
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.7 JULY 2021
931

PAPER

Alleviating File System Journaling Problem in Containers for
DBMS Consolidation

Asraa ABDULRAZAK ALI MARDAN†a), Nonmember and Kenji KONO†, Member

SUMMARY Containers offer a lightweight alternative over virtual ma-
chines and become a preferable choice for application consolidation in the
clouds. However, the sharing of kernel components can violate the I/O
performance and isolation in containers. It is widely recognized that file
system journaling has terrible performance side effects in containers, espe-
cially when consolidating database management systems (DBMSs). The
sharing of journaling modules among containers causes performance de-
pendency among them. This dependency violates resource consumption
enforced by the resource controller, and degrades I/O performance due to
the contention of the journaling module. The operating system develop-
ers have been working on novel designs of file systems or new journaling
mechanisms to solve the journaling problems. This paper shows that it
is possible to overcome journaling problems without re-designing file sys-
tems or implementing a new journaling method. A careful configuration of
containers in existing file systems can gracefully solve the problems. Our
recommended configuration consists of 1) per-container journaling by pre-
senting each container with a virtual block device to have its own journaling
module, and 2) accounting journaling I/Os separately for each container.
Our experimental results show that our configuration resolves journaling-
related problems, improves MySQL performance by 3.4x, and achieves
reasonable performance isolation among containers.
key words: virtualization, container, DBMS, journaling file system

1. Introduction

Database management systems (DBMSs) are a common
service in the cloud. Many cloud-based services such as
Dropbox [1], Salesforce [2], and Facebook [3] make use of
DBMS. Microsoft’s SQL Azure [4] and Google Cloud
SQL [5] provide DBMS as a cloud service. Cloud-services
providers employ virtualization to consolidate DBMSs for
efficient resource utilization and to isolate collocated DBMS
workloads [6], [7]. Containerization or operating system
(OS) based virtualization has become widely used for de-
ploying and consolidating applications in clouds [8]. Con-
tainers are lightweight, deploy applications efficiently at a
large scale and bring the performance advantage over vir-
tual machines with almost no virtualization overhead.

Despite the advantages, containers have some short-
comings because of the sharing of OS kernel’s components
such as the file system. It is widely recognized that file sys-
tem journaling has negative side-effects in containers [9]–
[11]. OpenVZ [12] developers show that the journal is a
serious bottleneck in containers and try to address this prob-

Manuscript received September 7, 2020.
Manuscript revised December 23, 2020.
Manuscript publicized April 1, 2021.
†The authors are with Keio University, Yokohama-shi, 223–

8522 Japan.
a) E-mail: asraaiteng@sslab.ics.keio.ac.jp

DOI: 10.1587/transinf.2020EDP7178

lem [10]. Mizusawa et al. [11] show that the performance of
file writing in docker is severely low because of journaling.
Our previous work [13], [14] examines DBMS performance
and reveals that the sharing of the journaling module among
containers has a negative impact on performance of DBMS
in containers. On the other hand, journaling is very impor-
tant to guarantee consistency and for crash recovery in file
systems [10], [15]. The Journaling records updates not yet
committed to the file system and provides backup and re-
covery capabilities. Hence, journaling should not be turned
off especially in update-intensive applications like DBMS.

The journaling problems in containers are caused
mainly for the following reasons. Since a journaling mod-
ule is shared inherently among containers, it causes perfor-
mance dependency between containers. A journaling mod-
ule batches updates from multiple containers into a trans-
action and commits the transaction to disk periodically or
when fsync is invoked. If a single transaction contains up-
dates from multiple containers, each container has to wait
until the data belonging to other containers is flushed. Even
if each transaction contains updates solely from one con-
tainer, the transactions are serialized in a journaling module
and cannot be committed in parallel. It takes a long time to
commit the transaction and fsync from other containers are
suspended because of the lack of parallelism. Also, journal-
ing interferes with disk I/O control of the kernel resource
control mechanism known as cgroup [16]. Since the jour-
naling module is running outside of containers, I/O opera-
tions from the module are overlooked by the cgroup and
not accounted for the container that initiates the journaling
I/Os.

To solve these journaling problems, OS researchers
work on designing a completely new file systems [9], [17],
[18] or developing novel journaling mechanisms [19] to
overcome the journaling issues. However, all of these works
involve non-negligible modifications to the kernel. Hence,
these solutions are difficult to deploy on current cloud plat-
forms.

In this paper, we quest for possible solutions to al-
leviate the file system journaling problems in containers.
We show that these problems can be overcome without re-
designing the file systems or modifying the existing ker-
nel. The careful configuration of containers can gracefully
solve the journaling-related problems. First, our configura-
tion provides each container with a virtual disk so that each
container can have its own file system. Hence, each con-
tainer has its own journaling module to eliminate the bottle-

Copyright c⃝ 2021 The Institute of Electronics, Information and Communication Engineers

932
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.7 JULY 2021

neck of the shared journaling module and its performance
dependencies.

Second, these per-container journaling modules are
still running outside of controlled containers and their I/Os
are still overlooked. Hence, a proper configuration of kernel
processes that handle the journaling operations is needed.
To account journaling I/Os, these processes should belong
to the same cgroup to which the container controlled by
each kernel process belongs. Our results show that DBMS
performance improves up to 1.3x with the virtual block de-
vice configuration, and improves more up to 3.4x with the
proper configuration of per-container journaling processes.
Eventually, containers show performance isolation compa-
rable to that of virtual machines.

This configuration is not widely adopted in the clouds
because most container implementations do not allow this
configuration. To the best of our knowledge, our rec-
ommended configuration is possible only in OpenVZ [12]
with Ploop [20]. Most container implementations use
chroot [21] to provide a container with its own root di-
rectory, which is a sub-tree of the host file system [22], [23].
Even if a virtual block device is enabled, it lacks the support
of direct I/O that bypasses the kernel cache, and causes the
double-caching problem. Unfortunately, major cloud ser-
vices like Azue [24] and Google cloud [25], neither use our
configuration nor support the OpenVZ with Ploop [26], [27].
We advocate the need of per-container virtual disks with
its own journaling module, and per-container journaling ac-
counting. These features should be supported in container
implementations other than OpenVZ with Ploop.

The rest of this paper is organized as follows: Sect. 2
describes the journaling-related problems in containers and
shows that containers are not suitable for DBMS consoli-
dation. Section 3 proposes a configuration model for con-
tainers to overcome journaling-related problems. Section 4
shows the experiments’ results that confirm the the feasibil-
ity of our recommended configuration. Section 5 discusses
our findings, while Sect. 6 presents the work related to ours.
Section 7 concludes the paper.

2. Journal-Related Problem in Containers

The sharing of kernel components among containers results
in violating the isolation among them. This section demon-
strates how the sharing of the journaling module violates I/O
isolation and degrades the performance of containers. Sec-
tion 2.1 gives a background on containers. Section 2.2 ex-
plains file system journaling in containers while section 2.3
explains the journaling-related problem. Section 2.4 shows
that the journaling has negative effects on I/O-intensive ap-
plications like DBMS.

2.1 Container-Based Virtualization

Containers refer to multiple virtual units that are created in
the user space. In containers, user processes run directly
on the host OS without any virtualization overhead. These

containers share the same OS kernel but are isolated from
each other through private namespaces [28] and the resource
control groups, called cgroup [16]. Namespaces allow cre-
ating separate instances of the global resources. Linux im-
plements filesystem, PID, network, user, IPC, and hostname
namespaces. For example, each filesystem namespace has
its own root directory and mount table [29].

The cgroup is a group of processes that are bound by
the same resource limits [30]. The cgroup is largely com-
posed of two parts, the core and controllers. The core is re-
sponsible for hierarchically organizing processes while the
controller is responsible for distributing a specific type of
system resource along the hierarchy [16]. The OS kernel
provides access to multiple controllers (also called subsys-
tems) that limit the resource usage for each container; for
example, the I/O controller limits disk usage, the CPU con-
troller limits CPU usage, etc. The I/O controller implements
two policies to set limits on input/output access to and from
block devices. The first policy is I/O throttling which caps
the maximum usage of I/O bandwidth or request rates. The
second policy is the proportional I/O weight which assigns
a share of disk I/Os [16]. It enforces resource limits only
when the resource contention actually occurs.

Containers rely on chroot [21] to provide a per-
container view of a file system, which is a sub-tree of
the host file system [22], [23]. The chroot (change root)
changes the root directory for the current running process
and their children to the sub-tree. A process that is running
in such a modified environment cannot access files that are
outside the sub-tree. This modified environment is popu-
lated with all required configuration files, device nodes, and
shared libraries to be run successfully.

2.2 Journaling in Containers

Modern file systems use journaling [10], [15], [19], [31] to
keep the file system consistent even after unexpected sys-
tem crashes or power failures. Updating files or directories
usually requires multiple write operations on on-disk data
structures. If a power failure or system crash happens be-
tween the writes, the on-disk data structures become incon-
sistent. For example, when a file is removed, the disk blocks
it occupies must be returned to the free block list. This op-
eration involves the updates on multiple on-disk data struc-
tures such as inode and bitmap. If the on-disk structures are
partially updated, the file system becomes inconsistent. In
the worst case, the user cannot access to it anymore.

Journaling is write-ahead logging. Before updating the
file system, it logs the write operations to an on-disk region
called journal.

A kernel component responsible for journaling activ-
ities is called a journal module. Only a single journaling
module can run at a time [32]. If there are multiple journal-
ing modules, they cause a race condition and the file system
become inconsistent. For efficiency, several updates on files
or directories are bundled into a single transaction which
logs the write operations. In the Linux file system (ext4),

ABDULRAZAK ALI MARDAN and KONO: DBMS PERFORMANCE AND ISOLATION IN VIRTUALIZED ENVIRONMENTS
933

Fig. 1 File system journaling in container virtualization.

JDB2 (Journaling Block Device) is responsible for journal-
ing. The JBD2 groups the updates from multiple containers
in that single compound transaction. After logging the up-
dates, the transaction are committed to the file system and
then removed from the journal.

In case of a system crash or power failure, the file sys-
tem recovers from inconsistency by re-doing the logs in the
journal. Under the normal operation, transactions are com-
mitted periodically (5 sec by default) or every time fsync is
invoked.

2.3 Journaling Issues in Containers

The sharing of a journaling module in containers has a neg-
ative impact on disk I/O performance and isolation. The
journaling module causes performance dependencies across
collocated containers, which result in violation of perfor-
mance isolation and degrade I/O performance in containers.

In Fig. 1, two containers share the single journaling
module and thus a single transaction bundles updates from
the two containers. When one container issues fsync, the
journaling module commits all the updates in the transaction
and thus the one container has to wait until the updates from
the other container are committed. This dependency can vi-
olate the performance isolation because one container can
degrade the performance of another by issuing many fsync
calls.

A performance dependency can be caused even if a sin-
gle transaction solely contains updates from one container.
Suppose transactions 2 and 3 contain updates solely from
container A and B, respectively. Transactions A and B can-
not be committed in parallel because transactions are serial-
ized in the journaling module to keep the order of updates.
Therefore, if two containers issue fsync at the same time,
container A, for example, has to wait until transaction B is
committed.

The sharing of journaling module among containers in-
terferes with the disk I/O control of cgroup as well. As
shown in Fig. 1, the journaling module is running outside of
controlled containers. The journaling I/Os are overlooked
by cgroup and not accounted for the container that initiated
the updates. Suppose that cgroup divides the disk I/Os of
container A and B into 70% and 30% share, respectively. If
container B issues fsync calls frequently, its correspond-
ing journaling I/Os are not accounted for the 30% disk I/O
share. This results in violation of performance isolation be-

Fig. 2 Disk I/O throughput of FIO sequential-write benchmark. The
graph shows 1) standalone, 2) collocated with no-fsync and 3) collocated
with high-fsync cases.

Fig. 3 MySQL throughput in KVM and openVZ. The graph shows 1)
standalone, 2) collocated with no-fsync and 3) collocated with high-fsync
cases.

tween containers A and B; container B gets higher disk I/O
share than 30%.

2.4 DBMS Performance and Isolation in Containers

To confirm that the journaling has negative effects on DBMS
performance and isolation, we performed a set of experi-
ments. We consolidated a MySQL container with a con-
tainer running either with no-fsync, low-fsync, or high-
fsync workloads. The detailed experimental setup is shown
in Sect. 4.1. We consider OpenVZ as a representative of
containers, and compare the results with KVM in which
each VM has its own journaling module and avoids all the
journaling-related problems.

First, we conduct a preliminary experiment to examine
the I/O performance in KVM and OpenVZ. Figure 2 shows
the disk I/O throughput of the FIO sequential-write bench-
mark in three different cases: 1) stand-alone, 2) consoli-
dation with no-fsync; where the collocated VM/container
runs the no-fsync workload, and 3) consolidation with high-
fsync; where the collocated VM/container runs the high-
fsync workload. In the standalone case, OpenVZ outper-
forms KVM because of the lightweight nature of contain-
ers. When collocated with no-fsync, OpenVZ keeps its ad-
vantage over KVM, but when collocated with high-fsync,
KVM outperforms OpenVZ because of the contention in the
shared journaling module in OpenVZ.

Figure 3 shows MySQL throughput in OpenVZ and
KVM. KVM performance of the standalone MySQL is
competitive with OpenVZ because the number of disk I/Os
in MySQL is smaller than in the FIO sequential-write

934
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.7 JULY 2021

Fig. 4 Disk I/O usage of MySQL in OpenVZ when collocating with
high-fsync workloads. MySQL is given 70% share of disk I/O.

benchmark (30% less in MySQL than FIO benchmark).
This diminishes the performance advantage of OpenVZ.
When MySQL is collocated with no-fsync, low-fsync, and
high-fsync benchmark, the performance of OpenVZ de-
grades because of the shared journaling module; fsync
takes (120 ms) and (160 ms) in the standalone and the collo-
cation with low-fsync, respectively.

The shared journaling module destroys performance
isolation between containers. Figure 4 shows the disk I/O
shares of the container/VM running MySQL and that run-
ning the high-fsync benchmark. Using the disk I/O control
of cgroup, the container/VM running MySQL is given 70%
share of disk I/O while the container/VM running the high-
fsync is given 30% share. As can be seen from Fig. 4 a),
the container running MySQL consumes only 20% share of
disk I/O while the container running the high-fsync does 50
to 60% share. On the other hand, Fig. 3 b) indicates the VM
running MySQL consumes 70% share of disk I/O and the
VM running the high-fsync does 20% share in KVM.

Our previous work [13], [14] shows the in-depth analy-
sis of this behavior. Based on the analysis, this current paper
shows a mitigation of the journal-related problems in con-
tainers. Note that the problems are not peculiar to OpenVZ;
our previous work focused on LXC containers. Our new ex-
perimental results on OpenVZ, shown in this paper, demon-
strate OpenVZ cannot be a solution to the journal-related
problems in containers.

3. A Quest for Best Configuration

Designing new file systems or developing novel journaling
mechanisms require heavy implementation and involve non-
negligible modifications to the kernel. Also, these solu-
tions can be difficult to apply to existing cloud platforms.
In this section, we present journaling-related problems can
be gracefully mitigated by careful configuration of existing
container platforms. Unfortunately, this configuration is not
available on all container platforms and not provided on ma-
jor cloud platforms even if the underlying container plat-
form supports the configuration. Our configuration can be
applied to the mainstream Linux and existing file systems
without any modification. Section 3.1 shows a configura-
tion that avoids bundled transactions in journaling modules.
Section 3.2 shows the per-container accounting of journal-
ing I/Os is possible. The combination of these two configu-
rations solves the journal-related problems in containers.

3.1 Separating Journaling Module

File system journaling, which is mandatory to guarantee the
file system consistency, is the root cause of the poor I/O per-
formance and the weak isolation in containers. The journal-
ing problems are caused in particular due to bundled trans-
actions. Since a journaling module is shared among con-
tainers, it batches updates from multiple containers into a
transaction and commits that transaction to disk periodically
or when fsync is invoked. If a single transaction contains
updates from multiple containers, each container has to wait
until the data belonging to other containers is flushed. Even
if each transaction contains updates solely from one con-
tainer, the transactions are serialized in the journaling mod-
ule and cannot be committed in parallel.

A possible approach to mitigating the journaling prob-
lems is to provide a per-container journaling module. It gets
rid of bundled transactions and avoids the performance de-
pendency between containers.

By assigning a virtual block device to each container,
each container is served by a separate journaling module
and has its own journaling transactions that contain updates
solely from the corresponding container. Since journaling
modules in different containers can run in parallel, one con-
tainer no longer has to wait for other containers to commit
their updates.

A simple way to implement a virtual block device is to
use a pseudo-device known as “loopback device”. A loop-
back device is a pseudo-device that makes an ordinary file
accessible as a block device. However, the Linux loop-
back device has some limitations if used as a virtual disk
for containers. First, the container file system suffers from
the problem of double caching. Since a container file sys-
tem is created on an ordinary file (a loopback device), both
the host and the container file systems cache file contents,
which leads to the well-known problem of double caching.

Second, direct I/O is not supported. Direct I/O is a way

ABDULRAZAK ALI MARDAN and KONO: DBMS PERFORMANCE AND ISOLATION IN VIRTUALIZED ENVIRONMENTS
935

Fig. 5 The architecture of ”Normal approach” and ”Ploop approach” of
container implementation.

to bypass caching layer in the kernel. Direct I/O is impor-
tant in DBMS because DBMS manages their own caches to
avoid the double caching problem. Also, the direct I/O en-
sures that data is written immediately to disk instead of the
kernel buffers first then later being written to the disk. This
can aid in minimizing the data loss in DBMS. Direct I/O is
supported by many databases like MySQL and Oracle.

Aside from these limitations, the Linux loopback de-
vice lacks relevant features in the clouds such as dynamic
allocation, snapshot, and migration. These features are in-
dispensable in managing containers in the data-centers for
re-sizing the container to accommodate bursty workloads,
the load balancing among servers, and for the backup and
data protection.

Fortunately, OpenVZ supports “Ploop”, a special im-
plementation of the loopback device which overcomes all
the limitations of the Linux loopback device. Figure 5 il-
lustrates the Ploop virtual disk approach and the normal ap-
proach of providing file systems in containers. The normal
approach uses chroot to provide a per-container sub-tree of
the system-wide file system. Although this approach gives
each container its own view of the host file system and semi-
isolation from other containers, they still share the same host
file system. This results in the sharing of kernel resources
for managing files. All the containers share the same file
system type, properties, total number of inode, and most im-
portantly the cache layer and the journaling module.

In the Ploop approach, the Ploop module in the kernel
block layer is responsible for presenting a virtual disk for
each container. Each container has its own file system of
different types and properties. Ploop has the I/O module
that supports the direct I/O and avoids the double caching
problem.

3.2 Journaling I/O Accounting

Providing each container with a virtual block device is not
enough to overcome all journaling-related problems. Al-
though each container has its own journaling module and
transactions are separated, the journaling I/Os are not ac-
counted because the cgroup overlooks the journaling I/Os
from these per-container journaling modules. The journal-
ing modules are managed by the kernel and are running out-
side the controlled containers.

The kernel process known as “jbd2” is responsible for
performing the journaling I/Os. In case of per-container
journaling, this kernel process is prepared for each con-
tainer. Since they are outside of cgroup control, their I/Os
are not accounted for the corresponding containers. For ex-
ample, if two containers are performing I/Os and one con-
tainer is given 70% disk share while the other is given 30%
share, their corresponding journaling I/Os by jbd2 are not
included in the disk share. This results in violating the per-
formance isolation of disk I/O.

To solve this issue, the kernel jbd2 process should be
included in the cgroup of its corresponding container. Both
the journaling and the container’s I/Os can be controlled and
accounted together by the cgroup disk I/O controller. This
can be implemented through cgclassify [33] functional-
ity. It changes the cgroup of the jbd2 process from the ker-
nel’s root cgroup to the corresponding container’s cgroup.

4. Experiments

This section shows the recommended configuration can
overcome the journaling-related problems in containers.
Section 4.1 describes the experimental setup. Section 4.2
presents the result and the improvement of assigning the
container with a virtual block device. Section 4.3 shows the
total performance improvement when the journaling I/O is
being accounted for each container.

4.1 Experimental Environment

The experiment setup consists of dell powerEdge T610 with
Xeon 2.8 GHz CPU, 4 cores and 32 GB RAM as a host ma-
chine. Ubuntu 18.04.1 LTS 64bit Linux distribution with
4.18.0-25-generic kernel is installed. SAS hard disk of 1 TB
is formatted with ext4 file system with the default journal-
ing mode; i.e., only the metadata are journaled. Disk re-
source control is enforced through the new version of con-
trol group ”Cgroupv2” [34] with the proportional-weight
policy. FIO benchmark is used to generate I/O workloads
of three types, either 1) no-, 2) low-, or 3) high-fsync work-
loads that have been explained in Sect. 2. OpenVZ 7.0.10
with its customized kernel and resources control is used for
OpenVZ container. KVM-qemu 2.11.1 is installed on the
host. The guest environments are exactly the same as the
host. Each VM is allocated one virtual CPU that pins to one
CPU core and 1 GB RAM with a raw disk partition allocated
as secondary storage. The same configuration is applied to
the containers.

To examine the performance and isolation in DBMS,
MySQL ver. 5.7.27 is installed in each container/VM with
InnoDB as a storage engine. MySQL is configured to use
direct I/O since it is the common setting in DBMS to avoid
the well-known problem of double caching. The transaction
model is the default autocommit, in which MySQL per-
forms a commit after each SQL statement. Sysbench OLTP
benchmark [35] generates workloads, which runs in a sepa-
rated machine connected via Cisco 1 Gbit Ethernet switch.

936
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.7 JULY 2021

Fig. 6 Disk I/O throughput in KVM, shared journaling, and per-
container journaling without/with accounting. A container/VM running the
high-fsync workload is collocated with either 1) no-, 2) low-, or 3) high-
fsync benchmarks.

Sysbench is configured to use the non-transactional mode so
that each query is automatically committed. The workload
generates INSERT queries to 10 database tables each with
100,000 rows of records. The number of clients is increased
until I/O operations are saturated.

4.2 Per-Container Journaling

Presenting each container with its own journaling module
is achieved by using Ploop. Here, we evaluate the effec-
tiveness of per-container journaling and whether this con-
figuration has any tax on container’s I/O performance. Fig-
ure 6 compares the I/O performance of the shared-journaling
in OpenVZ container denoted by “shared journaling” and
the per-container jounaling with Ploop denoted by “per-
container journaling”. For comparison, the figure shows the
result of KVM. The result of “per-container journaling with
journal I/O accounting” will be discussed later in Sect. 4.3.
The experimental setting and the workloads are consistent
with those of Fig. 2. In the standalone case, all containers
outperform KVM regardless of the shared or per-container
journaling. This verified that per-container journaling has
no effects on I/O performance. In the consolidation case
where both containers are performing no-fsync workload,
the per-container journaling outperforms KVM and achieves
better performance than the shared-journaling in the no-
fsync consolidation case. The same results are obtained in
the consolidation case with the high-fsync workload. This
performance improvement is due to each container now has
its own journaling module. The fsync latency is 58 ms and
80 ms in the per-container journaling and the shared jour-
naling, respectively. However, the per-container journaling
still performs lower than KVM in the high-fsync workload.
This indicates the per-container journaling does not solve
the journaling-related problems completely.

Figure 7 shows MySQL throughput when it is collo-
cated with a container running either 1) no-, 2) low-, or 3)
high-fsync workload. As it shown in the figure, MySQL
throughput of the per-container journaling outperforms the
shared-journaling in all cases. MySQL throughput is im-
proved by up to 1.2x the per-container journaling. Table 1
shows the latency of fsync in the shared and per-container

Fig. 7 MySQL throughput in KVM, shared journaling, and per-container
journaling without/with accounting. MySQL container is collocated with
either 1) no-, 2) low-, or 3) high-fsync workloads.

Table 1 Average fsync latency of MySQL when collocated with no-,
low-, high-fsync workload. JA stands for journaling accounting.

Collocated
workload

Shared
journaling

Per-container
journaling

Per-container
journaling
with JA

No-fsync 120.23 ms 103.80 ms 24.23 ms
Low-fsync 160.651 ms 92.65 ms 25.38 ms
High-fsync 96.20 ms 90.50 ms 24.75 ms

journaling. The latency of fsync in per-container journal-
ing is smaller than that of shared journaling. The latency
of fsync is reduced because no transaction is bundled in
the per-container journaling. Compared with KVM, the per-
container journaling still performs lower.

4.3 Combined Performance with Journaling Accounting

The results obtained with the per-container journaling indi-
cates that using a virtual block disk with the container is not
sufficient to overcome all the journaling-related problems.
The per-container journaling performs lower than KVM for
two reasons. First, journaling I/Os are still overlooked by
cgroup because the journaling module runs outside of the
controlled container. This affects the performance isolation
between collocated containers because the overlooked I/Os
affect the performance of the containers.

Second, the journaling process “JBD2”, responsible for
handling the journaling I/Os, is given equal share regardless
of the share given to the corresponding container. Since
JDB2 is a kernel process, it belongs to the root cgroup
to which all the kernel processes belong by default. Even
though we prepare a JDB2 for each container, all the per-
container JDB2s belong to the same cgroup and are given
equal share regardless of the I/O share of the container each
JDB2 is responsible for.

Figure 8 shows disk I/O usages of the per-container
journaling without/with the accounting. In this experiment,
two containers are lunched with disk I/O share set to 70%
and 30%, respectively. A collocated container runs the high-
fsync workload. As shown in Fig. 8(a), the per-container
journaling without accounting cannot enforce performance
isolation. Disk I/O usage of both containers fluctuates be-
tween 35%–65%. Figure 8(a) also indicates disk I/O usages

ABDULRAZAK ALI MARDAN and KONO: DBMS PERFORMANCE AND ISOLATION IN VIRTUALIZED ENVIRONMENTS
937

of the per-container JDB2s are almost the same around 15%
for containers A and B. Although containers A and B are
given different shares, the corresponding JDB2s are given
an equal share because they belong to the same cgroup (the
root cgroup).

On the other hand, the per-container journaling with
accounting enforces the performance isolation as shown in
Fig. 8(b). Container A and B consume 70% and 30% of disk

Fig. 8 Disk I/O usage in per-container journaling and per-container jour-
naling with journaling accounting”. Both of containers run high-fsync
workloads.

Table 2 Average fsync latency of the per-container journaling with-
out/with journaling accounting.

Containers / Disk
I/O shares

Per-container
journaling

Per-container
journaling with JA

container A / 70% 55 ms 45 ms
container B / 30% 53 ms 86 ms

Fig. 9 Disk I/O usage in MySQL in per-container journaling with the accounting. Collocated with
no-, low-, high-fsync workloads. MySQL is given 70% share and the other is 30% share. Performance
isolation is improved more.

I/O, respectively. JDB2 processes for container A and B con-
sume 20% and 10%, respectively, because they belong to
each cgroup to which the corresponding container belongs.

Table 2 shows the latency of fsync in the per-container
journaling without and with journaling accounting. Without
the accounting, the JDB processes for containers A and B
are given the equal share. Hence, both containers A and B
have almost the same fsync latency around 55 ms. With
the accounting, fsync latency of container A is reduced to
45 ms while that of container B is increased to 86 ms. This
indicates the container A’ JDB process is given more share
while the container B’s JDB process is less share.

In Fig. 6, the per-container journaling with the account-
ing outperforms KVM in all cases. This improved per-
formance is obtained even in MySQL. Figure 7 shows the
per-container journaling with the accounting beats KVM
in throughput. MySQL throughput is improved by up to
1.5x compared to KVM and by up to 2.8x compared to the
shared journaling. Table 1 shows fsync latency in the per-
container journaling with the accounting becomes smaller
than that of the per-container journaling.

Aside from the performance, the per-container jour-
naling with accounting has improved performance isola-
tion. Figure 9 shows the disk I/O usage of the per-container
journaling with accounting. A container running MySQL,
which is given 70% share of disk I/O, is collocated with a
container running either no-, low-, or high-fsync workload.
In all cases, disk I/O share is around 70% in MySQL. On the
other hand, the per-container journaling without accounting
fails to enforce performance isolation. As shown in Fig. 10,
MySQL container consumes around 25%, 30%, and 30%–
50% share of disk I/O when collocated with no-, low- high-
fsync workload, respectively.

5. Discussion

Disabling the file system journaling to overcome the
journaling-related problems in containers is not acceptable
especially in DBMS because the journaling is indispensable
to guarantee the crash consistency. Developing a completely
new file system or a journaling mechanism is not needed to
solve the journaling issues. Our recommended configuration

938
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.7 JULY 2021

Fig. 10 Disk I/O usage in MySQL in per-container journaling. Collocated with no-, low-, high-fsync
workloads. MySQL is given 70% share and the other is 30% share.

effectively alleviates the journaling-related problems in con-
tainers. We advocate the use of virtual block devices and the
proper configuration for accounting journaling I/Os in con-
tainers. We denote that an ordinary loop device is not effi-
cient and recommend the use of Ploop for virtual disks in
containers. Although not all containers support the Ploop,
they can adopt our configuration if they implement a similar
virtual block device with a direct I/O support, preventing the
double cache, and the required features for container’s stor-
age management like the snapshot and dynamic re-sizing.

Our performance analysis reveals that the using of a
virtual block device is not sufficient to overcome the jour-
naling problem in containers. The proper configuration of
cgroup and journaling module is crucial to alleviate it. The
quantitative analysis shows that the combination of the two
methods can solve the journaling problem without re-design
the file system or the journaling module.

Unfortunately, our recommended configurations are
not widely adopted in major clouds. This results in poor
I/O performance when consolidating DBMS and wastes the
container’s advantages over the VM, which results in violat-
ing the service-level agreement (SLA) and the financial loss
for clouds provides. The use of VM to avoid the journaling
problems comes with the cost of virtualization overheads.
Our result proves that it is possible to use containers to get
its performance gain without suffering from the journaling-
related problems.

6. Related Work

Many works study the performance advantage of con-
tainers. Xavier et al. [36] compares Linux VServer [37],
OpenVZ [38] and LXC with Xen in the context of high per-
formance computing. Regarding the performance, all the
containers show near-native performance. Regarding the
performance isolation, VServer and OpenVZ show better
memory isolation than LXC. For disk I/O, Xen shows better
isolation of the performance than any of the container imple-
mentations but the underlying causes are not investigated.
Matthews et al. [39] study performance isolation among
VMware, Xen, Solaris containers and OpenVZ. VMware
imposes stronger isolation than the containers. However,
the underlying issues that causes performance interference

in containers is not investigated in these previous works.
Our previous works [13], [14] compare DBMS perfor-

mance and isolation in container and VM. Our results show
that KVM beats LXC in MySQL performance which is con-
trary to the general belive that container outperform VMs.
Our analysis reveals that the file system journaling is the
root cause of poor I/O performance and isolation in contain-
ers. Soltesz et al. [22] compare performance isolation of
VServer with Xen, using database applications as target. A
VServer container running a database application severely
suffers from other containers running I/O-intensive work-
loads. Their analysis shows that I/O-intensive containers
monopolize the buffer cache to degrade the database appli-
cations. Our investigation reveals that the file system jour-
naling disturbs I/O operations in the container even if the
buffer cache is not shared. In our experiments, the direct I/O
is used to bypass the buffer cache.

Mizusawa et al. [11] presents an evaluation of file op-
erations of OverlayFS which is widely recognized method
for improving I/Operformance in docker. According to their
results, performance of file writing is severely low because
of synchronization of data in the memory and storage. They
suggest to disabling this synchronization to improve the I/O
performance which is not acceptable for application like
DBMS. Xavier et al. [40] compare LXC and KVM in terms
of the performance interference in I/O-intensive workloads.
According to their study, LXC suffers more severely from
interference than KVM when a database is collocated disk
with I/O-intensive workloads. However, no analysis is con-
ducted to understand how performance interference occurs
in LXC. Our investigation shows that KVM beats LXC not
only in isolation but also in database performance as we con-
sider the case of journaling-intensive workloads.

Kwon et al. [41] present a storage framework to en-
hance I/O performance and resource isolation of Docker
containers in solid state device (SSD) storage. They achieve
that by divided underlying hardware resource between con-
tainers to avoid resource conflict. Their investigation point
out that the reasons for poor I/O performance and isolation
in Docker are the sharing of same swap area among contain-
ers and the kernel. Hence when kernel perform I/Os due to
page-in and page-out when running memory intensive con-
tainers, this swap area can cause storage resource conflict. In

ABDULRAZAK ALI MARDAN and KONO: DBMS PERFORMANCE AND ISOLATION IN VIRTUALIZED ENVIRONMENTS
939

our recommended configuration by using the per-container
journaling, each container has its own viryual disk with the
swap area and avoids the above problem.

Some works propose new file systems such as IceFS [9]
and SpanFS [17] to provide logically separated units for in-
dependent journaling among containers. MultiLanes [18]
provides a virtualized storage device for each container on
top of which an isolated I/O stack is built. These novel file
systems can overcome the problems of the shared journal-
ing among containers, but the existing file systems or I/O
stacks must be replaced to utilize them. Park et al. [19] pro-
pose a new journaling technique called iJournaling, which
limits the journaling updates on the metadata of fsynched
file. These techniques improve the performance of update-
intensive containers but do not overcome all the journaling-
related problems. For example, fsync call serialization and
uncounted journaling I/Os are not addressed. Our work pro-
posed a configuration model for containers that overcomes
journaling-related problems. Our proposed model is more
straightforward and can be applied to mainstream file sys-
tem without need for a complete new file systems or a novel
journaling mechanism.

7. Conclusion

The file system journaling is the root cause of poor I/O per-
formance and isolation in containers. Since the journaling
module is shared among containers, it becomes a bottle-
neck in performance and interferes with disk I/O control of
cgroup in containers. Instead of designing a complete file
system or developing a new journaling method, our work
demonstrates careful configuration of containers can over-
come the journaling-related problems. This configuration
consists of presenting each container with its own virtual
block device to achieve the per-container journaling, and
properly configuring the control groups of the journaling
processes. Our experimental results show that our config-
uration improves MySQL throughput up to 3.4x, and also
achieves appropriate performance isolation comparable to
that of KVM.

Acknowledgements

This work is partially supported by JST, CREST, JP-
MJCR19F3, and Keio Gijuku Academic Development
Funds.

References

[1] “Well-Known Users of SQLite, A WEB page.” https://www.sqlite.org/
famous.html, accessed 10-02-2020.

[2] “Salesforce, A WEB page.” https://developer.salesforce.com/page/
Multi-Tenant-Architecture, 2018.

[3] “The facebook data center, a web page.” http://www.
datacenterknowledge.com/the-facebook-data-center-faq-page-2/, ac-
cessed 10-02-2020.

[4] “Microsoft azure sql databaser, a web page.” https://azure.microsoft.
com/en-us/services/sql-database, accessed 10-02-2020.

[5] “Google cloud sql, a web page.” https://cloud.google.com/sql/, ac-
cessed 10-02-2020.

[6] T. Lange, P. Cemim, M. Xavier, and C. DeRose, “Optimizing the
management of a database in a virtual environment,” IEEE Sym-
posium on Computers and Communications (ISCC), pp.181–192,
2013.

[7] Flashdba, “ Database Consolidation, A WEB page.” https://flashdba.
com/2012/07/06/database-consolidation-part1/, accessed 08-02-2020.

[8] J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci, “Cntr:
Lightweight OS containers,” 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18), Boston, MA, pp.199–212, USENIX As-
sociation, 2018.

[9] L. Lu, Y. Zhang, T. Do, S. AI-Kiswany, A.C. Arpaci-Dusseau, and
R. Arpaci-Dusseau, “Physical disentanglement in a container-based
file system,” Proc. the 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), pp.81–96, Oct. 2014.

[10] OpenVZ, “Ploop/Why, A WEB page.” https://wiki.openvz.org/Ploop/
Why, accessed 08-02-2020.

[11] N. Mizusawa, J. Kon, Y. Seki, J. Tao, and S. Yamaguchi, “Perfor-
mance improvement of file operations on overlayfs for containers,”
Proc. IEEE Int. Conf. Smart Computing, pp.297–302, 2018.

[12] “OpenVZ open source container-based virtualization for Linux.”
https://openvz.org/, 2019.

[13] A.A.A. Mardan and K. Kono, “Containers or hypervisors: Which
is better for database consolidation?,” Proc. IEEE Int. Conf. Cloud
Computing Technology and Science (CloudCom), p.564–571, 2016.

[14] A.A.A. Mardan and K. Kono, “When the virtual machine wins over
the container: Dbms performance and isolation in virtualized envi-
ronments,” J. Information Processing, vol.61, no.7, pp.1–9, 2020.

[15] A. Dusseau, H. Remzi, A. Dusseau, and C. Andrea, OPERATING
SYSTEMS, Arpaci-Dusseau Books, 2014.

[16] “Linux cgroup resource management, a web page.”
[17] J. Kang, B. Zhang, T. Wo, W. Yu, L. Du, S. Ma, and J. Huai, “Spanfs:

a scalable file system on fast storage devices,” Proc. USENIX An-
nual Technical Conference (ATC), pp.249–261, July 2015.

[18] J. Kang, B. Zhang, T. Wo, C. Hu, and J. Huai, “Multilanes: pro-
viding virtualized storage for os-level virtualization on manycores,”
Proc. 12th USENIX Conf. File and Storage Technologies (FAST),
pp.317–329, 2014.

[19] D. Park and D. Shin, “iJournaling: Fine-grained journaling for im-
proving the latency of fsync system call,” 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pp.787–798, USENIX
Association, July 2017.

[20] “Ploop, Containers in a File.” https://wiki.openvz.org/Ploop, 2019.
[21] “Chroot.” https://linux.die.net/man/2/chroot, 2019.
[22] S. Soltesz, H. Pötzl, M. Fiuczynski, A. Bavier, and L. Peterson,

“Container based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” SIGOPS Operating System
Review, vol.41, no.3, pp.275–287, March 2007.

[23] “Linux container (LXC).” https://linuxcontainers.org/, 2018.
[24] Mircosoft, “Azure. Invent with purpose, A WEB page.”

https://azure.microsoft.com/en-us/, accessed 08-02-2020.
[25] Google, “Google cloud platform, A WEB page.” https://cloud.google.

com/, accessed 08-02-2020.
[26] Mircosoft, “Azure Container Instances documentation, A WEB

page.” https://docs.microsoft.com/en-us/azure/container-instances/,
accessed 08-02-2020.

[27] Google, “Google Kubernetes Engine documentation, A WEB page.”
https://cloud.google.com/kubernetes-engine/docs/, accessed 08-02-
2020.

[28] Documentation, “Linux namespace, a web page.” http://man7.org/
linux/man-pages/man7/namespaces.7.html, accessed 01/02/2020.

[29] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux contain-
ers,” Tech. Rep. RC25482 (AUS1407-001), IBM Research Division,
2014.

[30] J. Corbet, “Notes from a container, A WEB page.”

http://dx.doi.org/10.1109/ISCC.2013.6755012
http://dx.doi.org/10.1109/ISCC.2013.6755012
http://dx.doi.org/10.1109/ISCC.2013.6755012
http://dx.doi.org/10.1109/ISCC.2013.6755012
http://dx.doi.org/10.1109/SMARTCOMP.2018.00019
http://dx.doi.org/10.1109/SMARTCOMP.2018.00019
http://dx.doi.org/10.1109/SMARTCOMP.2018.00019
http://dx.doi.org/10.1109/CloudCom.2016.0098
http://dx.doi.org/10.1109/CloudCom.2016.0098
http://dx.doi.org/10.1109/CloudCom.2016.0098
http://dx.doi.org/https://doi.org/10.2197/ipsjjip.28.369
http://dx.doi.org/https://doi.org/10.2197/ipsjjip.28.369
http://dx.doi.org/https://doi.org/10.2197/ipsjjip.28.369
http://dx.doi.org/10.1145/2801155
http://dx.doi.org/10.1145/2801155
http://dx.doi.org/10.1145/2801155
http://dx.doi.org/10.1145/2801155
http://dx.doi.org/10.1145/1272998.1273025
http://dx.doi.org/10.1145/1272998.1273025
http://dx.doi.org/10.1145/1272998.1273025
http://dx.doi.org/10.1145/1272998.1273025
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1109/ISPASS.2015.7095802

940
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.7 JULY 2021

https://lwn.net/Articles/256389/, accessed 10-11-2020.
[31] V. Prabhakaran, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Anal-

ysis and evolution of journaling file systems,” Proc. 2005 USENIX
Annual Technical Conference, pp.105–120, USENIX, 2005.

[32] “Anatomy of Linux journaling file systems.” https://www.ibm.com/
developerworks/library/l-journaling-filesystems/index.html, 2008.

[33] Cgclassify, “ Linux Documentation, A WEB page.” https://linux.die.
net/man/1/cgclassify, accessed 10-02-2020.

[34] Cgroup2, “New version Cgroup2, A WEB page.” https://www.kernel.
org/doc/Documentation/-cgroup-v2.txt, accessed 10-02-2020.

[35] “Sysbench benchmark suite, A WEB page.” https://github.com/
akopytov/sysbench, accessed 10-02-2020.

[36] M. Xavier, M.V. Neves, F.D. Rossi, T.C. Ferreto, T. Lange, and
C.F.D. Rose, “Performance evaluation of container-based virtual-
ization for high performance computing environments,” Proc. 21st
Euromicro Int. Conf. Parallel, Distributed and Network-Based Pro-
cessing (PDP), pp.233–240, IEEE, 2013.

[37] “Linux-VServer, A WEB page.” http://linux-vserver.org/, 2018.
[38] “OpenVZ, a web page.” https://openvz.org/, 2018.
[39] J. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,

D.G. Hamilton, M. McCabe, and J. Owens, “Quantifying the perfor-
mance isolation properties of virtualization systems,” Proc. the 2007
Workshop on Experimental Computer Science, (ExpCS), p.6, ACM,
June 2007.

[40] M. Xavier, M.V. Neves, F.D. Rossi, T.C. Ferreto, T. Lange, and
C.F.D. Rose, “A performance isolation analysis of disk-intensive
workloads on container-based clouds,” Proc. 23rd Euromicro Int.
Conf. Parallel, Distributed and Network-Based Processing (PDP),
pp.253–260, IEEE, 2015.

[41] M. Kwon, D. Gouk, C. Lee, B. Kim, J. Hwang, and M. Jung, “Dc-
store: Eliminating noisy neighbor containers using deterministic i/o
performance and resource isolation,” 18th USENIX Conf. File and
Storage Technologies (FAST 20), pp.183–191, USENIX Associa-
tion, Feb. 2020.

Appendix A: The Configuration of Containers

• Our configuration is based on OpenVZ container. The
following steps show how to configure the container
with a virtual block device.

1. Editing the configuration file /etc/vz/vz.conf and
setting VEFSTYPE to ext4.

grep VEFSTYPE /etc/vz/vz.conf

VEFSTYPE="ext4"

2. Rebuilding the OS templates cache for the new
container with a virtual disk.

vzpkg --update cache

3. Creating a container with a virtual block device
“Ploop”.

vzpkg create container-name --layout

ploop --diskspace ??G --ostemplate ??

• Changing the Cgroup of the per-container JBD2 pro-
cess to be included within the same Cgroup of its cor-
responding container.

cgclassify -g /sys/fs/cgroup/container-

cgroup-directory JBD2-process-ID

Asraa Abdulrazak Ali Mardan received
the BSc and MSc in Information Engineering
from AL-Narain University, Iraq in 2010 and
2014 respectively. Currently she is a Ph.D. stu-
dent in Keio University, graduate school of Sci-
ence and Technology. Her research interests
are Cloud Computing, Virtualization Technol-
ogy, and File systems.

Kenji Kono received his BSc degree in
1993, MSc degree in 1995, and Ph.D. degree
in 2000, all in computer science from the Uni-
versity of Tokyo. He is a professor in the
Department of Information and Computer Sci-
ence at Keio University. He received the IPSJ
Yamashita-Memorial Award in 2000, IPSJ An-
nual Best Paper Awards in 1999, 2008, 2009,
and 2012, JSSST Software Paper Award in
2014, IBM Faculty Award in 2015, and JSSST
Basic Research Award in 2016. He served as a

PC member of top conferences such as ICDCS and DSN. He also organized
ACM SIGOPS APSys in 2015. His research interests include operating
systems, system software, and computer security. He is a member of the
IEEE, ACM and USENIX.

http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1145/1281700.1281706
http://dx.doi.org/10.1145/1281700.1281706
http://dx.doi.org/10.1145/1281700.1281706
http://dx.doi.org/10.1145/1281700.1281706
http://dx.doi.org/10.1145/1281700.1281706
http://dx.doi.org/10.1109/PDP.2015.67
http://dx.doi.org/10.1109/PDP.2015.67
http://dx.doi.org/10.1109/PDP.2015.67
http://dx.doi.org/10.1109/PDP.2015.67
http://dx.doi.org/10.1109/PDP.2015.67

