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LETTER

Correlation of Centralities: A Study through Distinct Graph
Robustness

Xin-Ling GUO†, Nonmember, Zhe-Ming LU†a), Member, and Yi-Jia ZHANG††b), Nonmember

SUMMARY Robustness of complex networks is an essential subject
for improving their performance when vertices or links are removed due
to potential threats. In recent years, significant advancements have been
achieved in this field by many researchers. In this paper we show an
overview from a novel statistic perspective. We present a brief review about
complex networks at first including 2 primary network models, 12 popu-
lar attack strategies and the most convincing network robustness metrics.
Then, we focus on the correlations of 12 attack strategies with each other,
and the difference of the correlations from one network model to the other.
We are also curious about the robustness of networks when vertices are re-
moved according to different attack strategies and the difference of robust-
ness from one network model to the other. Our aim is to observe the corre-
lation mechanism of centralities for distinct network models, and compare
the network robustness when different centralities are applied as attacking
directors to distinct network models. What inspires us is that maybe we can
find a paradigm that combines several high-destructive attack strategies to
find the optimal strategy based on the deep learning framework.
key words: scale-free network, random network, robustness, correlation
analysis, attack strategies

1. Introduction

The robustness of a network upon perturbation has signif-
icantly gained a lot of interests in recent years. Albert
et al. [1] first considered two types of perturbations, one
is to remove vertices randomly which is called random at-
tack, and the other is to delete the most connected node
which is called intentional attack. They demonstrated that
scale-free networks present a surprisingly high tolerance
against random errors while a low tolerance against in-
tentional attacks, which inspired abundant studies on the
robustness of networks [2]–[4]. Magoni [4] measured a
few general intentional attack strategies for complex net-
works. Newman [5] proposed the flow betweenness central-
ity. Kermarreca et al. [6] proposed the second-order central-
ity. Most network security problems can be regarded as the
invulnerability of the network, which occurs in many real-
world networks. It is significant for us to study the robust-
ness of complex networks. To evaluate the network robust-
ness, the centrality metrics is the vital research topic.

However, few researchers consider the correlations be-
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tween attack strategies and the difference of the correlations
from one network model to another. The contributions of
this paper are to provide answers to the following questions.
First, if the well-known centralities are correlated with each
other? If they are, how well they are correlated for differ-
ent network models? Second, if these correlations are sig-
nificant? In this paper, we investigate the correlations of
each pair of centralities for different network models from
a statistic perspective. Third, if highly correlated centrali-
ties give rise to the same level of destruction on the network
connection? We also concern about the difference of ro-
bustness performance on networks when highly correlated
attack strategies are applied to remove vertices.

The remainder of this paper is organized as follows. In
Sect. 2, we briefly present two popular network models, and
12 commonly adopted centrality measures. In Sect. 3, we
introduce the principal component analysis (PCA) to quan-
tify the correlation between these 12 centralities. In Sect. 4,
we present the robustness measures adopted in this paper.
In Sect. 5, we present the results of the correlations among
centralities and the simulation results of network robustness.
Finally, we conclude and discuss the results in Sect. 6.

2. Network Models and Centrality Metrics

Before introducing the network models, we should know
that an undirected network is given by a pair G = {V, E},
where V = {1, 2, . . . ,N} is the set of vertices and E ⊆ V × V
is the set of edges. The adjacency matrix A, where the el-
ement Ai j equals 1, if vertices i and j are connected, 0 if
they are not. The set of neighbors of vertex i is defined as
Vi = { j ∈ V: (i, j) ∈ E}, the degree of vertex i is denoted by
ki = |Vi|, and the average network degree is denoted by 〈k〉.

We consider two network models in this paper. One
is the Erdös-Rényi (ER) random graph [7], the other is the
Barabasi-Albert (BA) scale-free network [8]. And 12 cen-
tralities are present in this paper. In the ER random graph
model [7], vertices are randomly connected with each other
by the same probability p. The ER random graph does not
present any community structure and its degree distribution
follows a Poisson distribution. For the BA scale-free net-
work [8]. It starts with k fully connected vertices and keeps
adding new vertices with k connections. The probability of
a vertex pi receiving a new connection takes the degree of
the vertex divided by the sum of degree over all vertices into
consideration. The summary of characteristics of above two
networks is shown in Table 1.
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Table 1 The summary of network models.

Table 2 The summary of centrality metrics.

According to the purpose and conceptualization, we
can classify the centrality measures into four classes [9]: de-
gree centralities, path centralities, proximity centralities and
spectral centralities. Degree centralities evaluate the impor-
tance of vertices by the number of neighbors. Different from
the degree centralities, path centralities focus on the number
of times a vertex acts as a bridge along all paths between
any pair of vertices. Proximity centralities are based on dis-
tance metrics. Spectral centralities consider the involvement
degree of vertices in the substructures of networks. Here we
review 12 typical centralities, and the detailed formulae are
described in Table 2.

3. Correlation Analysis of Centralities

One of the concerns of this paper is the correlation between
centralities in different network models. In this paper, we in-
troduce PCA [18] to quantify the correlation between these
12 centralities. PCA is a technique for reducing the dimen-
sionality of datasets, increasing interpretability but minimiz-

ing the information loss.
In this paper, the variables are the 12 centrality in-

dices mentioned in Sect. 2. PCA is applied for dimension-
ality reduction by projecting the centrality values onto only
the first and second principal components to obtain lower-
dimensional data while preserving as much of the data’s
variation as possible. Each centrality could be denoted as
the vector of the first and second components. Then the co-
sine value of the angle between each vector pair could be a
statistic estimate of the correlation between the correspond-
ing centrality pair.

4. Robustness Measure

In this paper, the relative size of the largest connected com-
ponent (LCC) [11] is considered to measure the response of
the networks when vertices are removed:

LCC = S ′/S 0 (1)

where S ′ is the number of vertices in the largest connected
component after attacking. S 0 is the number of vertices
in the largest connected component of the initial network.
Schneider et al. [19] proposed the robustness measure R in-
dex:

R =
1
N

N∑

Q=1

s(Q) (2)

where s(Q) is the fraction of vertices in the largest connected
cluster after removing Q vertices. Iyer et al. [20] proposed
V index to measure the vulnerability:

V =
1
2
− R (3)

5. Simulation Results

The purpose of our experiments is to investigate two statisti-
cal issues related to network robustness analysis. One is the
correlations between centralities and the difference of the
correlations from one network model to the other. The other
is the robustness of networks when different attack strategies
are applied to remove vertices and the difference of robust-
ness from one network model to the other.

In this paper, all the experiments are based upon
Python3.7 environment. 1000 networks are generated for
each network model (ER and BA) and there are 1000 nodes
in one network. Then we get the correlations of 12 centrali-
ties for the two models. Finally, we verify the robustness of
the two models.

5.1 Correlation of Centralities for Two Network Models

Based on PCA, the average correlation coefficients of 12
attack strategies for distinct network models are given in
Fig. 1 (b) and Fig. 2 (b) (Fig. 1 (a) and Fig. 2 (a) will be ex-
plained in Sect. 5.1). It can be understood that light col-
ors represent high correlations. For ER and BA models,
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Fig. 1 (a) V-index for ER networks. (b) Correlation of centralities for
ER networks.

Fig. 2 (a) V-index for BA networks. (b) Correlation of centralities for
BA networks.

a quite high positive correlation is observed between any
pair of DC, BC, CFBC, LoadC, PRC and SubGC. SOC
is highly correlated with EVC and CFCC on ER networks
while highly correlated with DC, PRC, CFBC and EVC on
BA networks.

The correlation coefficient is exactly 1 for any pair of
CC, HarmC and RC. The three indices are all highly corre-
lated with EVC and CFCC on ER models, and only highly
correlated with CFCC on BA networks. It can be observed
that highly correlated centralities may not belong to the
same centrality class according to Table 2.

Fig. 3 Robustness of networks on the basis of 12 centralities.

Fig. 4 Vulnerability of three network models with errorbar.

To test the significance of these correlations, signifi-
cance test is considered in this paper, and p < 0.05 is used
for the significance criterion. One sample t-test [21] is con-
sidered to examine the difference between the mean of cor-
relation values and 0, and the result shows that all the corre-
lations are significantly different from 0.

5.2 Robustness of Two Network Models

For the robustness of two network models, Figure 3 shows
how the relative size of the largest connected component
and its confidence interval change with the number of re-
moval vertices on 12 attack indices. Shaded areas denote
the 95% confidence intervals. And the vulnerability of these
networks with errorbar is shown in Fig. 4. From Fig. 3 and
Fig. 4, it is apparent that BA networks are more vulnerable
than ER networks.

For the sake of convenience in observing the perfor-
mance of highly correlated attack strategies, we show the
average V-index in Fig. 1 (a) and Fig. 2 (a) where the back-
ground color of cells ranges from white to dark grey, indi-
cating that the V-index ranges from large to small. From
Figs. 1 (b) and 2 (b) it can be observed that the centrality
metrics from top to bottom can be divided into two groups
according to their correlations, meanwhile, from Figs. 1 (a)
and 2 (a), the V-index values of centrality metrics decline
from top to bottom (where there are some exceptions). Now,
we can say that the highly correlated metrics might cause
similar damage to the network connectivity with a high
probability.

For the destructiveness, it can be observed that the



LETTER
1057

removal strategies PRC, CFBC and DC perform better
than others. PRC performs best on ER networks, while
CFBC performs best on BA networks. One interesting phe-
nomenon is that these three attack strategies are highly cor-
related with each other on two network models. While for
vulnerable BA scale-free networks, BC, SOC, CFCC and
LoadC all perform well, and other intentional attack strate-
gies do not perform badly.

6. Conclusion and Discussion

On the basis of above research, we can answer the three
questions proposed in the introduction section.

First, for the 12 centrality metrics mentioned in this pa-
per, we find that there are many highly positively correlated
metric couples based on the PCA method, and most of the
correlations are consistent across ER and BA models where
there are some slightly differences between them.

Second, to test the significance of these correlations,
one sample t-test is considered and p < 0.05 is used for the
significance criterion. And the result shows that the means
of all correlations are significantly different from 0.

Third, we find that highly correlated metrics might
cause similar damage to the network connectivity with a
high probability. Especially the three highly correlated met-
rics: PRC, CFBC and DC, which are the three most destruc-
tive ones. PRC performs best on ER networks, while CFBC
performs best on BA networks, which indicates that the op-
timal attack strategy is different for networks with different
features, but the optimal attack strategies might be highly
correlated with each other.

Deep learning neural networks [22] are an example that
natively supports multi-label classification problems. So in
the future work, for networks that are labeled with network
model classes and other structural characteristics, maybe we
can find a paradigm that combines several highly correlated
metrics at the same time, such as PRC, CFBC and DC, to
generate the optimal attack strategy, by using a regression
model that is generated by the neural network.
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