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PAPER

Speech Chain VC: Linking Linguistic and Acoustic Levels via
Latent Distinctive Features for RBM-Based Voice Conversion

Takuya KISHIDA†a), Nonmember and Toru NAKASHIKA†, Member

SUMMARY This paper proposes a voice conversion (VC) method
based on a model that links linguistic and acoustic representations via la-
tent phonological distinctive features. Our method, called speech chain
VC, is inspired by the concept of the speech chain, where speech commu-
nication consists of a chain of events linking the speaker’s brain with the
listener’s brain. We assume that speaker identity information, which ap-
pears in the acoustic level, is embedded in two steps—where phonological
information is encoded into articulatory movements (linguistic to physio-
logical) and where articulatory movements generate sound waves (physio-
logical to acoustic). Speech chain VC represents these event links by using
an adaptive restricted Boltzmann machine (ARBM) introducing phoneme
labels and acoustic features as two classes of visible units and latent phono-
logical distinctive features associated with articulatory movements as hid-
den units. Subjective evaluation experiments showed that intelligibility of
the converted speech significantly improved compared with the conven-
tional ARBM-based method. The speaker-identity conversion quality of
the proposed method was comparable to that of a Gaussian mixture model
(GMM)-based method. Analyses on the representations of the hidden layer
of the speech chain VC model supported that some of the hidden units ac-
tually correspond to phonological distinctive features. Final part of this pa-
per proposes approaches to achieve one-shot VC by using the speech chain
VC model. Subjective evaluation experiments showed that when a target
speaker is the same gender as a source speaker, the proposed methods can
achieve one-shot VC based on each single source and target speaker’s ut-
terance.
key words: voice conversion, restricted Boltzmann machine, speech chain,
one-shot voice conversion

1. Introduction

A deeper understanding of how humans identify individ-
ual speech would provide useful insight when designing
a voice conversion (VC) system capable of speaker iden-
tity conversion—a system enables listeners to perceive con-
verted speech as if it was uttered by a target speaker. Devel-
oping an effective VC system will also offer useful insights
into psychological and physiological mechanisms of human
speech communication.

One state-of-the-art VC framework is based on gen-
erative adversarial nets (GANs) [1]–[5], which were origi-
nally developed for image generation [6] and were also de-
vised for image-to-image translation [7], [8]. CycleGAN-
VC [2], [3] and StarGAN-VC [4], [5] are successful VC
models incorporating GAN variants. These VC models per-
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form high quality voice conversion; speaker identity con-
version quality is comparable to that of a Gaussian mixture
model (GMM)-based VC [9], which is a well-known ap-
proach for training with parallel data of target and source
speaker recordings. Many other successful VC frame-
works are also based on neural networks (NNs) having
complex network structures, such as variational autoen-
coders [10], [11] and recurrent NNs [12], [13].

However, the low interpretability of these models hin-
ders the acquisition of any relevant scientific insights. In this
paper, model interpretability indicates the degree to which a
human can understand the cause of an obtained decision or
intermediate representation [14]. If the model is designed
upon the interpretable way, we can associate model archi-
tectures with actual phenomena the model attempts to repre-
sent. Recent work provides some techniques for interpreting
complex machine learning models [15], [16] but interpret-
ing deep networks is still a challenging field. The above-
mentioned models consist of complex structures, which im-
prove the expressiveness of these models at the cost of in-
terpretability.

An adaptive restricted Boltzmann machine (ARBM)-
based VC model was proposed as a relatively simple and
interpretable model [17]. An ARBM-based model consists
of a visible layer and a hidden layer having undirected con-
nections between visible-hidden units. The weights of the
connections are designed to be adaptable to speakers by
introducing an adaptation matrix for each speaker. Linear
transformation of acoustic features (e.g., Mel-cepstrum) by
an adaptation matrix is a speaker normalization technique
used in automatic speech recognition systems [18]. The
speaker-adapted connection weights can be interpreted as
spectral templates characterizing voice of the speaker. An
ARBM-based VC approach assumes that speaker-related in-
formation is mainly represented in the adaptation matrix
and linguistic information is represented in the hidden layer.
Speaker-independent and speaker-dependent parameters in
the model are simultaneously trained with non-parallel data.

The ARBM-based VC approach still requires a num-
ber of improvements to obtain higher performances in both
similarity and intelligibility of converted speech. The simi-
larity to a target speaker of converted speech by the ARBM-
based VC is slightly inferior to that of a GMM-based VC.
The intelligibility of converted speech is also less intelligible
than natural speech. These shortcomings seem to be caused
by failing to preserve linguistic information when convert-
ing a source speaker’s acoustic features to those of a target
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Fig. 1 The speech chain in speech communication.

speaker.
In this paper, we propose speech chain VC, which is

an extended method of the ARBM-based VC. Speech chain
VC is inspired by the concept of the speech chain [19], in
which speech communication consists of a chain of events
linking the speaker’s brain with the listener’s brain as shown
in Fig. 1.

For the basis of this framework, we assume that speaker
identity information is first embedded when motor control
signals are sent to articulatory organs from a speaker’s brain
(linguistic level to physiological level) and then when the
articulatory movements generate sound waves (physiologi-
cal level to acoustic level). The conventional ARBM model
links the acoustic and linguistic levels directly and repre-
sents the linguistic features with hidden layers. Linguistic
features can be regarded as visible features by using de-
scriptions such as phoneme, thus, speech chain VC repre-
sents linguistic features and acoustic features with visible
layers and latent distinctive features associated with articu-
latory movements with a hidden layer.

We further propose methods to apply the speech chain
VC to one-shot VC tasks—performing VC across arbitrary
speakers based on only one each utterance of the speakers.
A one-shot voice conversion task is a very challenging task,
but it is highly convenient for users of voice conversion ap-
plications, and its technological development is required.

2. ARBM-Based Voice Conversion

In this section, we will introduce an ARBM-based VC
method as a baseline method. A graphical representation of
an ARBM is shown in Fig. 2. In an ARBM model, observed
acoustic features and latent phonological features are repre-
sented as visible units u ∈ RI and hidden units h ∈ {0, 1}J ,
respectively (I and J denote the number of dimensions in the
visible and hidden units, respectively). In addition to visi-
ble and hidden units, this model has speaker identity units
s ∈ {0, 1}R,∑R

r=1 sr = 1 that represent which speaker ut-
ters the sentence (R is the number of speakers used in the
training). Usually s is used as a one-hot vector. For ex-
ample, if we have one-hot vector s, whose elements are
sr = 1,∀sr′ = 0 (r′ � r), the rth speaker is of interest. In this
model, the connection weights between visible and hidden
units and the bias terms of the visible and hidden units are
controlled by s. We define the speaker-dependent visible-
hidden connections W(s), visible biases b(s), and hidden

Fig. 2 Graphical representation of an ARBM.

biases c(s) as follows.

W(s) =
∑

r

Ar srW̄ (1)

b(s) = b̄ +
∑

r

br sr = b̄ + Bs (2)

c(s) = c̄ +
∑

r

cr sr = c̄ + Cs, (3)

where W̄ ∈ RI×J and b̄ are speaker-independent parameters,
and Ar ∈ RI×I , br ∈ RI(B = [b1 b2 · · · bR] ∈ RI×R) and
cr ∈ RJ(C = [c1 c2 · · · cR] ∈ RJ×R) are speaker-specific
parameters of the rth speaker. If s is a one-hot vector where
only the rth element is switched on, Ar is viewed as an adap-
tation matrix that adapts the speaker-independent weight
matrix W̄ (phoneme-related features) to the rth speaker. br

and cr denote the speaker-specific bias of the rth speaker for
the visible and hidden units, respectively. For convenience,
we use a symbolA = {Ar}Rr=1 for a collection of the speaker
adaptation matrices.

Given the speaker information s, the joint probability
of visible and hidden units p(u, h|s) as follows.

p(u, h|s) =
1
Z

e−E(u,h|s) (4)

E(u, h|s) =
1
2

∣∣∣∣∣
∣∣∣∣∣u−b(s)
σ

∣∣∣∣∣
∣∣∣∣∣
2

−
( u
σ2

)�
W(s)h−c(s)�h (5)

Z =
∫
u

∑
h

e−E(u,h|s)du, (6)

where || · ||2 denotes L2 norm. The fraction bar in Eq. (5)
denotes the element-wise division. The parameters Θ =
{W̄,A,B,C, b̄, c̄,σ} are simultaneously estimated on the
basis of maximum likelihood.

The lack of connections between visible units or be-
tween hidden units enable the conditional probabilities
p(h|u, s) and p(u|h, s) to form simple equations as follows:

p(vi = v|h, s) = N(v | bi(s) + wi:(s)h, σ2
i ) (7)

p(h j = 1|u, s) = S
(
c j(s) + w: j(s)�

( u
σ2

))
, (8)

where wi:(s) and w: j(s) denote the ith row vector and jth col-
umn vector of W(s), respectively. N(·|μ, σ2) andS(·) denote
a Gaussian probability density function with the mean μ and
variance σ2 and a sigmoid function, respectively.

In the converting step, the source speaker’s acoustic
features x(t) at frame t can be converted to those of the tar-
get speaker y(t) via latent phonological features ĥ(t) so as to
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maximize the probability p(y(t)|x(t)) as

ŷ(t) � argmax
y(t)

p(y(t)|x(t))

� b̄ + by + AyW̄ĥ(t),

(9)

where

ĥ(t) � argmax
h(t)

p(h(t)|x(t))

� S
(
c̄ + cx + W̄�A�x

(
x(t)

σ2

))
.

(10)

As Eq. (10) indicates, the (optimum) latent phonological
features are approximated as the expectation values of
p(h(t)|x(t)), which results in the sigmoidal outputs of affine-
transformed acoustic features of the source speaker pro-
jected with the matrix W̄�A�x . As the column vectors of
this matrix are similar to the patterns that appear in the
source speaker’s acoustic features, the obtained latent fea-
tures ĥ represent speaker-independent information that is
potentially phonological. Eq. (9) shows that the converted
speech is generated from the phonological information that
is projected to the acoustic feature space using the weight
matrix adapted to the target speaker.

3. Speech Chain Voice Conversion

As shown in Fig. 3, speech chain VC is based on an ARBM
model, which consists of two visible layers and one hidden
layer. We represent observed acoustic features and linguis-
tic features manually labeled parallel to the acoustic features
as two classes of the visible units a ∈ RI and l ∈ {0, 1}J , re-
spectively, and latent phonetic distinctive features as hidden

Fig. 3 Graphical representation of the proposed model. A chain of
events in a speech production is represented by an adaptive restricted Boltz-
mann machine.

units d ∈ {0, 1}K (I, J, and K denotes the number of di-
mensions in acoustic features, linguistic features, and latent
phonetic distinctive features, respectively).

We assume speaker identity information is embed-
ded in both the linguistic-physiological link and the
physiological-acoustic link in the framework of the speech
chain, and thus speaker identity unit s controls both weights
of linguistic-distinctive and distinctive-acoustic feature con-
nections. We define the first visible-hidden (linguistic-
distinctive) connections W(l)(s), the second visible-hidden
(acoustic-distinctive) connections W(a)(s), the first and sec-
ond visible biases b(l)(s), b(a)(s), and the hidden biases
b(d)(s) as follows.

W(·)(s) =
∑

r

A(·)
r srW̄(·) (11)

b(·)(s) = b̄(·) +
∑

r

b(·)
r sr = b̄(·) + B(·)s (12)

where s is a one-hot vector where only the rth element is
switched on, and A(·)

r is an adaptation matrix that adapts the
speaker-independent weight matrix W̄(·) to the rth speaker.
b(·)

r denotes the speaker-specific bias of the rth speaker. For
convenience, we use a symbol A(·) = {A(·)

r }Rr=1 for a collec-
tion of the speaker adaptation matrices.

Referring to Sone and Nakashika [20] and Cho et
al. [21], we define the joint probability of visible and hid-
den units p(a, l, d|s) as follows:

p(a, l, d|s) =
1
Z

e−E(a,l,d|s) (13)

E(a, l, d|s) =
1
2

∣∣∣∣∣∣
∣∣∣∣∣∣
a − b(a)(s)
σ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

−
( a
σ2

)�
W(a)(s)d

− b(l)(s)� l − d�W(l)(s)l − b(d)(s)�d (14)

Z =
∫

a

∑
l,d

e−E(a,l,d|s)da, (15)

where || · ||2 denotes L2 norm. The fraction bar in Eq. (14)
denotes the element-wise division. σ is the deviation pa-
rameter of the acoustic feature units a.

The lack of connections between visible units or be-
tween hidden units enable the conditional probabilities
p(a|d, s), p(l|d, s), and p(d|a, l, s) to form simple equations
as follows:

p(ai = a|d, s) = N(a | b(a)
i (s) + w(a)

i: (s)d, σ2
i ) (16)

p(l j = 1|d, s) = S(b(l)
j (s) + w(l)

j: (s)d) (17)

p(dk = 1|a, l, s) = S
(
b(d)

k (s) + w(a)
:k (s)�

( a
σ2

)

+w(l)
:k (s)� l

)
. (18)

where w(·)
i: (s), w(·)

j: (s), and w(·)
:k (s) denote the ith and jth row

vectors, and kth column vector of W(·)(s), respectively.
Because we usually perceive linguistic features cate-

gorically in speech communication, we can add further con-
straints of

∑J
j=1 l j = 1 to our model, resulting in a one-hot
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vector l, which indicates that only certain linguistic features
are activated. If the constraints are activated, the probability
distribution of the linguistic features turns into a categorical.

Given a collection of N speech and phoneme label data
{a(n), l(n), s(n)}Nn=1 that is composed of R speakers, the param-
eters Θ = {W̄(a), W̄(l),A(a),A(l),B(a),B(l),C, b̄(a),
b̄(l), c̄,σ}, which include speaker-dependent and speaker-
independent parameters, are simultaneously estimated to
maximize the conditional log likelihood as

L(Θ) = log
∏

n

p(a(n), l(n)|s(n))

=
∑

n

log
∑
d(n)

p(a(n), l(n), d(n)|s(n)).
(19)

As in the ARBM-based VC method, We can convert
the source speaker’s acoustic features x(t) at time frame t to
those of the target speaker y(t) via latent phonetic distinctive
features d̂(t) to maximize the probability p(y(t)|x(t)) as

ŷ(t) � argmax
y

p(y(t)|x(t))

= argmax
y

∑
d

p(d(t)|x)p(y(t)|d(t))

� argmax
y

p(d̂(t)|x)p(y|d̂(t))

= argmax
y

p(y(t)|d̂(t))

= b̄(a) + b(a)
y + A(a)

y W̄(a) d̂(t),

(20)

where

d̂(t) � argmax
d

p(d(t)|x(t))

� E[d(t)|x(t)]

= S
(
b̄(d) + b(d)

x + W̄�(a)A�(a)
x

(
x(t)

σ2

)

+W̄�(l)A�(l)
x l(t)

x

)
.

(21)

The source speaker’s linguistic features l(t)
x required in

Eq. (21) can be substituted with l̂x
(t)

obtained by repeating
Gibbs sampling of Eqs. (17) and (18).

4. Experimental Evaluation I: Across Seen Speakers

To evaluate the performance of the proposed VC method, we
conducted both objective and subjective evaluation experi-
ments. The objective evaluation experiment was conducted
to determine the best system configuration. The number
of hidden units and type of probability distributions for the
linguistic feature units were decided in the experiment. In
the subjective evaluation experiment, subjective intelligibil-
ity and perceptual speaker similarity among source, target,
and converted speech were evaluated.

4.1 System Configuration

We used ATR 503 sentences, which consists of record-
ings of five female and five male Japanese native speakers.
Phonemes and their durations were manually labeled in each
recording. Original recordings were sampled at 20,000 Hz.
We downsampled the files to 16,000 Hz for the experiments.
We also reduced the number of unique labels to 36 because
a number of the original labels were redundant. For train-
ing, we used 50 sentences uttered by four speakers (two fe-
males and two males) from set A in the corpus. For evalu-
ation, we selected one female and one male speaker as the
source speakers, with the remaining used as target speak-
ers. We used 64-dimensional acoustic features that con-
sist of 32-dimensional Mel-cepstral features and their dy-
namic features. The Mel-cepstral features were calculated
from 513-dimensional STRAIGHT [22] spectra every 5 ms.
Phoneme label vectors were parallel to the acoustic feature
vectors and used as linguistic feature vectors. To express
the transitions of phonemes in sentences, we smoothed the
linguistic feature vectors in each sentence by a moving av-
erage filter of a 15-ms-long rectangular window. Bernoulli
and categorical distributions were chosen for a probability
distribution function of the linguistic feature vectors.

For training, we used up to 512 hidden units. We
trained the model for 200 iterations using Adam opti-
mizer [23] with a batch size of 100, a learning rate of 0.001,
and a momentum term β1 of 0.9.

4.2 Methods to Compare

We compared our model with a conventional ARBM-based
VC in the objective and subjective evaluations and with
a GMM-based VC in the subjective evaluation. System
configuration for the conventional ARBM-based VC was
almost same with the proposed VC except for using no
phoneme label data, using softmax constrains for hidden
units and using a stochastic gradient descent (SGD) opti-
mizer, which were suitable for training the ARBM model.

The GMM-based VC is a commonly-used method us-
ing parallel data for training. We synthesized converted
speech with the parallel method for a reference condition
in the subjective evaluation. We set the number of mixtures
to 32, which was found to be the best in our preliminary
experiment.

4.3 Objective Evaluation

We used the perceptual evaluation of speech quality
(PESQ) [24], which is designed for end-to-end speech qual-
ity assessment. Source and target speech were uttered by
different speakers, resulting in a very low PESQ score be-
tween them. If the VC system worked effectively, the PESQ
score would improve.

For the evaluation, we used 53 sentences from set J in
the corpus. To calculate the PESQ, we use parallel data of
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Fig. 4 Average PESQ score of our method and conventional ARBM-
based method with varying numbers of hidden units.

the source and target speech that was aligned using dynamic
programming. There were four variations of source and tar-
get pairs to synthesized converted speech. Half were intra-
gender pairs and the remaining were inter-gender pairs. The
total number of converted speech utterances was 212 for
each VC model. The utterances were synthesized from
the converted Mel-cepstrum, target F0 contours and the tar-
get aperiodicities using the STRAIGHT vocoder. Phoneme
labels were NOT supervised in the conversion, thus the
proposed model estimated the phoneme labels from input
acoustic features. Target speech utterances were also syn-
thesized from their Mel-cepstrum, F0 contours, and the ape-
riodicities to eliminate the effect of the vocoder on PESQ
scores.

Figure 4 shows the effect of changing the number of
hidden units in the conventional and proposed models when
the number of hidden units were 8, 32, 64, 128, 256, and
512. The results of the ARBM-based method were unsta-
ble when the number of hidden units were changing, and
the PESQ score increased with number of hidden units and
plateaued around 256 units in the speech chain method.
In the many cases, the PESQ scores of speech chain VC
were higher when linguistic feature units were assumed a
categorical distribution than when the units were assumed
a Bernoulli distribution. The results were consistent with
our expectation that we perceive linguistic features such as
phonemes categorically in speech communication. On the
basis of these results, we decided to use 256 hidden units
for the speech chain VC, and 64 hidden units for the ARBM
model in the succeeding subjective evaluations.

4.4 Subjective Evaluation

We conducted listening experiments to evaluate intelligibil-
ity and speaker similarity of the converted speech. The in-
telligibility was evaluated by a mean opinion score (MOS)
test and the similarity was evaluated by same/different
paradigm [25], [26]. Ten Japanese native speakers partici-
pated in the tests.

For the intelligibility test, 160 sentences were selected

Table 1 MOS for intelligibility with 95% confidence intervals. n indi-
cates the number of measurements.

Method MOS n
Original 4.935±0.027 400

GMM 2.693±0.089 400
ARBM 1.970±0.099 400

SC 3.635±0.096 400

Fig. 5 Similarity (with listener confidence) to target speaker (S: Source,
T: Target, GMM: GMM-based VC, ARBM: ARBM-based VC, and SC:
Speech chain VC.)

from sets D–G in the corpus. The assignment of sentences to
the conversion methods was randomized over participants.
120 sentences were assigned to the converted speech condi-
tions and the remaining 40 sentences were assigned to the
original source and target speech conditions.

Participants evaluated intelligibility of the converted
and original speech on a five-point Likert scale after listen-
ing to each of the speech stimuli. The scale ranged from (1)
highly unintelligible to (5) highly intelligible.

In the same/different paradigm, 53 sentences were se-
lected from set J in the corpus. In each trial, speech
stimuli were presented to a participant in a pair-wise for-
mat. The pairs consisted of source/target speech and
source/target/convert speech. Each participant was required
to judge whether the speech pair was uttered by the same
speaker and to indicate the confidence of his/her decision
from four options: “Same: absolutely sure,” “Same: not
sure,” “Different: not sure,” and “Different: absolutely
sure.”

Table 1 shows the results of the MOS test for intel-
ligibility. Our method significantly outperformed both the
GMM-based and ARBM-based methods. The results in-
dicate that one of the shortcomings of the ARBM-based
method was overcome by adding linguistic features as visi-
ble units to the ARBM model. This extension implies that
linguistic information is preserved over the conversion pro-
cedure.

Figure 5 shows the results of the similarity test. Both



KISHIDA and NAKASHIKA: SPEECH CHAIN VC: LINKING LINGUISTIC AND ACOUSTIC LEVELS VIA LATENT DISTINCTIVE FEATURES
2345

Table 2 Unique phoneme clusters having a relatively high phi coefficient
value (|φ| > 0.4) with hidden units.

in the intra- and inter-gender conversions, around 70% of
converted speech by the proposed method were perceived
as being uttered by the target speakers. Chi-square tests
showed that there was no significant difference in the dis-
tributions of participants’ response among the VC methods:
χ2(2,N = 240) = 0.27, p = .874 in the intra-gender conver-
sion, and χ2(2,N = 240) = 1.05, p = .592 in the inter-
gender conversion. The results suggest that our method
can exhibit the equivalent speaker-identity conversion per-
formance to the GMM-based method without parallel data
training.

4.5 Interpretation of the Hidden Layer

If the hidden layer in the speech chain VC model corre-
sponds to phonological distinctive features, we can find
phoneme clusters sharing a same phonological distinctive
feature and being associated with a certain hidden unit. For
this purpose, we sought phoneme clusters of which appear-
ance pattern being correlated with time series variation of a
certain hidden unit given the training acoustic features and
linguistic features. Because the two time series sequences
are binary sequences, we used a phi coefficient [27], which
is a similar measure to a correlation coefficient, to evaluate
the correlation. The clustering procedure for each hidden
unit is as follows:

1. Calculating an absolute phi coefficient value |φ| be-
tween time series variation of the hidden unit and an
appearance pattern of each phoneme

2. Joining the highest-valued phoneme into the phoneme
cluster as the first member

3. Calculating improvement of the |φ| when adding an ap-
pearance pattern of one of the remaining phonemes into
that of the phoneme cluster.

4. Joining the new phoneme into the cluster if the |φ| im-
provement is over a small value ε (We use ε = 0.005 in
this paper)

5. Repeating 3. and 4. until reaching the last phoneme to
be checked

Table 2 shows 18 unique phoneme clusters each hav-
ing a relatively high phi coefficient value (|φ| > 0.4) with
one of hidden units. We found that some clusters con-
sisted of phonemes sharing same phonological distinctive
features. For example, the phonemes of which manners of
articulation are affricate or fricative and points of articula-
tion are alveolar or post-alveolar, i.e. , , ,

, , , and , had a tendency to form clusters.
These phonemes are categorized as obstruent consonants in
the field of phonology [28]. Also some of sonorant conso-
nants such as , , and , which are more vowel-like
consonants than obstruents, had a tendency to form clusters
with vowels. The results of analysis support the idea that
some of the hidden units correspond to phonological dis-
tinctive features.

5. Application to One-Shot VC

In this section, we describe an application of our method to
one of the most challenging VC tasks: a one-shot VC task.
A one-shot VC task is to perform VC across an arbitrary
unseen speaker and another arbitrary unseen speaker based
on only one each utterance of the speakers. One possible
approach to perform a one-shot VC based on our method is
blending speaker-dependent parameters and adapting them
to new speakers. Another approach is training the speech
chain VC model with speaker embeddings.

5.1 Speaker Identity Estimation

The first approach to perform a one-shot VC based on our
proposed method is blending speaker-dependent parameters
and adapting them to new speakers. If we allow each ele-
ment of the speaker identity units sr to be ranged from 0 to
1 (0 ≤ sr ≤ 1) and sum of them to be 1 (

∑R
r=1 sr = 1), we can

obtain continuous weight matrices W (·)(s) and biases b(·)(s)
from Eq. (11) and (12). In this case, the speaker identity
unit s can be regarded as the blending weight of speaker-
dependent parameters.

When we have acoustic features a(t), linguistic fea-
tures l(t), and latent distinctive features d(t) at time frame
t, the conditional probabilities p(s(t)

r = 1|a(t), l(t), d(t)) can be
formed as,

p(s(t)
r = 1|a(t), l(t), d(t))

=
p(s(t)

r = 1)p(a(t), l(t), d(t)|s(t)
r = 1)∑

s′ p(s′(t)r = 1)p(a(t), l(t), d(t)|s′(t))
=

p(a(t), l(t), d(t)|s(t)
r = 1)∑

s′ p(a(t), l(t), d(t)|s′) .

(22)

We assume that p(s(t)
r = 1|a(t), l(t), d(t)) indicates a like-

ness of the rth speaker in given features. Thus, we define
the blending weight of speaker-dependent parameters ŝ(t) at
time frame t as
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Fig. 6 Proposed one-shot voice conversion method.

ŝ(t) � argmax
s

p(s(t)|a(t), l(t), d(t))

� E[s(t)|a(t), l(t), d(t)]

= g(a′(t)�b(a)
r − l(t)�b(l)

r − d(t)�b(d)
r

− a′(t)�W(a)
r d(t) − l(t)�W(l)

r d(t)),

(23)

where g(·) denotes a softmax function. Equation (23) re-
quires linguistic features l(t) and latent distinctive features
d(t). Since we only have new speaker’s acoustic features a(t)

in a one-shot VC task, we need to estimate ŝ(t), l̂(t), and d̂(t)

by repeating Eqs. (17), (18), and (23). The final ŝ is ob-
tained by averaging ŝ(t) over time frame t. After obtaining
the blending weights of new source and target speakers: ŝsrc

and ŝtar respectively, we can perform voice conversion in the
same manner as described in Sect. 3.

This method can be adapted to the new source and tar-
get speakers using each single utterance of the speakers.
However, its process needs iterative calculations to estimate
parameters such as ŝ, l̂, and d̂, resulting in a low computa-
tional efficiency and a low estimation accuracy.

5.2 Speech Chain VC Trained with Speaker Embeddings

The second approach is to train the speech chain VC model
with speaker embeddings. This approach is simply done by
using speaker embedding vectors as speaker identity units
s in the training phase. The speaker embedding vectors are
extracted from an additional model trained to embed speaker
identity features into a fixed-length vector from an acoustic
feature sequence.

Conversion phase is shown in Fig. 6. For an arbitrary
source-target speakers pair, acoustic features—spectral fea-
tures, F0 features, and aperiodicity features are extracted
from both source and target speaker’s utterances. The source
and target spectral features are applied to compute speaker

embedding vectors from the speaker embedding extractor
used in the training phase. Then the speech chain VC model
is driven by the obtained source spectral features and source
and target speaker embedding vectors to get the converted
spectral features. Finally, a vocoder synthesize the con-
verted speech from the obtained converted spectral features,
linear transformed f0 and aperiodicity features.

Compared with the first approach, the second approach
has three advantages. Firstly, the size of speaker-dependent
parameters is independent from the number of the train-
ing speakers. In the original speech chain VC model, the
number of the parameters for the speaker adaptation ma-
trices A(·) is I2R, where I and R denote the size of visi-
ble units and the number of the training speakers respec-
tively. We can reduce it by choosing the number of dimen-
sions of speaker embedding vectors K to be smaller than R.
Secondly, we can utilize training samples more efficiently.
Even if some speakers in the training corpus having similar
voice each other, the original speech chain VC model have
to prepare different speaker-dependent parameters for each
speaker. The resulting trained parameters might be redun-
dant among the similar speakers. While in the model trained
with speaker embeddings, since each speaker-dependent pa-
rameter is linked with a certain dimension of the speaker
embedding vectors, the model training is less susceptible
to a low variability of the training datasets. Thirdly, in a
one-shot VC task, since the speech chain VC model trained
with speaker embeddings is not required to estimate speaker
identity units s, a computational efficiency and estimation
accuracies of l̂ and d̂ should be improved.

6. Experimental Evaluation II: Across Unseen Speak-
ers

In this section, we evaluate our proposed one-shot VC
method. We employed i-vectors [29] for speaker embedding
vectors used in the second approach described in Sect. 5.
There are several studies using i-vector extractor in VC
frameworks (e.g. [30]–[32]). Liu et al. [32] reported that
their multi-speaker VC system using i-vector extractor to
obtain a speaker embedding as a conditional input can
achieve voice conversion across arbitrary speakers based on
a single target speaker’s utterance. We use the abbrevia-
tion SCVC for the speech chain VC method utilizing one-
hot vectors to identify a speaker and ISCVC for the speech
chain VC trained with i-vectors.

6.1 System Configuration

To evaluate the performance of our methods, we used a
dataset of 80 speakers from JVS corpus [33] for the model
training. We used another four unseen speaker’s datasets
from the corpus as test sets.

Before the training of ISCVC, we trained the i-vector
extractor using the training dataset. For the acoustic features
in speaker modeling, 32-dimensional Mel-cepstrum were
calculated every 5 ms by using the WORLD analyzer [34].
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The 512 Gaussian universal background models, i-vector
extractor, linear discriminant analysis (LDA) and probabilis-
tic linear discriminant analysis (pLDA) [35] with whitening
and length normalization were trained on all the training
dataset. The dimension of i-vectors was set to 200. The
rank of LDA and pLDA projection matrix is set to 79 and
40 respectively. The extracted i-vectors per each speaker
were averaged and the resulting i-vector was used to repre-
sent each speaker.

The speech chain VC model of the ISCVC has the same
structures as that of the SCVC. For the acoustic features, 32-
dimensional Mel-cepstrum plus delta were calculated every
5 ms by using the WORLD analyzer. For the linguistic fea-
tures, we used 39 phoneme labels for 3 state phones (previ-
ous, current and next phonemes.) Using 3 state phones was
the minor modification from the experimental evaluation I.
The purpose of the modification was to enrich the linguistic
information. The 3 state phonemes were indicated by 3 sets
of one-hot vectors every 5 ms. So the dimensions of acous-
tic features and linguistic features used in the training were
64 and 117 respectively. The number of hidden units were
set to 256. In the training stage, 80 dimensional one-hot
vectors were used as the speaker identity vectors s for the
SCVC. For the ISCVC, to make the speaker identity vectors
s were non-zero unit vectors, we modified the extracted i-
vectors. The final dimension for the speaker identity vectors
of the ISCVC became 80. This ensured that the model com-
plexities for the ISCVC and the SCVC were the same. We
trained the model for 80 iterations using Adam optimizer
with a batch size of 8000, a learning rate of 0.001, and a
momentum term β1 of 0.9.

To make converted speech, we used 4 speakers from
JVS corpus: jvs087 (male), jvs090 (female), jvs095 (fe-
male), and jvs097 (male), none of these speaker’s data
has appeared in the training set. We set 8 conversion
pairs: male-to-male (jvs087 to jvs097 and jvs097 to jvs087),
female-to-female (jvs090 to jvs095 and jvs095 to jvs090),
male-to-female (jvs087 to jvs095 and jvs097 to jvs090),
female-to-male (jvs090 to jvs097 and jvs095 to jvs087).
There were 20 utterances for each speakers in the test sets.
The sentences of the utterances were same among speakers.
Each utterance was converted for each conversion setting
and the target speaker’s utterance was randomly selected
from the 20 utterances excluding the same sentence one with
the source speaker’s utterance†.

6.2 Subjective Evaluation

We conducted three subjective evaluations: a mean opinion
score (MOS) listening test for naturalness, a same/different
(SD) paradigm to measure speaker similarity, and a speaker
similarity XAB test. In each trial of the naturalness MOS
listening test, the speech sample, which was randomly se-
lected from converted speech and the analysis-synthesized

†Some audio samples can be found in
“http://sp.lab.uec.ac.jp/scvc demo.html”

Table 3 MOS for naturalness with 95% confidence intervals. n indicates
the number of measurements. Both the source and the target speakers were
unseen in the training phases.

Method MOS n
Source 4.28±0.19 86
Target 4.26±0.18 123
SCVC 2.02±0.19 112

ISCVC 2.33±0.21 99

speech, was presented to a participant. Each participant
evaluated the presented speech sample on a scale from 1
(highly unnatural) to 5 (highly natural). Each participant
evaluated 20 samples in the MOS test. The same/different
paradigm was conducted in the same manner as described
in the Sect. 4.4. Each participant evaluated 20 pair samples
in the SD paradigm. In the XAB test, X indicates the tar-
get reference speech. Paired speech (A and B) from the
proposed and baseline methods with the same text content
as the reference were presented and the participants were
asked to determine which one was closer to the reference
speaker. The baseline method was the GMM-based VC
method which was trained with two speech samples of the
same sentence uttered by source and target speakers. The
number of mixtures was 8, which was found to be the best
to train the GMM with such a small amount of sentences in
our preliminary experiment. The number of trials was 15 for
each test.

The three tests were conducted on an online evaluation
system we developed. Twenty-one listeners participated in
the naturalness MOS test and 20 listeners participated in the
SD paradigm and 29 listeners participated in the speaker
similarity XAB test.

The results of the MOS listening test for naturalness
are summarized in Table 3. The ISCVC method was rated
to have 2.33, which is slightly but statistically significantly
higher than that of the SCVC method; t(209) = 2.26, p =
0.0246. We could infer that using an independent i-vector
model helped the ISCVC model to estimate l̂ and d̂, and
causing better naturalness of the converted speech.

Figure 7 shows the results of the SD paradigm. In
the inter-gender conversion task, only 2% and 6% of con-
verted speech based on the SCVC and the ISCVC respec-
tively were recognized as target speaker’s voices. In the
intra-gender conversion task the percentages of converted
speech recognized as target speaker’s voices were 50% for
the SCVC and 44% for the ISCVC. We further investigated
the reason for the performance differences between inter-
and intra-gender conversions. Table 4 shows Mel-cepstral
distrotions (MCDs) between target and source/converted
speech used in the experiment. We could confirm the im-
provements of the MCDs both in the inter- and intra-gender
conversions but in the inter-gender conversion, the MCDs
of the converted speech were larger than 7.02, which was
the MCD between the source and target speech of the same
genders. It is conceivable that the MCDs in the inter-gender
conversion were improved but too large for the listeners to
perceive the converted speech as being spoken by the target
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Fig. 7 Similarity (with listener confidence) to target speaker. Both the
source and the target speakers were unseen in the training phases.

Table 4 MCDs (dB) between target and source/converted speech.

Method Intra Inter All
Source 7.02 8.50 7.76
SCVC 6.40 7.24 6.82

ISCVC 6.96 7.91 7.43

Fig. 8 Speaker similarity XAB test results for intra-gender conversion
(upper) and inter-gender conversion (lower). Error bars indicate 95% con-
fidence intervals.

speakers.
Figure 8 shows the results of the speaker similarity

XAB test. In the inter-gender conversion, the preference
scores of the proposed methods were significantly lower
than the that of the baseline method. In the intra-gender con-
version, there were no significant differences between the
proposed and the baseline methods. We can see that the per-

formance of the proposed methods are comparable to that
of the GMM-based method in the intra-gender conversion.
Please note that the GMM-based method is more advanta-
geous in using parallel speech samples in the training.

It should be noted that there is a much room for im-
provement of performances for the method training the
speech chain VC model with speaker embeddings because
the method is more flexible in deciding hyper parameters.
An additional examination confirmed that the MCDs were
improved when we set the number of the i-vector dimension
to 60: 6.28 dB in the intra-gender conversion and 6.93 dB
in the inter-gender conversion. Future work will therefore
investigate the best setting of the model parameters includ-
ing what types of speaker embedding models and how many
number of dimensions of the embedding vector should be
employed.

7. Conclusion

In this paper, we proposed a voice conversion method called
speech chain VC, which is based on an ARBM, introduc-
ing linguistic features and acoustic features as two classes
of visible units and latent phonological distinctive features
associated with articulatory movements as hidden units. The
model is designed to be interpretable by associating its ar-
chitecture with a chain of events in speech production. Our
experimental results showed that the proposed method pro-
duced results comparable to that of a parallel-training ap-
proach utilizing GMMs in speaker similarity and the con-
verted speech is highly intelligible. We analyzed the repre-
sentations of the hidden layer of speech chain VC model and
found that some of the hidden units correspond to phono-
logical distinctive features. We further proposed two ap-
proaches to achieve one-shot VC by using the speech chain
VC model. One of them was estimating the blending weight
of parameters from acoustic inputs and the other one was
training the speech chain VC model with speaker embed-
dings. Both the two approaches were moderately effec-
tive in the intra-gender conversion task, but the natural-
ness was slightly higher in the second approach. Our pro-
posed method is not limited to VC and may be applicable to
other tasks, such as speaker identification, speaker recogni-
tion, automatic speech recognition, and text-to-speech. Fur-
thermore, our proposed method is extensible: one potential
extension is modeling the whole speech chain framework.
Such a model could be useful to obtain scientific insights
into mechanisms of human speech communication.
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