following words in that sentence. To solve this problem, we
propose a machine learning method in this paper. The pro-
posed method is expected to reject the sentences that are not
copyright notices such as sentence 1 in Table 1, and identify
all actual copyright notices such as sentence 2 and 3 at the
same time. The results of experiments suggest that Decision
Tree and Random Forest perform best on automatic copy-
right notice identification of source files, and the proposed
machine learning method outperforms FOSSology.

2. Machine Learning Method

In this section, we introduce a machine learning method for
automatic copyright notice identification of source files. The
proposed method consists of four steps.

1) Copyright-related sentence extraction and pre-
processing: We first use a keyword-based method to ex-
tract copyright-related sentences from the comments in the
source files. A sentence is extracted as a copyright-related
sentence when it includes any copyright-related keywords
and signals such as “copyright”, “ c©”, and “(C)”. Some
other potentially relevant words, such as “authored by”,
“written by”, etc., are included as well. These heuristics
are similar to FOSSology. The difference is that FOSSol-
ogy uses the keywords to construct regular expressions. For
each extracted copyright-related sentence, we tokenize it
into words, lemmatize and convert each word to lowercase,
and then remove punctuation.

2) Vectorization: We use the numbers of words of
different categories as features to vectorize the copyright-
related sentence. These features are selected based on our
observations on the results of using FOSSology to identify

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



2710
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Table 2 The word categorization and the tokens we use to replace words.

Category Token Example

Copyright-related keyword COPYRIGHT copyright, author
Copyright-related signal SIGNAL c©, (C), (c)
Year YEAR 1991, 2002, 2013
E-mail address EMAIL addr@email.com
Others OTHER license, above

copyright notices. We observed that the wrongly detected
copyright notices are significantly different from the actual
copyright notices in these features. Although there are many
other natural language processing methods to vectorize the
sentence, we do not use them for two reasons: (1) There
is no suitable training and testing dataset and our manually
constructed dataset is not large enough to use these methods;
(2) Different from natural language, copyright notice has no
explicit grammatical rule, they also contain a lot of organi-
zation or individual names appearing only once which will
make the constructed dataset very sparse. We believe that
our selected features are effective and will examine their ef-
fectiveness in Sect. 3.

We categorize the words into five categories, i.e.
copyright-related keyword, copyright-related signal, year,
e-mail address, and others. For each word in the copyright-
related sentence extracted in Step 1, we replace it into a
particular token. Table 2 shows the tokens we used to re-
place the words of different categories. After replacement,
we count the number of tokens of each category and then
construct a 5-dimension vector. We end up with a list of vec-
tors representing the extracted copyright-related sentences.

3) Training Classifier: Four supervised classifiers are
considered, i.e. Naive Bayes (NB), Decision Tree (DT),
Random Forest (RF), and Support Vector Machine (SVM).
These four classifiers are widely used in text classifica-
tion tasks [4], [5] and related work addressing similar prob-
lem [6]. We implemented them with the Scikit-learn li-
brary† [7]. We train the classifiers with a manually labeled
dataset. Each vector in this dataset is manually labeled as ac-
tual copyright notice (i.e. positive copyright notice) or false
copyright notice (i.e. negative copyright notice). The task
of the trained classifier is to classify a vector representing a
copyright-related sentence as a positive copyright notice or
a negative one. The details of how we train and evaluate the
classifiers will be described in Sect. 3.

4) Copyright notice identification: For each vector, the
trained classifier predicts whether it represents a copyright
notice or not using the trained classifier. A copyright-related
sentence is identified as a copyright notice if the correspond-
ing vector is classified as representing a copyright notice.
Finally, we identify all copyright notices of a source file.

3. Comparison of Four Supervised Classifiers

In this section, we first describe how we construct the
datasets. We then aim to find which supervised classifier

†https://scikit-learn.org/stable/

Table 3 Summary of the target version of the Linux kernel.

Version 4.14
Date Nov 13, 2017
#File 45,477

performs best by comparing the performance of the four
classifiers.

3.1 Dataset Construction

To achieve this goal, we choose the Linux kernel - the most
popular and successful open-source operating system kernel
- as the target dataset. The source code of the Linux kernel
is downloaded from Github††. Table 3 shows a summary of
the target version of the Linux kernel.

We first randomly select 2000 source files from 45,477
source files in the Linux kernel and extract copyright-related
sentences using the keyword-based method we described in
Step 1 in Sect. 2. We end up with 2,297 copyright-related
sentences. Note that the duplicate sentences are removed
here. It means that even if a sentence exists in two or more
source files, we only record it once. For each sentence,
we manually inspect and label it as a positive copyright no-
tice or a negative one. As a result, 2,146 sentences are la-
beled as positive copyright notices, and 151 sentences are
labeled as negative ones respectively. The positive copy-
right notices and the negative ones are unbalanced, so bal-
ancing techniques have to be applied [8], [9]. To address
the issue of unbalanced data, we manually create the nega-
tive copyright notices by randomly replacing words in 151
found negative copyright notices. A similar manual method
has been proven effective in handling imbalance datasets in
other software engineering tasks [10]. Note that the words
used to do replacement are from the words in all 2,297
copyright-related sentences. In this way, we successfully
extend the number of negative copyright notices to 2,146.
We finally construct a dataset consisting of 2,146 positive
copyright notices and 2,146 negative ones.

3.2 Experiment and Results

To evaluate the performance of four supervised classifiers,
we first randomly split the dataset into two parts, 15% for
the testing dataset and 85% for the training dataset. This
method is also widely used in the existing research about
the closely related topic [6]. To train the classifiers, 5-fold
cross-validation is performed for the training dataset [11].
In 5-fold cross-validation, the training dataset is partitioned
into five equal-sized subsets. Each subset has the same per-
centage of labels. Every time, four subsets are used to train
the classifiers and the remaining one is used for validation.
This process iterates 5 times until every fold has been used
for testing once. Hyperparameter tuning - the process of
determining a good set of hyperparameters - is conducted

††https://github.com/torvalds/linux



LETTER
2711

Table 4 Comparison of four classifiers.

Classifier Label Precision Recall F1-score

NB Positive 0.99 0.85 0.91
NB Negative 0.87 0.99 0.92
DT Positive 1.0 1.0 1.0
DT Negative 1.0 1.0 1.0
RF Positive 1.0 1.0 1.0
RF Negative 1.0 1.0 1.0
SVM Positive 1.0 0.98 0.99
SVM Negative 0.98 1.0 0.99

here to achieve the best performance. We train the classi-
fiers with the best hyperparameters and then evaluate their
performance with the testing dataset. To evaluate the per-
formance of four classifiers, we use the following metrics:
(1) Precision, which refers to the ratio of the number of cor-
rect identification to the total number of identifications made
of copyright notices; (2) Recall, which refers to the ratio
of the number of correct identification to the total number
of manually extracted copyright notices; and (3) F1-score,
which is the harmonic mean of the precision and the recall.
The results are shown in Table 4.

The results suggest that Decision Tree and Random
Forest perform best on automatic copyright notice identifi-
cation of source files. We will use Random Forest to conduct
the evaluation experiment in Sect. 4.

4. Comparison to FOSSology

In this section, we first describe how we construct the
dataset. We then aim to evaluate the proposed method by
comparing the performance of the proposed method and
FOSSology, an existing method based on regular expres-
sion.

4.1 Dataset Construction

We still use the source files of the Linux kernel as the tar-
get to construct the dataset. To achieve this goal, we ran-
domly select 500 source files from the source files in the
same Linux kernel. Note that all these 500 source files are
unseen in training classifier. For each source file, we man-
ually check the comments to extract the copyright notices.
We extract 537 copyright notices from these randomly se-
lected 500 source files. Among them 351 copyright notices
are not duplicated. The task of the evaluation experiment is
to identify all 537 copyright notices from the source files.

4.2 Experiment and Results

In our evaluation experiment, we first use the proposed
method and FOSSology to identify the copyright notices in
the selected 500 source files respectively, and then compare
their performances. To evaluate our classifier, we use preci-
sion, recall, and F1-score as metrics as well.

Table 5 shows the results. It is easy to know that
the proposed method outperforms FOSSology. Especially,

Table 5 Evaluation of the proposed method.

Method Precision Recall F1-score

Proposed method (RF) 1.0 1.0 1.0
Fossology 0.78 1.0 0.88

both the proposed method and FOSSology achieve 100%
recall, which suggests that both two methods do not miss
any copyright notice. This is important because identifying
all copyright notices is an important metric to evaluate the
automatic copyright notice identification. However, the pro-
posed method outperforms FOSSology by achieving 100%
precision. Specifically, 152 sentences that are not copyright
notices are wrongly identified as copyright notices by FOS-
Sology. The results suggest the effectiveness of the pro-
posed method in rejecting the sentences that are not copy-
right notices.

Furthermore, we also compare the execution time of
the proposed method and FOSSology. For the proposed
method, we compute the execution time by the command
line. For FOSSology, we compute the execution time by
checking the execution report provided by FOSSology it-
self. Note that FOSSology is a web service-based tool, the
execution time also includes the time used for upload, un-
compression, etc. We only compute the time used for copy-
right notice identification here. As a result, it takes 5.11 s by
the proposed method to identify all copyright notices from
the source files, while it takes 8.25 s by FOSSology. The
results suggest that the proposed method is faster and out-
performs FOSSology in the execution time.

5. Conclusion

In this paper, we proposed a machine learning method for
automatic copyright notice identification of source files.
The results of experiments suggest that Decision Tree and
Random Forest perform best on automatic copyright no-
tice identification of source files, and the proposed machine
learning method outperforms the existing method. Our
work highlights the possibility of applying machine learn-
ing method to solve software copyright-related issues, and
also creates a possibility of studying the copyright notices
in FOSS projects, which is overlooked by the software engi-
neering researchers. In our future work, we will implement
a tool to provide the copyright notice identification service
to end-users, and also test the proposed method on a larger
scale. We also plan to study the copyright notice issues in
FOSS projects, such as the reliability of the copyright no-
tices in source files.

All data used here can be accessed at https://github.
com/QIU10/ML copyright.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 18H04094.



2712
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

References

[1] T. Golder and A. Mayer, “Whose IP is it anyway?,” Journal of Intel-
lectual Property Law & Practice, vol.4, no.3, pp.165–175, 2009.

[2] A.M.S. Laurent, Understanding open source and free software li-
censing: Guide to navigating licensing issues in existing & new soft-
ware, O’Reilly, 2004.

[3] R. Gobeille, “The FOSSology project,” Proc. 5th Working Confer-
ence on Mining Software Repositories (MSR), Leipzig, Germany,
pp.47–50, May 2008.

[4] G. Forman, “An extensive empirical study of feature selection met-
rics for text classification,” Journal of Machine Learning Research,
vol.3, pp.1289–1305, March 2003.

[5] F. Sebastiani, “Machine learning in automated text categorization,”
ACM Comput. Surv. (CSUR), vol.34, no.1, pp.1–47, 2002.

[6] C. Stanik, L. Montgomery, D. Martens, D. Fucci, and W. Maalej,
“A simple NLP-based approach to support onboarding and retention
in open source communities,” 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Madrid, Spain,
pp.172–182, Sept. 2018.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, É. Duches-
nay, “Scikit-learn: Machine learning in python,” Journal of Machine
Learning Research, vol.12, pp.2825–2830, 2011.

[8] N. Japkowicz and S. Stephen, “The class imbalance problem: A sys-
tematic study,” Intelligent Data Analysis, vol.6, no.5, pp.429–449,
2002.

[9] G.E.A.P.A. Batista, R.C. Prati, and M.C. Monard, “A study of the
behavior of several methods for balancing machine learning train-
ing data,” ACM SIGKDD Explorations Newsletter, vol.6, no.1,
pp.20–29, 2004.

[10] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D.
German, and D. Poshyvanyk, “Machine learning-based detection
of open source license exceptions,” 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE), Buenos Aires,
Argentina, pp.118–129, Aug. 2017.

[11] S. Ozdemir, Principles of Data Science, Packt Publishing, 2016.

http://dx.doi.org/10.1093/jiplp/jpn248
http://dx.doi.org/10.1145/1370750.1370763
http://dx.doi.org/10.1145/505282.505283
http://dx.doi.org/10.1109/icsme.2018.00027
http://dx.doi.org/10.3233/ida-2002-6504
http://dx.doi.org/10.1145/1007730.1007735
http://dx.doi.org/10.1109/icse.2017.19

