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PAPER

Online Signature Verification Using Single-Template Matching
Through Locally and Globally Weighted Dynamic Time Warping

Manabu OKAWA†a), Member

SUMMARY In this paper, we propose a novel single-template strategy
based on a mean template set and locally/globally weighted dynamic time
warping (LG-DTW) to improve the performance of online signature veri-
fication. Specifically, in the enrollment phase, we implement a time series
averaging method, Euclidean barycenter-based DTW barycenter averag-
ing, to obtain a mean template set considering intra-user variability among
reference samples. Then, we acquire a local weighting estimate consider-
ing a local stability sequence that is obtained analyzing multiple matching
points of an optimal match between the mean template and reference sets.
Thereafter, we derive a global weighting estimate based on the variable im-
portance estimated by gradient boosting. Finally, in the verification phase,
we apply both local and global weighting methods to acquire a discrimina-
tive LG-DTW distance between the mean template set and a query sample.
Experimental results obtained on the public SVC2004 Task2 and MCYT-
100 signature datasets confirm the effectiveness of the proposed method for
online signature verification.
key words: signature verification, dynamic time warping (DTW), Eu-
clidean barycenter-based DTW barycenter averaging (EB-DBA), local
stability-weighted DTW (LS-DTW), locally and globally weighted DTW
(LG-DTW)

1. Introduction

For many years, signatures have been accepted as a means of
individual authentication based on their behavioral charac-
teristics that are unique for each person. Owing to the recent
advance of artificial intelligence and machine learning tech-
nologies, automated signature verification has progressed
significantly, particularly in the fields of biometrics [1], [2]
and forensics [3]–[5].

Data acquisition methods for automated signature ver-
ification can be categorized into offline and online ones.
Offline methods are used to compare ink-on-paper signa-
tures through optical and image analysis techniques [3], [6]–
[9]. In contrast, online methods analyze the dynamic in-
formation related to the act of signing, such as pen pres-
sure and pen inclination angle; consequently, online meth-
ods have generally better performance compared with of-
fline ones [1], [2].

Online signature verification systems usually consist of
two phases: enrollment and verification. In the enrollment
phase, users provide their own reference signatures to be
inputted into a system using feature extraction techniques.
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In the verification phase, the system compares a query sig-
nature with the reference ones, and then, applies matching
methods to accept or reject it.

Feature extraction techniques utilized for online signa-
ture verification can be classified into parameter-based and
function-based approaches. The parameter-based approach
employs the global information represented by parameters
or vectors (for example, signature duration, number of pen
ups/downs, and aspect ratio) [10], [11]. The function-based
approach is based on analyzing signature time series in
terms of time functions (for example, pen position trajec-
tory, pressure, and velocity) [12]–[18]. Generally, the sys-
tems based on the function-based approach achieve better
verification performance compared with those relying on
the parameter-based approach [10]–[12]. Both methods in-
corporate a widely adopted comparison method named tem-
plate matching that applies distance measurements, such as
dynamic time warping (DTW) [19], to signature data.

The template matching method includes multiple- and
single-template strategies [14], [17]. The multiple-template
strategy is used to calculate the respective distances between
a test sample and each of the reference ones and to compare
them in terms of descriptive statistics (for example, min,
max, mean, or median). The single-template strategy fo-
cuses on a representative sample directly selected from a
reference set or a mean template generated based on the ref-
erence set. Consequently, the single-template strategy has
advantages over the multiple-template one, such as higher
speed, security, and tolerance [15]–[18]. However, it is con-
sidered that the single-template strategy does not perform
as good as the multiple-template one being applied to the
function-based approach [14].

To improve the verification performance while address-
ing the limitation of the single-template strategy, recent
studies aimed to construct online signature verification sys-
tems based on the single-template strategy. In the research
work presented in [17], time series averaging based on
Euclidean barycenter-based DTW barycenter averaging
(EB-DBA) was proposed to obtain an effective single/mean
template while considering intra-user variability in refer-
ence signatures. Additionally, this method using EB-DBA
has advantages in security because we do not need to di-
rectly submit the original signature data to the system. The
studies [15], [16], [18] introduced the single-template strate-
gies utilizing mean templates obtained by performing time
series averaging with EB-DBA and a weighted DTW dis-
tance defined as a weighted sum of multiple DTW distances
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using gradient boosting (GB). However, the recent stud-
ies, presented in [20], [21], were aimed at extending DTW
itself and proposed a local stability-weighted DTW (LS-
DTW) using multiple matching points (MMPs) to reduce
the influence of local fluctuations in signatures. These stud-
ies addressed the limitations of the single-template strategy.
However, this approach still has room in terms of perfor-
mance improvement in real scenarios, such as forensic doc-
ument examiners (FDEs) that need to investigate various
types of signatures obtained under different writing condi-
tions [4], [5].

A promising approach is to incorporate both local
and global weighting estimates to fully exploit the comple-
mentary effects of the corresponding weighting approaches,
which have been inspired by two basic factors, respectively:
within-feature variation and between-feature variation for
each user, described in detail as follows.

• Local weighting:
Local weighting relies on within-feature variation as-
sociated with discriminative local parts in each fea-
ture represented in different ways for various writers.
In fact, FDEs typically analyze writing variations that
provide an important indicator for writer characteriza-
tion [4], [5]. Particularly, local stable parts in a signa-
ture prevent forgers from imitating it perfectly [5], [13].
• Global weighting:

Global weighting is based on between-feature varia-
tion corresponding to the discriminative combination
of multiple features represented in different ways for
various writers. The selection/weighting methods rely-
ing on discriminative features can be used effectively
to reduce the influence of fluctuations caused by inter-
nal/external changes so that systems can achieve better
verification performance [22], [23].

Therefore, the combined use of the local and global weight-
ing methods for DTW calculation in the single-template
strategy can facilitate analyzing inter-user variability while
considering intra-user variability among reference samples
through the use of mean templates. Consequently, it can
allow improving the performance of online signature verifi-
cation.

To effectively incorporate both local and global weight-
ing estimates into the single-template strategy, in this paper,
we propose a novel single-template strategy that is based
on a mean template set and locally/globally weighted DTW
(LG-DTW) aiming to improve the performance of online
signature verification providing higher speed, security, and
tolerance.

Specifically, in the enrollment phase, we adopt EB-
DBA to obtain a suitable mean template set while consid-
ering intra-user variability among reference samples. Then,
we derive a local weighting estimate based on a local stabil-
ity sequence that is acquired analyzing MMPs of an optimal
match between the mean template and reference sets. In the
next step, we calculate a global weighting estimate based
on the variable importance obtained through the GB model.

Finally, in the verification phase, we apply both local and
global weighting estimates to obtain the discriminative LG-
DTW distance between the mean template set and a query
sample.

The remainder of the paper is organized as follows.
In Sect. 2, we present the proposed signature verification
method. In Sect. 3, we discuss experimental methods and
results, and Sect. 4 outlines the conclusions.

2. Proposed Online Signature Verification Method

2.1 Outline

Figure 1 represents an outline of the proposed method.
Specifically, after obtaining online signature samples, we
apply a preprocessing step to improve signature quality and
extract features. Next, in the enrollment phase, a single-
template strategy including the mean template creation and
local/global weighting estimation is implemented on the
basis of the reference set. In the verification phase, the
dissimilarities between a test sample and the mean tem-
plates of a purported user are evaluated based on the LG-
DTW distance. Finally, the proposed method outputs a gen-
uine/forgery result for the test sample if the dissimilarity is
below/above a designated threshold.

The details of the calculation steps are explained in the
following subsections.

2.2 Preprocessing

To address with natural fluctuations in signature samples, in
this study, we adopt a common normalization approach for
horizontal and vertical pen coordinates {x(i), y(i)} that are
set forth in [17], [18] as follows:

x̂(i) =
x(i) − xg

xmax − xmin
, ŷ(i) =

y(i) − yg
ymax − ymin

(1)

where
(
xg, yg

)
is the centroid of a signature, and {xmin, ymin}

and {xmax, ymax} are the minimum and maximum values of
{x(i), y(i)}, respectively, for i = 1, 2, . . . , I with an I-point
length signature.

2.3 Feature Extraction

In the present study, we adopt the following widely used
seven function-based features [12], [14]–[18], [20]:

• Three original features: horizontal and vertical pen co-
ordinates {x(i), y(i)}, and pen pressure p(i).

Fig. 1 Outline of the proposed online signature verification method.
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Fig. 2 Examples of a signature and corresponding features (pen coordi-
nates “X̂” and “Ŷ,” pen pressure “P,” path-tangent angle “Ang,” path ve-
locity magnitude “Vel,” log curvature radius “Logcr,” and total acceleration
magnitude “Tam”). To protect privacy, only a forged signature image is
depicted.

• Four additional features: path-tangent angle θ(i), path
velocity magnitude ν(i), log curvature radius ρ(i), and
total acceleration magnitude α(i), derived from the
original features as follows:

θ(i) = arctan(ẏ(i)/ẋ(i)), (2)

ν(i) =
√

ẋ(i)2 + ẏ(i)2, (3)

ρ(i) = log (ν(i)/θ̇(i)), (4)

α(i) =
√
ν̇(i)2+(ν(i)·θ̇(i))2. (5)

Here, the derivatives of discrete-time signals (i.e., ẋ(i),
ẏ(i), θ̇(i), ν̇(i)) are calculated using the second-order re-
gression while removing small noisy variations accord-
ing to the following formula:

ḟ (i) =

∑2
ε=1 ε( f (i + ε) − f (i − ε))

2
∑2
ε=1 ε

2
. (6)

Finally, we normalize each time series into a mean of
zero and unit standard deviation to rearrange values into
different ranges between the seven function-based features
(Fig. 2).

2.4 Single-Template Strategy

To improve the discriminative power of single-template
matching, we develop a novel single-template strategy us-
ing a set of mean templates and local/global weighting es-
timates to obtain an LG-DTW distance. Specifically, in the
enrollment phase, the following steps are included: (1) a set
of mean templates for each feature is first calculated using
a time series averaging method called EB-DBA; (2) local
weighting estimate corresponding to the mean templates are
acquired based on MMPs to obtain multiple LS-DTW dis-
tances; (3) finally, global weighting estimate corresponding
to LS-DTW distances are calculated through the GB model.
Consequently, we can obtain the LG-DTW distance using
the local and global weighting estimates derived in the veri-
fication phase. Figure 3 represents the schematic process of
the proposed single-template strategy.

Fig. 3 Process of the proposed single-template strategy: (1) mean tem-
plate creation per feature through EB-DBA (solid black lines) using an ex-
ample of five reference time series (dashed lines in different colors); (2) lo-
cal weighting of the mean templates for each DTW warping; (3) global
weighting for LS-DTW distances through the GB model.

The details of the implemented steps are explained be-
low.

2.4.1 Distance Measurement

To effectively evaluate the dissimilarity between two online
signatures, which generally have different sequence lengths
even when written by the same user, in this study, we adopt a
distance measurement method based on DTW [19]. DTW is
used to identify an optimal match between two time series
by comparing their nonlinear mapping results and finally,
outputs the minimized distance between them.

Concerning D-dimensional multivariate time series, we
can calculate DTW using two types of warping: depen-
dent and independent ones [17], [24]. DTW with indepen-
dent warping denoted as DTWI is individually calculated for
each feature, assuming that each DTW is a one-dimensional
trajectory in the one-dimensional Euclidean space. DTW
with dependent warping referred to as DTWD is directly de-
rived as a single DTW corresponding to the set of features,
assuming that the considered D-dimensional time series as a
one-dimensional trajectory in the D-dimensional Euclidean
space. According to the results of the recent research ded-
icated to online signature verification [17], [18], we utilize
both types of DTW distances corresponding to multiple fea-
tures. The details of the DTW calculation are presented
below.

Let us assume that A and B are two univariate time
series of different lengths I and J, respectively, defined as
follows:

A = {a(1), a(2), . . . , a(i), . . . , a(I)},
B = {b(1), b(2), . . . , b( j), . . . , b(J)}.

Considering the D-dimensional multivariate time series
a(i) ∈ RD and b( j) ∈ RD, d-th dimensions of the time se-
ries elements are denoted as ad(i) and bd( j).

Then, I × J cost matrix is constructed using the cost
function d(·, ·) between two points of the time series accord-
ing to the following formula:
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d(a(i), b( j)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a(i) − b( j))2 (DTWI),
D∑

d=1

(ad(i) − bd( j))2 (DTWD).
(7)

Thereafter, a warping path W= {wp}Pp=1 with max(I, J)≤
P ≤ (I+ J−1) is derived based on the cost matrix, satisfying
the boundary, continuity, and monotonicity conditions set
forth in [19].

Finally, DTW can be defined as follows:

DTW(A, B) = min
W

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P∑

p=1

d(wp)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (8)

where d(wp) = d(a(i), b( j)) corresponds to i and j at position
p in the warping path. This distance can be obtained by
recursively calculating the cumulative distance as follows:

D(i, j) = d(a(i), b( j)) +min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D(i, j − 1),

D(i − 1, j − 1),

D(i − 1, j).

(9)

2.4.2 Mean Template Creation

The single-template strategy using mean templates is ap-
plied to improve the performance. To obtain mean templates
from the reference set, we apply EB-DBA, which provides
effective mean templates while considering intra-user vari-
ability among all reference samples [17].

Specifically, EB-DBA is an iterative algorithm that
is used to refine an average sequence calculated from
N reference samples so that each iteration follows an
expectation–maximization scheme. First, we obtain a
Euclidean barycenter (EB) sequence based on the reference
set in which the elements are resampled to reach their av-
erage length equally. Then, DBA [25] based on the original
reference set is computed utilizing the EB sequence for the
initial sequence, according to the following two steps:

• Step 1 that computes DTW between each individual
and temporary averaged sequences to identify the best
alignment between the averaged sequence and all ref-
erence ones.
• Step 2 that updates each alignment of the averaged se-

quence as a barycenter of an alignment associated with
it.

Applying EB-DBA to all seven function-based fea-
tures, a mean template set composed of seven univariate
time sequences can be finally obtained (Fig. 3 (1)).

2.4.3 Local Weighting Calculation

To calculate local weighting estimate relying on within-
feature variation, we adopt MMPs [20] to evaluate the local
stability of the mean template set.

Specifically, MMPs are used to detect multiple match-
ing points of DTW warping trajectories in which there is a

Fig. 4 Example of estimation process for the local stability using toy
samples: the warping relation between the mean template “MT” and five
references “R1” to “R5,” the MMPs, and the local stability sequence.

significant distortion between the mean template set and the
reference signatures; consequently, the MMP sequence in-
dicates the local instability of the mean template sequence,
and the inverse sequence can be considered as the local sta-
bility. Finally, we utilize each local stability sequence as
the weights for the DTW cost function, which is applied to
obtain LS-DTW distances.

It should be noted that the previous study [20] sug-
gested applying local weighting only to DTW with depen-
dent warping, whereas the method proposed in this study
applies it to DTW with both dependent and independent
warping to enhance the discriminative power according to
the following global weighting (Sect. 2.4.4). Therefore, we
update conventional LS-DTW so as to apply dependent and
independent warping as described further.

We assume that there is an I-length multivariate time
sequence corresponding to mean template A, and that the
original set of N references B = {Bn}Nn=1 with a Jn-length
multivariate time sequence. Then, the estimation process of
the local stability can be outlined as follows (Fig. 4):

1. First, we compute standard DTW for each warping be-
tween A and B and then, obtain a set of N optimal
warping paths according to the formula below:

W(A,B) = {Wn(A, Bn)}Nn=1.

2. Next, for each DTW warping, we calculate N MMP
sequences from W(A,B) and then, obtain the averaged
MMP sequence as follows:

{mmpi}Ii=1 =

⎧⎪⎪⎨⎪⎪⎩
1
N

N∑
n=1

cn
i

⎫⎪⎪⎬⎪⎪⎭
I

i=1

(10)

where cn
i is the cardinality of a set belonging to the

ith point of the mean template sequence defined as fol-
lows:

cn
i = card{(ink , jnk) ∈ Wn(A, Bn) | ink = i}.
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3. Finally, we obtain I-length local weight sequences
LSI = {LSd

I }Dd=1 for independent warping and LSD for
dependent warping defined as follows:

LSd
I = {lsd

I (1), lsd
I (2), . . . , lsd

I (i), . . . , lsd
I (I)}

LSD = {lsD(1), lsD(2), . . . , lsD(i), . . . , lsD(I)}
where ls(i) = 1/mmpi is 0 < ls(i) ≤ 1, which is equal
to one when a pair of matching points corresponds to
direct/single matching and approaches zero with an in-
crease in the number of MMPs.

Then, to obtain a locally weighted DTW distance de-
noted as LS-DTW, cost function d(·, ·) between two points
of the considered time series, as defined in Eq. (7), can be
rewritten by weighting it by the corresponding local weight
sequences as follows:

d(a(i), b( j))

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

lsI(i) × (a(i)−b( j))2 (LS-DTWI),

lsD(i) ×
D∑

d=1

(ad(i)−bd( j))2 (LS-DTWD).
(11)

Examples of local weight sequences, LSI and LSD, are
represented in Fig. 3 (2).

2.4.4 Global Weighting Calculation

To improve the discriminative power of the system inspired
by between-feature variations, we construct a fusion method
by summing up a set of {LS-DTWd

I }Dd=1 and LS-DTWD with
a global weighting, in which the variable importance is cal-
culated using the gradient boosting (GB) model.

GB is a machine learning technique for performing su-
pervised learning tasks, which produces a prediction model
in the form of an ensemble of weak learners, typically de-
cision trees [26]. It is a step-wise, additive-type model that
sequentially fits new tree-based models, while minimizing
the loss function. The GB algorithm attempts to construct
the new base-learners to be maximally correlated with the
negative gradient of the loss function, based on the previ-
ously assembled trees. Then, the GB model can provide the
information about the importance of variables, which can be
used to select and rank the features determined by the vari-
able average relative influence across all trees generated by
the algorithm.

While constructing a GB model in this study, we use
positive instances (the intra-user variability between the tar-
get signer mean template and the reference set) and negative
instances (the inter-user variability between the target signer
mean template and the other signer one) for each user. For
example, when using five genuine signatures as the refer-
ence set in the SVC2004 Task2 dataset, we obtain 5 positive
instances and 39 negative ones (Sect. 3). A grid search is
then applied to tune the parameters of the GB model.

After implementing the GB model, we finally obtain
the global weighting factors {αd}Dd=1 for the seven LS-DTW
distances with independent warping denoted as LS-DTWI

while satisfying
∑D

d=1 αd = 1 for each user.
Figure 3 (3) illustrates an example of the variable im-

portance of a user using the GB model.

2.4.5 LG-DTW Calculation

After obtaining the local and global weighting estimates in
the enrollment phase, we evaluate dissimilarities between a
test sample and the mean template set based on LG-DTW in
the verification phase as described below.

1. First, we calculate a set of {LS-DTWd
I }Dd=1 and

LS-DTWD distances using the local weighting estimate
as follows: LSI = {LSd

I }Dd=1 and LSD. Then, we apply
min–max scaling to each distance, which parameters
are estimated using the reference set.

2. Then, we calculate the LG-DTW distance using the
global weighting factors {αd}Dd=1 for LS-DTWI and the
constant weighting β for LS-DTWD as follows:

LG-DTW =

⎛⎜⎜⎜⎜⎜⎝
D∑

d=1

αd × LS-DTWd
I

⎞⎟⎟⎟⎟⎟⎠+(β × LS-DTWD) .

(12)

It should be noted that the previous studies [15], [16]
estimated the global weighting factors using the GB model
while satisfying

∑D
d=1 αd + β = 1; however, the recent stud-

ies [17], [18] have outlined that DTWD allows achieving sig-
nificantly better performance compared with DTWI. There-
fore, this study estimates the weighting β for LS-DTWD in-
dependently while satisfying

∑D
d=1 αd = 1 in the prelimi-

nary experiments, and we finally obtain the optimal β = 1,
which leads to further improvement its verification perfor-
mance and calculation complexity (Sect. 3.2).

2.5 Evaluation

After evaluating the dissimilarities between the mean tem-
plate of the purported user and the test sample based on
LG-DTW in the verification phase, the system outputs an
accept/reject result based on whether the extent of dissimi-
larities is below/above the designated threshold.

Finally, we evaluate the signature verification perfor-
mance by analyzing the equal error rate (EER) with a writer-
dependent threshold, which is calculated at the point where
the false rejection rate (namely, a fraction of genuine sig-
natures rejected as forgeries) and the false acceptance rate
(namely, a fraction of skilled forgeries accepted as genuine)
are equal.

3. Experiments

3.1 Methods

At present, skilled forgery detection is considered as a chal-
lenging task, specifically, concerning FDEs [3]–[5].

To facilitate the implementation of this task and to dis-
tinguish skilled forgeries from genuine signatures, in this
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Fig. 5 Overall performance of the proposed method for the SVC2004
Task2 dataset.

study, we considered the common SVC2004 Task2 [27] and
MCYT-100 [28] online signature datasets. In both datasets,
skillfully forged signatures were collected from other con-
tributors who had the sufficient training time and powerful
tools to produce valid forged signatures that were as close as
possible to the targeted genuine signatures; therefore, in this
study, we adopted both datasets to conduct experiments.

The SVC2004 Task2 dataset [27] comprised 1,600 sig-
natures, including Western and Asian signatures, from 40
writers. For each of them, 20 genuine and 20 skillfully
forged signatures were registered. The signature data in-
cluded the horizontal and vertical coordinates, pen pressure,
azimuth, inclination with a time stamp, and pen up/down
status. All these characteristics were captured using a digi-
tizing tablet at the sampling rate of 100 Hz. To avoid privacy
issues, the writers were requested to provide the invented
signatures as genuine after performing sufficient practice.
Following the experiments described in the previous studies
(Table 1), in each experiment on this dataset, we randomly
selected N = 5 or N = 10 genuine signatures as the refer-
ence set.

The MCYT-100 dataset [28] comprised 5,000 Western
signatures obtained from 100 writers. Here 25 samples of
both genuine and skillfully forged signatures were registered
for each writer. The signature data included the horizontal
and vertical coordinates, pen pressure, azimuth, and incli-
nation with a time stamp. All these characteristics were
captured using a digitizing tablet at the sampling rate of
100 Hz. According to the experiments conducted in the pre-
vious studies (Table 2), in each experiment on this dataset,
we randomly selected N = 5 genuine signatures as the ref-
erence set.

To prevent selection bias, we repeated all experiments
five times and finally, reported the averaged EERs.

3.2 Results

3.2.1 Overall Performance

To confirm the effectiveness of the proposed method, we
compared the three DTW weighting methods using the
common SVC2004 Task2 and MCYT-100 datasets under
the same mean template set and experimental conditions
(Sect. 3.1), as described below:

• S-DTW: calculating a simply summed DTW distance

Fig. 6 Overall performance of the proposed method with N = 5 as the
reference set for the MCYT-100 dataset.

for dependent and independent warping, without ap-
plying any weightings.
• G-DTW: estimating a DTW distance applying global

weighting to the S-DTW distance.
• L-DTW: computing a DTW distance applying local

weighting to the S-DTW distance (i.e., a sum of
{LS-DTWd

I }Dd=1 and LS-DTWD distances).
• LG-DTW: obtaining the proposed LG-DTW distance

applying both local and global weighting to the S-DTW
distance.

Figures 5 and 6 represent the comparison between
the performance estimates of the proposed method and the
single-template strategy based on the conventional DTW
distance in terms of EER.

As can be seen from these figures, the single-template
strategy based on the DTW weighting method performs
much better compared with the conventional S-DTW for
both SVC2004 Task2 and MCYT-100 datasets. We indicate
that the proposed method, LG-DTW, using both the local
and global weighting estimates for DTW, achieves the low-
est EERs in the experiments.

These results confirm that the proposed LG-DTW pro-
vides an effective single-template strategy for online signa-
ture verification.

3.2.2 Comparative Analysis

To further confirm the effectiveness of the proposed method,
its EERs were compared with those of other systems applied
to the SVC2004 Task2 and MCYT-100 datasets.

Tables 1 and 2 summarize EERs obtained for the pro-
posed method and the alternative ones proposed in the previ-
ous studies that were considered relevant if they have used
only genuine signatures in the enrollment phase and both
genuine and skillfully forged signatures in the verification
phase.

As can be seen from these tables, concerning both
SVC2004 Task2 and MCYT-100 datasets, the proposed
method achieves the best verification performance com-
pared with the other conventional methods, as it is based
on the proposed single-template strategy, which is advanta-
geous in terms of speed, security, and tolerance.

Thus, we conclude that the proposed single-template
strategy is effective for online signature verification.
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Table 1 Comparison between the proposed method and alternative systems for the SVC2004 Task2 dataset.

Method #References EER (%)
Dynamic time functions and hidden Markov models [12] 5 6.90
Support vector machine with the longest common subsequences kernel function [29] 5 6.84
Score fusion issuing from hidden Markov models [30] 5 4.83
Feature selection and DTW [22] 5 3.38
Template matching using mean templates and a weighted sum of DTW distances using GB [18] 5 2.98
Enhanced contextual DTW based system using vector quantization [31] 5 2.73
Convolutional neural network using synthesized signatures [32] 5 2.63
Discriminative feature selection and DTW with signature curve constraint [23] 5 2.60
DTW and warping path-based features [33] 5 2.53
Two-stage method using shape contexts and function features [34] 5 2.39
Proposed 5 2.11
Semi-parametric method based on discrete cosine transform and sparse representation [11] 10 3.98
Template selection and DTW [35] 10 2.84
DTW and warping path-based features [33] 10 2.79
Template matching using mean templates and a weighted sum of DTW distances using GB [16], [18] 10 1.80
Proposed 10 1.36

Table 2 Comparison between the proposed method and alternative systems for the MCYT-100 dataset.

Method #References EER (%)
Signature partitioning and the weights of importance for selected partitions [36] 5 4.88
Histogram-based features and Manhattan distance [10] 5 4.02
Combination of global and regional features [37] 5 3.69
Score fusion issuing from hidden Markov models [30] 5 3.37
Information divergence-based matching strategy [14] 5 3.16
Interval valued symbolic representation with writer-dependent parameters [38] 5 2.2
Modified DTW with signature curve constraint [23] 5 2.17
Enhanced contextual DTW based system using vector quantization [31] 5 1.55
Template matching using mean templates and DTW distances [17] 5 1.34
Template matching using mean templates and a weighted sum of DTW distances using GB [18] 5 1.28
DTW and warping path-based features [33] 5 1.15
Convolutional neural network using synthesized signatures [32] 5 0.93
Proposed 5 0.91

4. Conclusion

In the present study, we aimed to develop an effective online
signature verification method inspired by within-feature and
between-feature variations for each user. To achieve this, we
proposed a novel single-template strategy based on a mean
template set and LG-DTW to improve the performance.

Specifically, in the enrollment phase, we adopted EB-
DBA to obtain a mean template set, considering intra-user
variability among reference samples. Then, we calculated
the local weighting based on the local stability sequence es-
timated from MMPs and the global weighting on the basis
of the variable importance estimated through applying a GB
model. Finally, in the verification phase, we considered the
local and global weighting estimates to obtain the LG-DTW
distance between the mean template set and a query sam-
ple. The results of the experiment conducted on the pub-
lic SVC2004 Task2 and MCYT-100 signature datasets con-
firmed the effectiveness of the proposed method for online
signature verification.

We conclude that the proposed method is relevant to
time series classification, and therefore, can be expanded to
other time series analysis tasks with a need for systems with
high speed, security, and tolerance. Furthermore, unlike re-
cent black-box modeling strategies, including deep learning

algorithms, the proposed method relies on explainable step-
wise methods; therefore, it is particularly useful for specific
applications, such as forensics and security, in which fair-
ness, accountability, and transparency are critically impor-
tant [39].

The limitations of this study include the need for multi-
ple reference samples to obtain a set of mean templates and
local/global weighting estimates. In this context, it would
be interesting to extend the proposed method to the writer-
independent system.
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method for dynamic time warping, with applications to clustering,”
Pattern Recognit., vol.44, no.3, pp.678–693, 2011.

[26] J.H. Friedman, “Greedy function approximation: A gradient boost-
ing machine,” Annals of statistics, vol.29, no.5, pp.1189–1232,
2001.

[27] D.-Y. Yeung, H. Chang, Y. Xiong, S. George, R. Kashi, T.
Matsumoto, and G. Rigoll, “SVC2004: First international signature
verification competition,” Biometric Authentication (Proc. ICBA
2004), LNCS 3072, pp.16–22, 2004.

[28] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M.
Faundez-Zanuy, V. Espinosa, A. Satue, I. Hernaez, J.-J. Igarza, C.
Vivaracho, D. Escudero, and Q.-I. Moro, “MCYT baseline corpus:
A bimodal biometric database,” IEE Proceedings-Vision, Image and
Signal Processing, vol.150, no.6, pp.395–401, 2003.

[29] C. Gruber, T. Gruber, S. Krinninger, and B. Sick, “Online signa-
ture verification with support vector machines based on LCSS ker-
nel functions,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol.40,
no.4, pp.1088–1100, 2010.

[30] B.L. Van, S. Garcia-Salicetti, and B. Dorizzi, “On using the viterbi
path along with HMM likelihood information for online signature
verification,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol.37,
no.5, pp.1237–1247, 2007.

[31] A. Sharma and S. Sundaram, “An enhanced contextual DTW based
system for online signature verification using vector quantization,”
Pattern Recognit. Lett., vol.84, pp.22–28, 2016.

[32] S. Lai, L. Jin, L. Lin, Y. Zhu, and H. Mao, “SynSig2Vec: Learn-
ing representations from synthetic dynamic signatures for real-
world verification,” Proc. 34th AAAI Conf. Artificial Intelligence
(AAAI-20), 2020.

[33] A. Sharma and S. Sundaram, “On the exploration of information
from the DTW cost matrix for online signature verification,” IEEE
Trans. Cybern., vol.48, no.2, pp.611–624, 2018.

[34] Y. Jia, L. Huang, and H. Chen, “A two-stage method for online sig-
nature verification using shape contexts and function features,” Sen-
sors, vol.19, no.8, p.1808, 2019.

[35] N. Liu and Y. Wang, “Template selection for on-line signature verifi-
cation,” Proc. 19th Int. Conf. Pattern Recognit. (ICPR 2008), pp.1–4,
2008.
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