
2620
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

PAPER

Practical Evaluation of Online Heterogeneous Machine Learning

Kazuki SESHIMO†, Akira OTA†, Daichi NISHIO†, Nonmembers, and Satoshi YAMANE†a), Member

SUMMARY In recent years, the use of big data has attracted more at-
tention, and many techniques for data analysis have been proposed. Big
data analysis is difficult, however, because such data varies greatly in its
regularity. Heterogeneous mixture machine learning is one algorithm for
analyzing such data efficiently. In this study, we propose online hetero-
geneous learning based on an online EM algorithm. Experiments show
that this algorithm has higher learning accuracy than that of a conventional
method and is practical. The online learning approach will make this algo-
rithm useful in the field of data analysis.
key words: machine-learning, big data, mixture model, EM algorithm

1. Introduction

1.1 Research Background

In recent years, the diversity of networkable devices has in-
creased, resulting in a huge variety of data. Moreover, the
amount of data handled by information systems is increasing
at an accelerated rate. On the other hand, the performance of
software and hardware has also improved, enabling a huge
variety of data to be acquired, stored, and analyzed. Analy-
sis techniques for such data are attracting attention, leading
us to benefit from predictive analytics in our lives [1].

Thus, in the real world, the basis of data collection
bases has advanced. Hence, there is increasing demand for
analytical methods that can run at high speed and with high
accuracy.

1.2 Research Purpose

“Big data” means data that has a large size and is hetero-
geneous, with multiple different patterns and varying reg-
ularity. This makes heuristic analysis difficult. Heteroge-
neous mixture learning is one technology to solve this prob-
lem. This technology automatically decides an optimal data
combination algorithmically and extracts rules accordingly.
The purpose of our study is to improve this technology for
application in online learning to further accelerate big data
analysis.

Manuscript received January 30, 2020.
Manuscript revised June 22, 2020.
Manuscript publicized August 31, 2020.
†The authors are with Kanazawa University, Kanazawa-shi,

920–1192 Japan.
a) E-mail: syamane@is.t.kanazawa-u.ac.jp

DOI: 10.1587/transinf.2020EDP7020

2. Background Technologies

In this section, we describe heterogeneous mixture learn-
ing. Especially, we describe Factorized Information Crite-
rion and Factorized Asymptotic Bayesian inference. Also
we describe the basic of machine learning in Appendix.

2.1 Heterogeneous Mixture Learning

NEC developed heterogeneous mixture learning, a technol-
ogy for accurately analyzing heterogeneous data.

Conventional big data analysis techniques cannot han-
dle heterogeneous data well, thus reducing the prediction
accuracy. To avoid that problem, data scientists proposed
dividing data into units and extracting rules for each unit.
As the amount of data increases, however, the number of
data division patterns also increases.

Hence, to analyze heterogeneous data with high accu-
racy, it is necessary to solve three problems simultaneously.
The first is the problem of dividing the data by determining
the number of prediction formulas. The second is the prob-
lem of determining the explanatory variables used in each
prediction formula and their combinations. The third is the
problem of deciding the rules for dividing data. Because of
the huge number of model candidates for mixing data, it is
difficult (practically impossible) to solve these problems at
the same time with conventional machine learning methods.
The central prediction algorithm of heterogeneous mixture
learning is a piecewise sparse linear prediction model [5].
This model learns the decision rules of a decision tree in the
feature space and the contributions of the features in each
region [6]–[9].

To provide background for the proposed algorithm, this
section describes the factorized information criterion (FIC)
and factorized asymptotic Bayesian (FAB) inference, which
are important techniques for evaluating and learning models
in heterogeneous mixture learning.

2.2 Factorized Information Criterion (FIC)

An information criterion is a criterion for judging whether a
model obtained from data has good accuracy. The FIC is an
information criterion designed for heterogeneous prediction
models. We calculate the FIC by using the log-likelihood
of the conditional probability p(xN |M) of the observed data
zN in the model M and the lower bound of the variational

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

SESHIMO et al.: PRACTICAL EVALUATION OF ONLINE HETEROGENEOUS MACHINE LEARNING
2621

probability q of zN .
First, the lower bound of the variational probability of

a latent variable is expressed as

log p
(
xN |M

)
≥

∑
zN

q
(
zN

)
log

⎛⎜⎜⎜⎜⎜⎜⎝ p
(
xN , zN |M

)
q
(
zN

)
⎞⎟⎟⎟⎟⎟⎟⎠

p
(
xN , zN |M

)
=

∫
p
(
zN |α

) C∏
c=1

pc

(
xN |zN

c , ϕc

)
p(θ|M)dθ

where C is the number of mixtures, and α is a mixing coeffi-
cient. We then apply the Laplace approximation to p(zN |α)
and pc(xN |zN, ϕc):

log p
(
xN , zN |θ

)
≈ log p

(
xN , zN |θ

)
− N

2

[
FZ , (α − α)

]
−

C∑
c=1

∑N
n=1 znc

2

[
Fc,

(
ϕc − ϕc

)]
,

FZ = − 1
N

∂2 log p
(
zN |α

)
∂α∂αT

∣∣∣∣∣∣∣∣
α=α

Fc = − 1∑N
n=1 znc

∂2 log pc

(
xN |zN

c , ϕc

)
∂ϕc∂ϕT

c

∣∣∣∣∣∣∣∣
ϕc=ϕc

.

Next, we approximate the observed and conditional
probabilities of the latent variable p(xN, zN |M) for the
model. Here, Dα means the dimension of D(α):

FIC
(
xN ,M

)
= max

q

{
J
(
q, θ, xN

)}
J
(
q, θ̄, xN

)
=

∑
zN

q
(
zN

) ⎡⎢⎢⎢⎢⎢⎣ log p
(
xN , zN |θ̄

)
− Dα

2
log N

−
c∑

c=1

Dc

2

⎧⎪⎪⎨⎪⎪⎩log

⎛⎜⎜⎜⎜⎜⎝ N∑
n=1

znc

⎞⎟⎟⎟⎟⎟⎠ − log q
(
zN

)⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ .

When the FIC value is higher, a heterogeneous predic-
tion model is generally more accurate [6].

2.3 Factorized Asymptotic Bayesian (FAB) Inference

FAB is an algorithm for maximizing the FIC. Because we
cannot analytically determine the parameters, we cannot
evaluate the FIC directly. Instead, we evaluate the FIC
by asymptotically maximizing its lower bound. First, we
define the FIC’s lower bound, where log

(∑N
n=1 znc

)
is q̂:

log
(∑N

n=1 znc

)
is q̂.

FIC
(
xN |M

)
≥ G

(
q, q̃, θ, xN

)
≡

∑
zN

q
(
zN

) ⎡⎢⎢⎢⎢⎢⎣ log p
(
xN , zN |θ̄

)
− Dα

2
log N

−
C∑

c=1

DC

2

⎧⎪⎪⎨⎪⎪⎩L

⎛⎜⎜⎜⎜⎜⎝ N∑
n=1

znc,

N∑
n=1

q̃ (znc)

⎞⎟⎟⎟⎟⎟⎠ − log q
(
zN

)⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ .

We express the parameters for maximization as

M∗, q∗, θ∗, q̃∗ = arg max
M,q,θ,q̃

G
(
q, q̃, θ, xN

)
.

Because there is a limited number of model candidates,
it is possible to select the best model after obtaining the FIC
value for each candidate. The combination of the number of
models and their prediction formulas reaches enormous size,
however, increasing the amount of calculation. To avoid
this, we use an iterative optimization algorithm.

We set the mixed number of data as C and con-
sider combinatorial optimization problems that maximize
the FIC’s lower bound. We denote the model for class a
in the mixed model as S a and express the problem as the
following:

S∗, q∗, θ∗, q̃∗ = argmax
S,q,θ,q̃

G
(
q, q̃, θ, xN

)
.

Here, we repeat the two steps t times to solve this problem.
Next, we optimize the variational probability q of the

latent variable zN as the following:

q(t) = argmax
q

{
G

(
q, q̃ = q(t−1), θ(t−1), xN

)}
q(t) (znc) ∝ α(t−1)

c p
(
xn|ϕ(t−1)

c

)
exp

(−Dc

2α(t−1)
c N

)

q(t) (znc) =

{
0 :

∑N
n=1 q(t) (znc) < δ

q(t) (znc) /Q(t)
c :

∑N
n=1 q(t) (znc) ≥ δ .

M Step: We optimize the component S of the mixed model
and its parameter θ as follows. Then, we can optimize S c

and ϕc individually to avoid a combinatorial explosion:

S(t), θ(t) = argmax
s,θ

G
(
q(t), q̃ = q(t), θ, xN

)

α(t)
c =

∑N
n=1 q(t) (znc)

N

S (t)
c , ϕ

(t)
c = arg max

S cϕc

Hc

(
q(t), q(t), ϕc, x

N
)

Hc

(
q(t), q(t), ϕc, xN

)
=

N∑
n=1

q(t) (znc) log p (xn|ϕc)

−Dc

2
L

⎛⎜⎜⎜⎜⎜⎝ N∑
n=1

q(t) (znc) ,
N∑

n=1

q(t) (znc)

⎞⎟⎟⎟⎟⎟⎠ .
Here, Hc

(
q(t), q(t), ϕc, xN

)
is related to the c-th model,

where the number of data divisions is C. Because the num-
ber of candidates for division is finite, we optimize ϕc for
that of S c and seek the best one by comparing them.

In these two steps, the following inequality holds.

FIC(t)
LB

(
xN ,M

)
≥ FIC(t−1)

LB

(
xN ,M

)
≡ G

(
q(t), q(t), θ(t), xN

)
.

2622
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

We use this to define the following end condition ε for
iteration of the two steps:

FIC(t)
LB

(
xN ,M

)
− FIC(t−1)

LB

(
xN ,M

)
≤ ε.

Finally, we list the batch heterogeneous mixture learn-
ing algorithm for the GMM below.

Algorithm 1 Algorithm FAB for Mixture Models
Require: xN ,Cmax,S, ε, δ
Ensure: C∗, S ∗, θ∗, q∗

(
zN

)
, FIC∗LB

FIC∗LB = −∞
t = 0, FIC(0)

LB = −∞, δ = 0,Tc = 0

q(0)
(
zN

)
Random initialization

while FIC(t)
LB

(
xN ,M

)
− FIC(t−1)

LB

(
xN ,M

)
≤ ε do

for c = 1, · · · ,Cmax do
//V Step:q(t)calculate

q(t) (znc) ∝ α(t−1)
c p

(
xn |ϕ(t−1)

c

)
exp

(
−Dc

2α(t−1)
c N

)
q(t) (znc) =

{
0 :

∑N
n=1 q(t) (znc) < δ

q(t) (znc) /Q(t)
c :

∑N
n=1 q(t) (znc) ≥ δ

FIC(t)
LB

(
xN ,M

)
=

∑
zN q

(
zN

) [
log p

(
xN , zN |θ

)
− Dα

2 log N −∑c
c=1

Dc
2

{
log

(∑N
n=1 znc

)
− log q

(
zN

)}]
//M Step : S(t), θ(t)calculate

α(t)
C =

∑N
n=1 q(t)(znc)

N

S (t)
c , ϕ

(t)
c = arg maxS c ,ϕc

(
q(t), q(t), ϕc, xN

)
t = t + 1

end for
Tc = t, FIC(Tc)

LB ,S
(Tc), θ(Tc), q(Tc)

(
zN

)
end while
//M∗ = (C∗, S ∗) , θ∗, q∗

(
zN

)
choose

M∗, q∗, θ∗, q̃∗ = arg maxM,q,θ,q̃ G
(
q, q̃, θ, xN

)

3. Related Works

This section introduces important works on the technologies
composing heterogeneous mixture learning. First, in 2012,
Fujimaki proposed FAB, a new variational Bayesian method
for mixture models [6]. Previously, data scientists proposed
dividing data into units and extracting rules for each unit.
The purpose of our work is to automate this task and quickly
derive an accurate prediction model. We use the FIC, a new
criterion with marginal likelihood for mixed normal distri-
butions, and FAB, an algorithm to maximize this. Because
FAB has a reduction mechanism, it is highly regarded for its
model selectivity and computational efficiency.

Also in 2012, an extension of FAB for hidden Markov
models was proposed [7]. The following year, FAB was
further extended for latent feature models [8]. In 2017,
piecewise sparse linear discrimination using FAB was de-
vised [5], [9]. This changed the prediction model from lin-
ear regression to logistic regression. Because logistic re-
gression is computationally expensive, we obtain an approx-
imate closed-form solution of logistic regression by using
the FIC quadratic lower bound for efficient calculation [11].

In 2016, a distributed approach for heterogeneous mix-
ture learning was devised using Apache Spark [12], [13].
This approach distributes data to multiple computers at ran-

dom and generates a prediction model locally on each com-
puter without redistributing or rereading the data. In our
work, we collect the generated prediction models on only
one server and integrate them to enable generation of a con-
sistent prediction model while learning independently from
each computer. This is faster than the previous approach
for heterogeneous mixture learning. Specifically, this in-
creases the number of computers to generate a predictive
model without limiting the amount of data, enabling big data
analysis. Also in 2016, mini-batch heterogeneous learning,
which divides data into small units for learning, was an-
nounced [14]. Batch FAB has a reduction mechanism [15]
that automatically shrinks models with poor accuracy. In
contrast, mini-batch FAB has not only this mechanism but
also a mechanism that reconsiders omitted models and in-
tegrates them each time the mini-batch model is updated.
Hence, mini-batch heterogeneous mixture learning can cal-
culate models for streaming data. Heterogeneous mixture
learning has been put to practical use in various predictive
analysis solutions, such as building-power forecasting for
efficient resource utilization, parts-demand forecasting for
inventory optimization in retail stores, and calculating opti-
mal order quantities in an automated system.

Future works related to these studies will include ex-
panding FAB for more diverse models, improving it for
faster learning, and improving online learning.

In this paper, we propose online heterogeneous mixture
learning for a GMM. We use an online EM algorithm and
change the update timing of FAB and the FIC for each unit
of learning data. Online heterogeneous mixture learning has
better convergence than conventional batch heterogeneous
mixture learning does.

4. Proposal of Online Heterogeneous Mixture Learn-
ing

As described above, FAB uses an EM algorithm to maxi-
mize the FIC. Therefore, we use an online EM algorithm
for a GMM to implement heterogeneous mixture learning
online.

4.1 Incremental EM Algorithm

We change the parameter update timing in the EM algorithm
for each addition of new data. Specifically, we change the
calculation of the E and M steps as follows, giving the in-
cremental EM algorithm [16]–[18].

E† step: We fix the parameters θ and calculate the re-
sponsibility γ and the difference sk between the responsibil-
ities of the previous and current data. First, we update the
responsibility for a single unit xn of the observed data xN:

γ (zmk)(t+1) = γ (zmk)(t) , (n � n)

γ (znk)(t+1) =
π(t)

k N
(
xn|μ(t)

k ,Σ
(t)
k

)
∑K

j=1 π
(t)
j N

(
xn|μ(t)

j ,Σ
(t)
j

) , (k = 1, . . . ,K).

† “†” means incremental.

SESHIMO et al.: PRACTICAL EVALUATION OF ONLINE HETEROGENEOUS MACHINE LEARNING
2623

Then, we calculate the difference snk between the re-
sponsibilities of the previous data xn and current data xn−1:

s(t+1)
nk = γ (znk)(t+1) − γ (znk)(t)

N(t+1)
k =

N∑
n=1

γ (znk)(t) + s(t+1)
nk = N(t)

k + s(t)
nk.

M† step: Here, we fix the responsibility γ(znk) and the
difference snk between the responsibilities of the previous
and current data, and then we update the parameters:

π(t+1)
k = π(t)

k +
s(t+1)

nk

N

μ(t+1)
k = μ(t)

k +
s(t+1)

nk

N(t+1)
k

(
xn − μ(t)

k

)
Σ

(t+1)
k

=

⎛⎜⎜⎜⎜⎜⎝1− s(t+1)
nk

N(t+1)
k

⎞⎟⎟⎟⎟⎟⎠
⎧⎪⎪⎨⎪⎪⎩Σ(t)

k +
s(t+1)

nk

N(t+1)
k

(
xn−μ(t)

k

) (
xn−μ(t)

k

)T
⎫⎪⎪⎬⎪⎪⎭ .

4.2 Online Learning of Heterogeneous Mixture Learning

First, we improve the FIC, which is the model evaluation
criterion, and then we improve the FAB to accommodate it.

4.2.1 Improvement for Online FIC

To obtain the information criterion for online learning, we
change the FIC’s update timing for each unit of learning data
added. We add the data one by one (i.e., the n-th data unit xn)
and update the FIC sequentially by adding the increments of
the FIC with additional data. Here, we use the same notation
as in Sect. 2.

We first express the lower bound of the variational
probability q of the latent variable zN−1 before updating with
the added learning data as the following:

log p
(
xN−1|M

)
≥

∑
zN−1

q
(
zN−1

)
log

⎛⎜⎜⎜⎜⎜⎜⎝ p
(
xN−1, zN−1|M

)
q
(
zN−1

)
⎞⎟⎟⎟⎟⎟⎟⎠

p
(
xN−1, zN−1|M

)
=

∫
p
(
zN−1|α

) c∏
c=1

pc

(
xN−1|zN−1

c , ϕc

)
p(θ|M)dθ.

We then express the FIC as

J
(
q, θ, xN

)
=

∑
zN

q
(
zN

) ⎡⎢⎢⎢⎢⎢⎣ log p
(
xN , zN |θ̄

)
− Dα

2
log N

−
C∑

c=1

Dc

2

⎧⎪⎪⎨⎪⎪⎩log

⎛⎜⎜⎜⎜⎜⎝ N∑
N=1

znc

⎞⎟⎟⎟⎟⎟⎠ − log q
(
zN

)⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ .

Next, we express the increment of the lower bound of
the variational probability q of the latent variable znc for the

added learning data xn as the following:

q (znc) log

(
p (xn, znc|M)

q (znc)

)
p (xn, znc|M)

=

∫
p (znc|α)

C∏
c=1

pc (xn|znc, ϕc) p(θ|M)dθ.

Moreover, we express the increment of the FIC with
additional data, denoted by FIC+, as

FIC+ (xn,M) = max
q

{
J+

(
q, θ, xn

)}
J+

(
q, θ̄, xn

)
= q (znc)

[
log p

(
xn, znc|θ̄

)
− 1

2
log N

−
C∑

c=1

Dc

2
{
log znc − log q (znc)

}]
.

Finally, from the above, we express the FIC for online
heterogeneous mixture learning, FIC∗, as the following:

FIC∗ (xn,M) = FIC
(
xN−1,M

)
+ FIC+ (xn,M)

= max
q

{
J∗

(
q, θ, xn

)}
J∗

(
q, θ, xn

)
= J∗

(
q, θ, xn−1

)
+q (znc)

⎡⎢⎢⎢⎢⎢⎣ log p
(
xn, znc|θ

)

−1
2

log N −
C∑

c=1

Dc

2
{
log znc − log q (znc)

}⎤⎥⎥⎥⎥⎥⎦
4.2.2 Improvement for Online FAB

We cannot analytically obtain parameters, so we cannot di-
rectly evaluate FIC∗†. Instead, we use the variation of the
variational probability of the latent variables to update the
added data sequentially.

First, we define the FIC’s lower bound as the follow-
ing:

FIC∗ (xn,M) ≥ G∗ (q, q̃, θ, xn)∑
zN

q
(
zN−1

) ⎡⎢⎢⎢⎢⎢⎢⎣ log p
(
xN−1, zN−1|θ̄

)
− Dα

2
log(N − 1)

−
C∑

c=1

DC

2
L

⎛⎜⎜⎜⎜⎜⎜⎝
N−1∑
n=1

znc,

N−1∑
n=1

q̃ (znc)

⎞⎟⎟⎟⎟⎟⎟⎠ − log q
(
zN−1

)⎤⎥⎥⎥⎥⎥⎥⎦
+q (znc)

[
log p

(
xn, znc|θ̄

)
− 1

2
log N

−
c∑

c=1

Dc

2
(znc, q̃ (znc)) − log q (znc)

]

† “∗” means online.

2624
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Similarly to batch FAB, we fix the number of mixed
data units, C, from the data partitioning candidates and con-
sider a combinatorial optimization problem that maximizes
the FIC’s lower bound in the following way:

S
′
, q
′
, θ
′
, q̃
′
= argmax

s,q,θ,q̃
G∗ (q, q̃, θ, xn)

We then repeat the following two steps t times to obtain
S
′
, q
′
, θ
′
, q̃
′

sequentially.
V∗S tep: We optimize the distribution q(znc) of the la-

tent variable zN as follows. For the distribution, we also
calculate the changes snc for additional data xn:

q(t) = argmaxq

{
G∗

(
q, q̃ = q(t−1), θ(t−1), xn

)}
q(t) (znc) ∝ α(t−1)

c p
(
xn|ϕ(t−1)

c

)
exp

(−Dc

2α(t−1)
c N

)
q(t) (znc) ∝

α(t−1)
c p

(
xn|ϕ(t−1)

c

)
exp

(−Dc

2α(t−1)
c N

)

q(t) (znc) =

{
0 :

∑N
n=1 q(t) (znc) < δ

q(t) (znc) /Q(t)
C :

∑N
n=1 q(t) (znc) ≥ δ

s(t)
nc = q(t) (znc) − q(t−1) (znc) , (c = 1, . . . ,C)

q(t) (znc) = q(t−1) (znc) + s(t)
nc

M∗S tep: We optimize the components of the mixed mode
S and parameter θ as follows. Here, H∗c

(
q(t), q(t), ϕc, xn

)
is

G∗ (q, q̃, θ, xn) for the c-th model when the number of data
divisions is C. Because the number of candidates for divi-
sion is finite, we optimize ϕc for each S c and compare to
find the optimal S c:

S(t), θ(t) = grgmax
S,θ

G
(
q(t), q̃ = q(t), θ, xn

)

α(t)
c =

∑N
n=1 q(t−1) (znc)

N
+

∑N
n=1 s(t)

nc

N
= α(t−1)

c +

∑N
n=1 s(t)

nc

N

S (t)
c , ϕ

(t)
c = arg max

S c,ϕc

H∗
(
q(t), q(t), ϕc, xn

)

H∗
(
q(t), q(t), ϕc, xn

)
=

N∑
n=1

q(t) (znc) log p (xn|ϕc)

−Dc

2
L

⎛⎜⎜⎜⎜⎜⎜⎝
N−1∑
n=1

q(t) (znc) ,
N−1∑
n=1

q(t) (znc)

⎞⎟⎟⎟⎟⎟⎟⎠
−Dc

2
L
(
q(t) (znc) , q(t) (znc)

)
In these two steps, the following inequality holds.

FIC(t)
∗ (xn,M) ≥ FIC(t−1)

∗ (xn,M) ≡ G
(
q(t), q(t), θ(t), xn

)
We use this to define the following condition ε for termina-
tion after learning all the data:

FIC(t)
∗

(
xN,M

)
− FIC(t−1)

∗
(
xN,M

)
≤ ε

If the termination condition is not met, we learn all the data
again.

Here, we propose an online heterogeneous mixture

Algorithm 2 Online FAB algorithm for mixture models
Require: xN ,Cmax,S, ε, δ
Ensure: C

′
, S
′
, θ
′
, q
′ (

zN
)
, FIC∗LB

FIC∗LB = −∞
t = 0, FIC(0)

LB = −∞, δ = 0,Tc = 0 //Tc:Maximum number of
repetitions for C mixtures
q(0)

(
zN

)
Random initialization

while FIC(t)
LB

(
xN ,M

)
− FIC(t−1)

LB

(
xN ,M

)
≤ ε do

Randomize order of data x
for x = 1, · · · xn do

for c = 1, · · · ,Cmax do
//V Step:q(t)calculation

q(t) (znc) ∝ α(t−1)
c p

(
xn |ϕ(t−1)

c

)
exp

(
−Dc

2α(t−1)
c N

)
q(t) (znc) =

{
0 :

∑N
n=1 q(t) (znc) < δ

q(t) (znc) /Q(t)
c :

∑N
n=1 q(t) (znc) ≥ δ

s(t)
nc = q (znc)(t) − q (znc)(t−1) , (c = 1, . . . ,C)
//Preparation confirmation for end condition
FIC(t)

LB

(
xN ,M

)
+ = FIC(t)

LB (xn,M) − FIC(t−1)
LB (xn,M)

//M Step : S(t), θ(t)calculate

α(t)
c =

∑N
n=1 q(t−1)(znc)

N +

∑N
n=1 s(t)

nc
N = α(t−1)

c +

∑N
n=1 s(t)

nc
N

S (t)
c , ϕ

(t)
c = arg maxS c ,ϕc

(
q(t), q(t), ϕc, xN

)
t = t + 1

end for
end for
Tc = t, FIC(Tc)

LB ,S
(Tc), θ(Tc), q(Tc)

(
zN

)
end while
//M

′
=

(
C
′
, S
′)
, θ
′
, q
′ (

zN
)
choose

M
′
, q
′
, θ
′
, q̃
′
= arg maxM,q,θ,q̃ G

(
q, q̃, θ, xN

)

learning algorithm for a GMM as listed below.

5. Experiments and Evaluation

In this section, we compare the learning results with the con-
ventional batch heterogeneous mixture learning and the on-
line heterogeneous mixture learning proposed in this paper.

5.1 Experimental Environment

We implemented the learning algorithm source code in
C++. We used the arithmetic library Eigen† for some of
the numerical calculations. We evaluated the learning algo-
rithms in the environment listed in Table 1.

5.2 Experimental Data

The data used for learning in this experiment was generated
with a Gaussian random number from the GMM. We preset

Table 1 Experimental environment

OS macOS Mojave version10.14.12
CPU Intel(R) Core i5

Operating frequency 2.70GHz
RAM 8GB

Eigen version 3.3.4
C++ compiler Apple LLVM version 9.0.0 (clang-900.0.38)

†http://eigen.tuxfamily.org/index.php

SESHIMO et al.: PRACTICAL EVALUATION OF ONLINE HETEROGENEOUS MACHINE LEARNING
2625

Table 2 Experimental data

Number of data units 10,000
Number of mixtures 4
Mixing coefficient 0.1, 0.2, 0.3, 0.4

Mean, covariance matrix random
Number of dimensions 10

the parameters necessary for the GMM, such as the mixing
coefficient, mean, covariance matrix, and number of dimen-
sions. Because the covariance matrix is a semipositive def-
inite matrix, we changed the random condition so that all
eigenvalues were 0 or greater. Table 2 lists the details of the
data set.

5.3 Kullback-Leibler (KL) Divergence

The KL divergence is a measure of the similarity between
two probability distributions. Given continuous probabil-
ity distributions P and Q, p and q represent their respective
probability density functions. We define the KL divergence
as the following:

DKL(P‖Q) =
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx.

Because a GMM is a superposition of multiple normal
distributions, we apply a variational approximation [10] to
two multivariate mixed normal distributions to approximate
the KL divergence:

DKL(P‖Q)

=
∑

a

πa log

(∑
a′ πa′exp(−KL(N(;μa,Σa),N(;μa′ ,Σa′)))∑

b πbexp(−KL(N(;μa,Σa),N(;μb,Σb)))

)
.

This allows us to calculate the KL divergence in a closed
form even for a GMM.

5.4 Experimental Method

Using the above experimental data, we compared and ex-
amined the results of heterogeneous mixed learning of the
batch and online types. We used the KL divergence to com-
pare the true parameters of the experimental data with the
predicted parameters obtained by learning.

In online learning the speed of learning convergence is
also important, so we measured the change in the FIC for
each iteration. We also evaluated the number of iterations
until convergence.

We conducted experiments 10 times on each FIC value,
iteration count, KL divergence, and execution time after
learning for each algorithm, and we regarded the averages
as the results.

5.5 Experimental Results

We can roughly divide the experiments into three types. The

Fig. 1 Change in FIC for each iteration on number of 10000 data units

Table 3 Experimental results (10000 data units)

Batch Online

FIC −326,477 −326,478
KL-divergence 0.012616227 0.012652214

Iteration 13.9 8.1
Execution time 1.1s 3.3s

first type was an experiment performed with different num-
bers of data units: 10000, 500, 1000, and 100000. The sec-
ond type was an experiment performed with different num-
bers of dimensions: 2, 4, 20, and 40. Finally, the third was
an experiment performed with different numbers of mix-
tures: 1, 2, 8, and 12.

5.5.1 Different Numbers of Data Units

First, for 10000 data units, Fig. 1 shows the change in the
FIC with the number of iterations for the conventional batch
heterogeneous mixture learning and online heterogeneous
mixture learning.

For each learning method in this experiment, Table 3
lists the FIC value, number of iterations, KL divergence, and
execution time at convergence.

Next, we changed the number of data units to 500.
For each method, Fig. 2 shows the resulting change in the
FIC with the number of iterations, and Table 4 lists the FIC
value, number of iterations, KL divergence, and execution
time at convergence.

Next, we changed the number of data units to 1000.
Figure 3 shows the change in the FIC, and Table 5 lists the
results.

Finally, we changed the number of data units to
100000. Figure 4 shows the change in the FIC, and Table 6
lists the results.

When the number of data units was reduced to 500,
the KL divergence was larger than in the other experiments.
We think that, because the number of data units was small, a
highly accurate model could not be generated with either the
online or batch method. When the number of data units was
10000, the FIC value was higher with the online method
than with the batch method. In many of the experiments,
the FIC and KL divergence were accurate with the online

2626
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Fig. 2 Change in FIC for each iteration on the number of 500 data units

Table 4 Experimental results (500 data units)

Batch Online

FIC −14,588.58 −144,65.34
KL-divergence 1.330983532 1.330983532

Iteration 14.4 9.6
Execution time 0.06s 0.24s

Fig. 3 Change in FIC for each iteration on the number of 1000 data units

Table 5 Experimental results (1000 data units)

Batch Online

FIC −30645.2 −30645.2
KL-divergence 0.147320073 0.148577096

Iteration 14.2 13
Execution time 0.1207s 0.6028s

method. Therefore, we conclude that it is better to use the
online method when accuracy is important.

5.5.2 Experiments by Changing the Number of Dimen-
sions

I have compared experiments of dimensions 2, 4, 20, and 40.
Figure 5 which is the dimensions 2 experiment shows that

Fig. 4 Change in FIC for each iteration on the number of 100000 data
units

Table 6 Experimental results (100000 data units)

Batch Online

FIC −3,110,312 −3,052,230
KL-divergence 0.59304168 0.001532966

Iteration 19.8 9.6
Execution time 16.4s 39.1s

the online method takes about twice as long as the batch
method. Figure 6 which is the dimensions 4 experiment
shows that the online method takes about twice as long as
the batch method. Figure 7 which is the dimensions 20 ex-
periment shows that the online method takes about 7 times
as long as the batch method. Figure 8 which is the di-
mensions 40 experiment shows that the online method takes
about 16 times as long as the batch method. Therefore, as
the dimension increases, the execution time of the online
method becomes more than that of the batch method.

On the other hand, Fig. 12 which is the mixtures 12
experiment shows that the online method only takes about 3
times as long as the batch method.

First, we set the number of dimensions to 2. Figure 5
shows the change in the FIC with the number of iterations
for the conventional batch heterogeneous mixture learning
and online heterogeneous mixture learning. For each learn-
ing method, Table 7 lists the FIC value, number of iterations,
KL divergence, and execution time at convergence.

Next, we changed the number of dimensions to 4. For
each method, Fig. 6 shows the resulting change in the FIC,
and Table 8 lists the FIC value, number of iterations, KL
divergence, and execution time at convergence.

Next, we changed the number of dimensions to 20. Fig-
ure 7 shows the change in the FIC, and Table 9 lists the re-
sults.

Finally, we changed the number of dimensions to 40.
Figure 8 shows the change in the FIC, and Table 10 lists the
results.

In these experiments changing the number of dimen-
sions, there was no difference in accuracy between the on-
line and batch methods. The online method converged with

SESHIMO et al.: PRACTICAL EVALUATION OF ONLINE HETEROGENEOUS MACHINE LEARNING
2627

Fig. 5 Change in FIC for each iteration on the number of 2 dimensions

Table 7 Experimental results (2 dimensions)

Batch Online

FIC −53096.36 −53074.46
KL-divergence 0.062051642 0.028706503

Iteration 33.2 21.8
Execution time 2.0355s 5.2325s

Fig. 6 Change in FIC for each iteration on the number of 4 dimensions

Table 8 Experimental results (4 dimensions)

Batch Online

FIC −121184.8 −121182.6
KL divergence 0.004023055 0.003438413

Iteration 39 18.6
Execution time 2.5107 s 4.8880 s

a small number of iterations, however, in each experiment.
On the other hand, the execution time for the online method
was longer than that for the batch method.

5.5.3 Different Numbers of Mixtures

First, we set the number of mixtures to 1. Figure 9 shows the
change in the FIC with the number of iterations for the con-
ventional batch heterogeneous mixture learning and online
heterogeneous mixture learning. For each learning method,
Table 11 lists the FIC value, number of iterations, KL diver-

Fig. 7 Change in FIC for each iteration on the number of 20 dimensions

Table 9 Experimental results (20 dimensions)

Batch Online

FIC −706,172 −706,172
KL divergence 0.044111843 0.044104172

Iteration 9.8 6.8
Execution time 0.954 s 6.124 s

Fig. 8 Change in FIC for each iteration on the number of 40 dimensions

Table 10 Experimental results (40 dimensions)

Batch Online

FIC −1,558,110 −1,558,110
KL divergence 1.113930988 1.113931093

Iteration 7 6.2
Execution time 1.2189 s 17.8644 s

gence, and execution time at convergence.
Next, we changed the number of mixtures to 2. Fig-

ure 10 shows the resulting change in the FIC, and Table 12
lists the FIC value, number of iterations, KL divergence, and
execution time at convergence.

Next, we changed the number of mixtures to 8. Fig-
ure 11 shows the change in the FIC, and Table 13 lists the
results.

Finally, we changed the number of mixtures to 12. Fig-
ure 12 shows the change in the FIC, and Table 14 lists the
results.

2628
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Fig. 9 Change in FIC for each iteration on the number of 1 mixture

Table 11 Experimental results (1 mixture)

Batch Online

FIC −324751 −324751
KL divergence 0.003790533 0.003790533

Iteration 2 2
Execution time 0.0440 s 0.4055 s

Fig. 10 Change in FIC for each iteration on the number of 2 mixtures

Table 12 Experimental results (2 mixtures)

Batch Online

FIC −320545 −320545
KL divergence 0.007279893 0.007279893

Iteration 9.4 7
Execution time 0.3609 s 1.6481 s

In changing the number of mixtures, the experimental
results did not vary from those with one mixture. A GMM
with one mixture is simply a normal distribution. There-
fore, we did not have to choose a model. In the cases of
two and four mixtures, both the FIC and the KL divergence
for the online method were superior to those for the batch
method. On the other hand, with 12 mixtures, both the FIC
and the KL divergence for the batch method were superior
to those for the online method. When the number of mix-
tures is large, the mixing coefficient is small, meaning that a
model that does not have a big influence on the whole may
be ignored. We think that this affects the accuracy.

Fig. 11 Change in FIC for each iteration on the number of 8 mixtures

Table 13 Experimental results (8 mixtures)

Batch Online

FIC −336,621 −333,082
KL divergence 0.152345248 0.128347962

Iteration 22.4 15
Execution time 3.37 s 11.6 s

Fig. 12 Change in FIC for each iteration on the number of 12 mixtures

Table 14 Experimental results (12 mixtures)

Batch Online

FIC −335076.6 −336666.2
KL divergence 0.315016827 0.478644756

Iteration 26.8 16.4
Execution time 5.946836 s 18.3395 s

5.6 Evaluation and Discussion

The points of evaluation of online heterogeneous mixture
learning are the followings:

• The average number of iterations for online heteroge-
neous mixture learning is less than it is for batch het-
erogeneous mixture learning.
• The online method is superior to the batch method in

terms of using the results even while learning.
• The execution time of the online method is about three

times longer than that of the batch method.

The details of the evaluation are as follows:
As summarized above, when we see a change in the

SESHIMO et al.: PRACTICAL EVALUATION OF ONLINE HETEROGENEOUS MACHINE LEARNING
2629

FIC for each iteration, we know that the average number of
iterations is lower for the online method than for the batch
method. Furthermore, the online method can use results
even while learning, while quickly converging. On the other
hand, the execution time for the online method is about three
times longer than that of the batch method. The computa-
tional cost of the determinant and inverse matrix required
for data update is very large. Online heterogeneous learning
calculates parameters as data enters the learning machine, so
the amount of calculation for determinants and inverses in-
creases. We think that the execution time increases mainly
because of that. Indeed, 75% percent of the first experi-
ment’s run time was for that calculation.

In GMM parameter prediction, we think that the FIC
value and KL divergence for the online method are gener-
ally better than for the batch method. Moreover, the number
of iterations until convergence for the online method is less
than for the batch method. In addition, because online learn-
ing updates parameters one by one, we can use results even
during learning, which is a major advantage of the online
method over the batch method. In general, however, here are
advantages and disadvantages to both online heterogeneous
mixture learning and batch heterogeneous mixture learning.
We think that it is important to select the appropriate algo-
rithm by considering various factors, such as the data and
the learning environment.

6. Conclusion and Future Works

The motivation of this research is to improve the speed of
convergence of machine learning for data with heterogene-
ity, as the quantity of such data is expected to increase in
the real world from Internet of Things (IoT) devices. To that
end, we proposed heterogeneous mixture learning with an
online learning method. We then experimentally evaluated
both online heterogeneous mixture learning and batch het-
erogeneous mixture learning. We found a major advantage
of the online method over the batch method, namely, that
online heterogeneous mixture learning is useful when real-
time results are necessary. Our future works will include
eliminating bottlenecks in the determinant and inverse ma-
trix calculation costs by applying a variant of the online EM
algorithm called the stepwise EM algorithm. This algorithm
is scalable in the work area, which enables learning of het-
erogeneous streaming data in real time without having to
keep all the data. By applying the stepwise EM algorithm
in heterogeneous mixture learning, we expect to implement
heterogeneous mixture learning with real-time characteris-
tics.

References

[1] J. Jose, Internet of Things, Khanna Publishing House, 2018.
[2] C.M. Bishop, Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics), Springer, 2007.
[3] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin,

“Bayesian Data Analysis,” Chapman and Hall/CRC, 2013.
[4] K. Murphy, “Machine Learning: A Probabilistic Perspective,” 2012.

[5] R. Hujimaki, Y. Yamaguchi, and R. Eto, “Piecewise Sparse Linear
Discrimination by FAB,” Journal of the Japanese Society for Artifi-
cial Intelligence, vol.32, no.1, pp.30–38, Jan. 2017.

[6] R. Fujimaki and S. Morinaga, “Factorized Asymptotic Bayesian In-
ference for Mixture Modeling,” Proceedings of the Fifteenth Inter-
national Conference on Artificial Intelligence and Statistics, PMLR,
vol.22, pp.400–408, 2012.

[7] R. Fujimaki and K. Hayashi, “Factorized Asymptotic Bayesian Hid-
den Markov Models,” International Conference on Machine Learn-
ing (ICML), pp.799–806, 2012.

[8] K. Hayashi and R. Fujimaki, “Factorized Asymptotic Bayesian In-
ference for Latent Feature Models,” Advances in Neural Information
Processing Systems (NIPS), pp.1214–1222, 2013.

[9] R. Eto, R. Fujimaki, S. Morinaga, and H. Tamano, “Fully-Automatic
Bayesian Piecewise Sparse Linear Models,” International Workshop
on Artificial Intelligence and Statistics (AISTATS), pp.238–246,
2014.

[10] J.R. Hershey and P.A. Olsen, “Approximating the Kullback Leibler
Divergence Between Gaussian Mixture Models,” 2007 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing -
ICASSP ’07, 2007.

[11] T. Zhang, “Adaptive Forward-Backward Greedy Algorithm for
Learning Sparse Representations,” IEEE Transactions on Informa-
tion Theory, vol.57, no.7, pp.4689–4708, July 2011.

[12] M. Asahara and R. Fujimaki, “Big Data Heterogeneous Mixture
Learning on Spark,” Hadoop Summit San Jose, 2016.

[13] M. Asahara and R. Fujimaki, “Distributed Heterogeneous Mixture
Learning On Spark,” Spark Summit, 2016.

[14] C. Liu, L. Feng, and R. Fujimaki, “Streaming Model Selection via
Online Factorized Asymptotic Bayesian Inference,” IEEE Interna-
tional Conference on Data Mining (ICDM), pp.271–280, 2016

[15] L. Theis and M. Hoffman, “A Trust-Region Method for Stochastic
Variational Inference with Applications to Streaming Data,” Inter-
national Conference on Machine Learning (ICML), pp.2503–2511,
2015.

[16] P. Liang and D. Klein, “Online EM for Unsupervised Models,”
NAACL ’09 Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pp.611–619, 2009.

[17] J. Zeng, Z.-Q. Liu, and X.-Q. Cao, “Fast Online EM for Big Topic
Modeling,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol.28, no.3, pp.675–688, 2016.

[18] O. Cappé and E. Moulines, “On-line Expectation-Maximization Al-
gorithm for Latent Data Models,” Journal of the Royal Statistics So-
ciety: Series B (Statistical Methodology), vol.71, no.3, pp.593–613,
2009.

Appendix A: Data Processing in Machine Learning

Data processing in machine learning is roughly classified
into batch learning, online learning, and mini-batch learn-
ing [2].

A.1 Batch Learning

Batch learning is a machine learning method in which all
data is first inputted to a learning machine, and then the
parameters are updated using the entire data. The benefits
of batch learning are higher generalization performance and
stability as compared to online learning. On the other hand,
the disadvantages of this method are that it requires accu-
mulating the entire learning data for learning and that the
learning results cannot be used until learning ends.

http://dx.doi.org/10.1201/b16018
http://dx.doi.org/10.1109/icassp.2007.366913
http://dx.doi.org/10.1109/tit.2011.2146690
http://dx.doi.org/10.1109/icdm.2016.0038
http://dx.doi.org/10.3115/1620754.1620843
http://dx.doi.org/10.1109/tkde.2015.2492565
http://dx.doi.org/10.1111/j.1467-9868.2009.00698.x

2630
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

A.2 Online Learning

On the other hand, in online learning only a small amount of
data is given to the learning machine. The learning param-
eters are then updated as data is added. If the learning data
has a large size and includes dependencies within the data,
then online learning has the benefit of getting results faster
than batch learning does. On the other hand, the disadvan-
tages are that the learning rate must be set appropriately and
the order of learning data depends on the learning results.

A.3 Mini-Batch Learning

Finally, mini-batch learning is an intermediate method be-
tween batch learning and online learning. This method di-
vides the learning data into groups of roughly the same size
and then updates the parameters for each group. Increas-
ing the size of the groups eventually leads to batch learning,
while decreasing the size of the groups leads to online learn-
ing. Hence, mini-batch learning requires considering how to
divide the data into groups (i.e., considering the batch size).

Appendix B: Gaussian Mixture Model and EM Algo-
rithm

The EM algorithm [2] is one method for maximum likeli-
hood estimation [3] of probability model parameters in ma-
chine learning. In this study, we use the EM algorithm to
estimate a Gaussian mixture model (GMM) [4]. Hence, this
section describes the multi-dimensional GMM and the EM
algorithm.

B.1 Normal Distribution

A normal distribution is a probability distribution represent-
ing data that accumulates near the mean. For a normal dis-
tribution, the probability density function N(x; μ, σ2) is ex-
pressed as

N
(
x; μ, σ2

)
=

1√
2πσ2

exp

(
− (x − μ)2

2σ2

)

where x is the input data, μ is the mean, and σ2 > 0 is the
variance. A normal distribution with multiple dimensions is
called a multivariate normal distribution.

The probability density function of an n-variate normal
distribution Nn(x;μ,Σ) is expressed as

Nn(x;μ,Σ) =
1√

(2π)n|Σ| exp

(
−1

2
(x − μ)TΣ−1(x − μ)

)

where Σ is the covariance matrix.

B.2 Gaussian Mixture Model (GMM)

A GMM is expressed as a linear superposition of normal dis-
tributions. The number of mixtures is K, while the weight-
ing factor for the linear combination is π. The probability

density function of a GMM p(x; θ) is then expressed as

p(x|θ) =
K∑

k=1

πkN(x|μk,σ
2
k), 0 ≤ πk ≤ 1,

K∑
k=1

πk = 1

θ =
(
μ
1 , . . . ,μ

K ,σ

2
1, . . . ,σ

2
K , π1, . . . , πK

)

where μk is the vector of means belonging to class k,

and σ2
k is the vector of variances belonging to k. Here, we

estimate the parameters θ. The probability density function
of an n-variate GMM pn(x|θ) is then expressed as

pn(x|θ) =
K∑

k=1

πkNn(x|μk,Σk), 0 ≤ πk ≤ 1,
K∑

k=1

πk = 1

θ =
(
μ
1 , . . . ,μ

K ,Σ1, . . . ,ΣK , π1, . . . , πK

)

where Σk is the n-dimensional covariance matrix be-

longing to class k.

B.3 Responsibility

The variable z represents the number of normal distributions
of a GMM from the observed data xn:

znk =

⎧⎪⎪⎨⎪⎪⎩1 : Input dataxnbelong to class k

0 : Input dataxndoes not belong to class k

We can regard the posterior probability of z given x as the
responsibility γ(zk):

γ (znk) ≡ p (zk = 1|xn) =
πkN(xn|μk,Σk)∑K
j=1 π jN(xn|μ j,Σ j)

.

Here, the responsibility is an expected value that indi-
cates whether observed data belongs to class k.

B.4 Maximum Likelihood Estimation by EM Algorithm

Next, we consider the problem of fitting observation data
to the GMM. The posterior probability of observed data xn

given the parameter θ is called the likelihood. Then, the
likelihood L(θ) is expressed as

L(θ) :=
N∏

n=1

p (xn|θ) .

Next, the logarithm of the likelihood, or log-likelihood, is
expressed as

log L(θ) = log
N∏

n=1

p (xn|θ)

=

N∑
n=1

log p (xn|θ) .

From this, we formulate the parameter estimation of the
GMM.

SESHIMO et al.: PRACTICAL EVALUATION OF ONLINE HETEROGENEOUS MACHINE LEARNING
2631

θ̂ := argmax
θ

L(θ) subject to 0 ≤ πk ≤ 1,
K∑

k=1

πk = 1.

Then, we derive the maximum likelihood estimate:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
π̂k =

1
N

∑N
n=1 γ (znk) = Nk

N

μ̂k =
1

Nk

∑N
n=1 γ (znk) xn

Σ̂k =
1

Nk

∑N
n=1 γ (znk) (xn − μk) (xn − μk)
⎧⎪⎪⎨⎪⎪⎩Nk =

∑N
n=1 γ (znk)

γ (znk) = πk N(x|μk ,Σk)∑K
j=1 π jN(x|μ j,Σ j)

Because the log-likelihood of the GMM has a log-sum
part, we cannot solve it analytically. Instead, we use the EM
algorithm to approximate the solution.

On the expectation step (E step), we calculate the ex-
pected value of the model’s log-likelihood by using the cur-
rently estimated probability distribution of the latent vari-
ables. On the maximization step (M step), we calculate a
parameter that maximizes that expectation. The EM algo-
rithm is thus an iterative method that repeats the E and M
steps to perform maximum likelihood estimation. Here, we
describe the EM algorithm for the GMM.

Step 1: Input initial values for the prior probability πk,
the mean πk, and the covariance Σk.
Step 2 (E step): Calculate the responsibility γ(znk) for each
data group given the current parameters.

γ (znk) =
πkN(xn|μk,Σk)∑K
j=1 π jN(xn|μ j,Σ j)

.

Step 3 (M step): Calculate the maximum likelihood estima-
tor given the responsibility.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

π̂k =
1
N

∑N
n=1 γ (znk)

μ̂k =
1∑N

n=1 γ(znk)

∑N
n=1 γ (znk) xn

Σ̂k =
1∑N

n=1 γ(znk)

∑N
n=1 γ (znk) (xn − μk) (xn − μk)

Step 4: Calculate the log-likelihood logL(θ). If its increase
is below a threshold, then the algorithm finishes; otherwise,
it returns to step 2.

Kazuki Seshimo received a B.S. degree
from Kanazawa University in 2018. He is now
an M.S. student studying Bayesian statistics.

Akira Ota received an M.S. degree
from Kanazawa University in 2019, studying
Bayesian statistics.

Daichi Nishio received a B.S. degree from
Kanazawa University in 2017. He is now an
M.S. student studying reinforcement learning.

Satoshi Yamane received B.S., M.S., and
Ph.D. degrees from Kyoto University. He is now
a professor at Kanazawa University, focusing on
formal verification of real-time and distributed
computing.

