
1386
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

LETTER

DCUIP Poisoning Attack in Intel x86 Processors

Youngjoo SHIN†a), Member

SUMMARY Cache prefetching technique brings huge benefits to per-
formance improvement, but it comes at the cost of microarchitectural se-
curity in processors. In this letter, we deep dive into internal workings of
a DCUIP prefetcher, which is one of prefetchers equipped in Intel proces-
sors. We discover that a DCUIP table is shared among different execution
contexts in hyperthreading-enabled processors, which leads to another mi-
croarchitectural vulnerability. By exploiting the vulnerability, we propose
a DCUIP poisoning attack. We demonstrate an AES encryption key can
be extracted from an AES-NI implementation by mounting the proposed
attack.
key words: hardware prefetching, Intel DCUIP prefetcher, microarchitec-
tural side-channel attack, poisoning attack

1. Introduction

Cache prefetching is a processor optimization technique that
boosts up software performance by speculatively fetching
data from memory in advance of the software execution.
Once prefetched, the data resides on a cache and further
accesses to the data will be directly served from the cache
with low latency. As cache prefetching brings huge bene-
fits to the overall performance improvement, processor ven-
dors are now aggressively employing prefecthers in their
CPU. For instance, Intel x86 processors are equipped with
four prefetching units in every core trying to catch all the
prefetchable memory access patterns [1].

However, such performance benefits from the prefetch-
ing technique comes at the cost of security in software sys-
tems. As prefetching activities reflect on memory access
patterns of a victim’s program, an attacker can infer the ac-
cess pattern by observing whether certain cache lines have
been prefetched via cache side-channel analysis techniques.
For instance, recent work by Shin et al. demonstrated how
to extract an ECDH private key by observing prefetching
activities on a victim’s program [2].

In this letter, we go further than the previous work: we
dissect internal workings of Intel prefetchers, and based on
the analysis result we present a new microarchitectural at-
tack by poisoning the prefetching behavior. In particular,
we focus on an DCUIP prefetcher, which is one of Intel
prefetchers located on L1D cache. DCUIP prefetcher looks
for strided memory access patterns and tries to prefetch a

Manuscript received November 27, 2020.
Manuscript revised February 25, 2021.
Manuscript publicized May 13, 2021.
†The author is with School of Cybersecurity, Korea University,

Seoul, Korea.
a) E-mail: syoungjoo@korea.ac.kr

DOI: 10.1587/transinf.2020EDL8148

next cache line predicted to be accessed based on the obser-
vation. For this purpose, the DCUIP prefetcher maintains a
history table, which is referred to as DCUIP table in the rest
of this letter, to trace multiple access patterns in a program.
Each entry of the DCUIP table contains a state information
for an observed memory access: the state includes a tag of
the pattern, the last accessed address and the observed stride
with its confidence.

We discover from our analysis that the DCUIP table
is shared among logical threads on a CPU core. That is,
a DCUIP state of one program may have influence on the
other in hyperthreading-enabled processors, provided that
both programs are running on the same physical core. By
exploiting the shared table, an attacker is able to poison a
victim’s DCUIP state to make the victim to prefetch a secret
data from memory, even the data which is not supposed to
be accessed again after loaded to a register.

Based on our discovery, we elaborate a DCUIP poison-
ing attack against a victim application that performs AES
encryption using AES-NI extension. The victim executes
encryption with an AES key, which is located on a register.
Hence, once a key has been loaded to the register, the vic-
tim never accesses the key from memory during the entire
execution. The DCUIP poisoning attack allows an attacker
to obtain the victim’s secret key from memory through mi-
croarchitectural fill buffer data sampling (MFBDS) analysis.

The remainder of this letter is organized as follows.
In Sect. 2, we provide some background knowledge about
cache prefetching. In Sect. 3, we explain our analysis on
an DCUIP prefetching algorithm in Intel x86 processor. In
Sect. 4, we describe the proposed attack in detail as well as
our evaluation results on the attack. In Sect. 5, we discuss a
feasibility of the attack and present some countermeasures.
Finally, in Sect. 6, we conclude this letter by summarizing
our work.

2. Cache Prefetching

Cache prefetching is an optimization technique to reduce de-
lays caused by cache miss. By predicting memory access
patterns, it tries to fetch data from a memory to a cache be-
fore it is needed. As there are a diversity of applications
with various access patterns, modern processors employ a
number of hardware-based cache prefetching techniques to
cover the wide range of applications (See Table 1). DCU
prefetching performs prefetching the next line N+1 if an ac-
cess to line N has been detected. Adjacent-line prefetching

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers



LETTER
1387

Table 1 List of cache prefetching units in Intel processors

Name Algorithm Cache level
Streamer Stream L2

Spatial prefetcher Adjacent-line L2
DCU prefetcher Next-line L1

DCUIP prefetcher Stride L1

utilizes spatial locality when fetching another line adjacent
to the accessed cache line N. Stream prefetching prefetches
a number of memory lines ahead by assuming that mem-
ory accesses are a part of data streaming. DCUIP prefetch-
ing [3] traces each load instruction in a program to figure
out whether a sequence of memory accesses forms a pattern
a, a+S , a+2S , . . . with a base address a and a regular stride
S . Once detected, it performs prefetching the next mem-
ory addresses based on the observed stride. The DCUIP
prefetcher maintains a DCUIP table, which comprises of
table entries indexed with PC tags. Each entry includes a
prefetching information such as the last address a, stride S ,
and a confidence value c. In this letter, we are mainly inter-
ested in the DCUIP prefetcher.

3. Diving into DCUIP Prefetcher

In this section, we analyze the internal workings of DCUIP
prefetcher by conducting several experiments. Specifically,
our aim is to investigate whether any internal states of the
prefetcher are shared among different execution contexts
and if so, how does the shared state affect the cache behavior
of other context.

3.1 Experiment Design

Experimental setup. The experiments were conducted on
an Intel i9-10900 (Comet Lake) processor running Ubuntu
20.04.01 LTS 64-bit Linux. The experimental setup consists
of two programs acting as a spy and a victim. We construct
the spy process as a fork of the victim so that they share the
code base in their own address space. In particular, the spy
and victim commonly have a 4KB-sized array g mem of 64
elements, which is aligned with a memory page, as well as
a function mem access() that performs lookup to the array.
The spy initializes g mem with arbitrary values immediately
after being forked. This renders a page of the array dupli-
cated while keeping its virtual address aligned with that of
the victim.

In our experiment, the spy and victim programs run
concurrently on the same host while logical cores on which
they execute are controlled by CPU pinning. In order to
exclude any possible side effects due to other prefetching
activities, we disable all the prefechers except DCUIP via
msrtools [4].

Algorithms. The spy and victim execute memory opera-
tions on g mem according to Algorithm 1 and 2, respec-
tively. The spy program takes two inputs Ss and Es, both of
which are indices of the array g mem, where Es > Ss. It first
evicts all the corresponding cache lines ranging from Ss to

Algorithm 1 Spy memory access
Input: Ss, Es � Ss and Es (Es > Ss) are indices of g mem
Output: None
1: procedure Spy(Ss, Es)
2: ∀line∈{S s ,...,Es−1} flush(line)
3: for line← Ss to Es-1 do
4: mem access (line)
5: end for
6: end procedure

Algorithm 2 Victim memory access
Input: Sv, Ev � Sv and Ev (Ev > Sv) are indices of g mem
Output: Result
1: procedure Victim(Sv, Ev)
2: ∀line∈{S v,...,Ev} flush(line)
3: for line← Sv to Ev-1 do
4: mem access (line)
5: end for
6: t ← mem access(Ev)
7: if t < threshold then
8: Result← prefetched
9: else

10: Result← not prefetched
11: end if
12: return Result
13: end procedure

Fig. 1 Spy and victim algorithms in the experiment (Addrs=Addrv)

Es − 1 by using a clflush instruction. Then, the spy makes
a series of memory accesses to g mem with given indices
from Ss to Es − 1. As the memory is accessed with regular
stride pattern, it will influence on the status of DCUIP and
induce cache prefetching.

Like the spy, the victim’s algorithm also takes two in-
dices Sv and Ev (Ev > Sv) of the array g mem as inputs. Af-
ter initializing all the corresponding cache lines by eviction,
it makes regular accesses to g mem with indices from Sv to
Ev−1. Then, the victim checks whether the Ev-th cache line,
located adjacent to the line of Ev − 1, has been prefetched
after the memory operations. The target line (i.e., Ev) is de-
cided to be prefetched if its access latency (t) is below the
threshold. The victim’s algorithm returns the prefetching
result as an output.

3.2 Experimental Result

We measured the hit rate and access latency of the Ev-th
cache line while concurrently running the spy and victim
programs (of Algorithms 1 and 2, respectively). In the ex-
periments, input arguments of these algorithms were config-
ured as shown in Fig. 1. In particular, Ss for the spy program



1388
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

Fig. 2 Experimental result

is set to a base index of the array g mem in spy’s address
space (referred to as Addrs). For the victim, we configured
Sv to be the index right next to Es (i.e., Sv = Es + 1) and
Ev = Sv + 1. Note that Addrv, the base address of g mem
in the victim’s virtual address space, is the same as Addrs

whereas they differ in their physical addresses.
We conducted the experiment by varying Es for the

purpose of identifying any correlations between the distance
(i.e., Es−Ss) of the memory accesses on the spy-side and the
prefetching rate on the victim-side. Figure 2 shows the ex-
perimental result. The term ‘hitrate’ in the graph refers
to the prefetching rate of the target (i.e., Ev+1-th line) as a re-
sult of the execution. The term ‘avg’ refers to the averaged
latency of access to the target line. As shown in Fig. 2 (a),
the hit rate (as well as the corresponding averaged access
latency) is highly correlated with the distance in a range of
the distance from 0 to 12. The hitrate consistently remains
high (i.e., > 0.8) with distances longer than 12, which indi-
cates that the target line is highly likely to be on cache as a
result of prefetching. We confirm from the results shown in
Fig. 2 (b) and Fig. 2 (c) that such correlation is only observ-
able when both the spy and victim run on the same physical
core and DCUIP prefetching is enabled on that core.

4. DCUIP Poisoning Attack

In this section, we present an DCUIP poisoning attack, a
new microarchitectural attack that exploits a shared state of
DCUIP to leak secret from a victim.

4.1 Threat Model

As in other microarchitectural attacks proposed in the liter-
ature, we assume that both a victim and an attacker are co-
located sharing a physical core in the same host. The victim
is required to contain a loop in the code that repeatedly per-
forms memory access to a lookup table (LUT); otherwise,
DCUIP will be barely active during the attack. Note that
this requisite in our attack is reasonable as constructing a

Fig. 3 DCUIP poisoning attack overview

loop structure with an LUT is a common practice of imple-
menting practical applications.

We also suppose that a secret value, in which the at-
tacker is interested, resides at the location adjacent to the
LUT in the victim’s memory. The secret is hardly accessed
by load instructions during the victim’s execution. For in-
stance, we consider an AES key used by AES-NI imple-
mentations: once the key has been loaded from memory to
an AES-NI register, the key will be never accessed again
afterward.

The attacker aims to learn the secret from the victim.
As the secret is seldom loaded from memory in a normal
execution path, the attacker tries to poison the DCUIP so
that the secret is being prefetched to cache. Regarding the
attacker’s ability, we suppose that no information about the
victim is given to the attacker except the information about
the victim’s program binary. In addition, we suppose that no
physical memory is shared by the attacker and the victim.

4.2 The Proposed Attack

The overall process of the DCUIP poisoning attack is illus-
trated in Fig. 3. The attack proceeds in three phases as fol-
lows.

Phase 1: Training DCUIP. The attacker first attempts to
poison a DCUIP table which is shared with the victim. For



LETTER
1389

this purpose, he/she trains the DCUIP by using Algorithm 1
described in the previous section with his/her own lookup
table. As a result of training, a confidence value for the cor-
responding entry in the DCUIP table will increase enough
to trigger prefetching in the context of the victim.

Phase 2: Victim execution. The attacker controls the victim
to begin executing its program, in which internally performs
memory accesses to the LUT. If the attacker is incapable of
control (i.e., in case of the victim not synchronized with the
attacker), he/she waits for the victim to complete the execu-
tion. When the victim performs memory accesses to LUT, it
is highly likely to trigger prefetching memory address next
to the table, where the secret is stored, as its confidence level
has been raised by the attacker.

Phase 3: Leaking secret. The secret data is going to be
prefetched from memory to L1 cache as a result of the pre-
vious phases. In order to complete loading to the cache, a
memory subsystem has to temporally keep the data in a line
fill buffer (LFB). Hence, the attacker is able to leak the se-
cret from the LFB through a microarchitectural fill buffer
data sampling (MFBDS) technique [5], [6] while the data
resides in the buffer.

4.3 Case Study: Leaking an AES-NI Key

We now describe the effectiveness of DCUIP poisoning at-
tack by demonstrating a practical attack that leaks an AES
key from AES-NI implementation.

Victim implementation. To demonstrate the attack, we
built a victim application that encrypts multiple blocks of
plaintexts by using an AES-128 algorithm with an ECB
mode. The AES encryption was implemented using AES-
NI, an extension to the x86 instruction set architecture that
accelerates AES algorithms, as follows.

AES-NI allows the application to process one round
of AES encryption with a single x86 instruction. That is,
each round is executed with two 16-byte operand registers
(e.g., xmm0 - xmm15), one for the round key and the other for
the internal state of AES. The victim application first pre-
computes round keys R0,R1, . . . ,R10 from a AES-128 secret
key, where R0 comes from the AES-128 key itself. After the
key expansion has been completed, all the round keys are
stored on a memory buffer. At the beginning of the execu-

tion, the precomputed round keys are loaded from the buffer
to xmm registers; once loaded to the registers, the round keys
in the memory are never accessed during the entire execu-
tion. The victim repeatedly performs encryption for each
plaintext block in a for-loop statement. For our attack, we
make sure that the round key R0 in the memory is located
adjacent to the plaintext buffer.

Methodology. Our spy program targets the initial round key
(i.e., R0) of the victim among all the round keys. In the
experiment, a spy and victim programs are running on two
cores, say C1 and C2, which are logically separated by hy-
perthreading but are physically on the same core. We uti-
lized CPU pining, as mentioned in Sect. 3, to statically as-
sign the cores to each program. The procedure for the ex-
periment consists of several steps, which are presented as
follows:

(S 1) In the first step, we have the victim program run on C1.
The victim keeps running by repeatedly executing the
function aes128 encrypt() during the experiment.

(S 2) Next, we have the spy program run on C2. In this step,
the spy executes N (N > 0) times of DCUIP poisoning
attacks against the victim program. For each execu-
tion, it records the result of the attack (i.e., an extracted
value from the victim) to a log file.

(S 3) Finally, we stop running the victim program and then
exit the procedure.

Attack result. We performed the above attack procedure on
an Intel Xeon E3-1275v6 (Kaby Lake) processor running
Ubuntu 18.04 LTS 64-bit Linux. In the step S 2, we set N to
N = 100,000. Consequently, we obtained a total of 100,000
extracted values at the end of the procedure. We found that
95,427 values of the obtained results match with the cor-
rect value of the secret (i.e., R0) of the victim application.
This allows us to conclude that the DCUIP poisoning attack
successfully extracts the AES key from the victim with a
success rate of at least 95%.

5. Discussion

In this section, we discuss the feasibility of the DCUIP poi-
soning attack. In addition, we present several countermea-
sures to mitigate the proposed attack.

5.1 Feasibility of the Proposed Attack

The feasibility of the DCUIP poisoning attack actually de-
pends on how a victim application is implemented, which
is mainly affected by software development practices. The
victim AES-NI application implemented in the previous sec-
tion is intentionally built so that the secret (i.e., the AES key)
is located adjacent to the plaintext buffer. Although it is not
always the case that applications are built with such a mem-
ory layout in practice, we believe that not a few of practical
applications are vulnerable to our attack. Indeed, it is not
hard to find some AES-NI open sources [7], [8] that have



1390
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

the same memory layout as our victim application.
Note that vulnerable applications are not confined to

AES-NI implementations. Any cryptographic applications
that use LUTs in their implementations (e.g., T-table-based
AES or squaring operations in elliptic curve cryptography)
will be vulnerable to the DCUIP poisoning attack if a secret
data (e.g., a private key or any secret-sensitive values) re-
sides adjacently to the LUT in the memory. Software devel-
opers who have little concern about this security threats are
highly likely to implement applications vulnerable to this
attack.

5.2 Countermeasures

We can mitigate the proposed attack by using the following
countermeasures.

Secure software development. The root cause of the vul-
nerability is that a victim application has a memory layout
where a secret data is located adjacent to an LUT. Hence,
in order to protect software from the DCUIP poisoning at-
tack, software developers should avoid an implementation
that has adjacent placement of a secret and an LUT in the
memory. The simplest way is to just put a dummy variable
between these two objects.

System-level mitigations. As the DCUIP poisoning attack
exploits a prefetching activity in recent Intel processors, we
can defend vulnerable software from the attack by disabling
the prefetcher. Intel processors provide a method to turn off
hardware prefetchers by manipulating a model specific reg-
ister via software such as msr-tools [4]. Another solution
is to disable hyperthreading of the Intel processors so as to
prevent the DCUIP table from being shared between an at-
tacker and a victim.

6. Conclusion

In this letter, we dissected the internal workings of a DCUIP
prefetcher, which is one of cache prefetching units equipped
in Intel processors. As a result, we discovered that a DCUIP
table is shared among different contexts in hyperthreading-

enabled processors. We introduced a DCUIP poisoning at-
tack, a new microarchitectural attack in Intel processors. We
demonstrated how to extract an AES encryption key from a
victim application that performs AES encryption with AES-
NI extension by mounting our attack.

Acknowledgements

This work was supported by an Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (No. 2019-
0-00533, Research on CPU vulnerability detection and val-
idation).

References

[1] Intel, “Intel 64 and IA-32 Architectures Optimization Reference Man-
ual,” Tech. Rep., 2020. [Online]. Available: https://software.intel.
com/content/www/us/en/develop/download/intel-64-and-ia-32-
architectures-optimization-reference-manual.html

[2] Y. Shin, H.C. Kim, D. Kwon, J.H. Jeong, and J. Hur, “Unveiling Hard-
ware-based Data Prefetcher, a Hidden Source of Information Leak-
age,” Proc. 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), pp.131–145, 2018.

[3] T.-F. Chen and J.-L. Baer, “Effective hardware-based data prefetching
for high-performance processors,” IEEE Transactions on Computers,
vol.44, no.5, pp.609–623, 1995.

[4] V. Viswanathan, “Disclosure of H/W prefetcher control on some In-
tel processors,” 2014. [Online]. Available: https://software.intel.com/
en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-
processors

[5] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T.
Prescher, and D. Gruss, “ZombieLoad: Cross-Privilege-Boundary
Data Sampling,” Proc. 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pp.753–768, 2019.

[6] S.V. Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K.
Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue In-Flight Data
Load,” Proc. 2019 IEEE Symposium on Security and Privacy, pp.88–
105, 2019.

[7] A. Kasbekar, “AES-NI Encryption,” 2021. [Online]. Available:
https://github.com/kasbekarameya/AES-NI-Encryption/blob/master/
AES-NI Encryption.c

[8] Acapola, “AES128 how-to using GCC and Intel AES-NI,” 2021. [On-
line]. Available: https://gist.github.com/acapola/
d5b940da024080dfaf5f

http://dx.doi.org/10.1145/3243734.3243736
http://dx.doi.org/10.1109/12.381947
http://dx.doi.org/10.1145/3319535.3354252
http://dx.doi.org/10.1109/sp.2019.00087

