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Explanatory Rule Generation for Advanced Driver Assistant
Systems

Juha HOVI†,††a), Nonmember and Ryutaro ICHISE††,†, Senior Member

SUMMARY Autonomous vehicles and advanced driver assistant sys-
tems (ADAS) are receiving notable attention as research fields in both
academia and private industry. Some decision-making systems use sets of
logical rules to map knowledge of the ego-vehicle and its environment into
actions the ego-vehicle should take. However, such rulesets can be difficult
to create — for example by manually writing them — due to the complex-
ity of traffic as an operating environment. Furthermore, the building blocks
of the rules must be defined. One common solution to this is using an on-
tology specifically aimed at describing traffic concepts and their hierarchy.
These ontologies must have a certain expressive power to enable construc-
tion of useful rules. We propose a process of generating sets of explanatory
rules for ADAS applications from data using ontology as a base vocabulary
and present a ruleset generated as a result of our experiments that is correct
for the scope of the experiment.
key words: advanced driver assistant system, ADAS, ontology, rule-based
reasoning, decision-making, knowledge representation, machine learning

1. Introduction

Autonomous vehicles of different automation levels and ad-
vanced driver assistant systems (ADAS) are quickly advanc-
ing fields of research. Particularly decision-making sys-
tems pose great challenges while being in a crucial role for
successful operation in real-world traffic situations. These
challenges range from simpler lane-following and adaptive
cruise control systems that are already successfully used by
consumers to considerably more challenging problems such
as an automated vehicle control system interacting with hu-
man drivers and interpreting subtle behaviors.

Traditional approaches to automated systems include,
for example, rule-based systems and state machines. These
systems often describe combinations of observations in
human-understandable form and map these observations
into actions (rule-based) or transitions between system
states (state-machine). More recently, advances in comput-
ing power over the last decades have enabled the practical
use of deep artificial neural networks (ANN), which have
dominated many fields of artificial intelligence. While ANN
applications often offer considerable performance and flex-
ibility, they come with a notable downside when compared
to more traditional methods. ANN is considered to oper-
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ate as a black box and understanding the inner workings
of the system is an active field of research due to its diffi-
culty. ANN systems have been applied to both autonomous
driving and ADAS. Estimating the correct output for unseen
inputs is often considered a major strength of neural net-
works. However, this strength can be a weakness. When
given an input unseen in training, the network will output
a previously unknown result. This is in stark contrast to
rule-based systems where, if none of the rules are satisfied
by the input, the output is a known default output. Due to
this, verification of the behavior of ANN systems in all sit-
uations is challenging. Traffic as a real-time operating en-
vironment is extremely safety critical and, as such, field use
of unpredictable systems is undesirable. Conversely, a more
human-understandable approach of rule-based reasoning on
explanatory rules offers easier understanding and verifica-
tion of system behavior. Thus, rule-based methods offer de-
sirable benefits and could possibly be used in conjunction
with other approaches on the way towards smooth and safe
operation.

As is often the case, benefits of explanatory rule-based
systems come with their own set of problems to solve. Rule-
based decision-making systems such as the one introduced
by Zhao et. al. in 2017 [1] require a set of rules on which
they infer the actions the ego-vehicle should take. Writ-
ing these rules by hand, as in the work by Zhao et. al. [1],
poses challenges in terms of scalability. Traffic is a varied
and complex operating environment and sets of rules cov-
ering enough situation to be useful are likely to include a
large number of rules. Additionally, traffic rules differ be-
tween countries and even driver behaviors vary from envi-
ronment to another. In order to create any rules of this kind,
a vocabulary must be chosen to allow knowledge representa-
tion for the relevant domain. This vocabulary should assign
human-understandable words to different concepts of traf-
fic. Specifically, the concepts should reflect different factors
influencing the correct action of a vehicle. For example,
to create a rule which states that a vehicle must stop at a
red light, some concepts related to traffic lights, their colors,
and stopping must exist. Creation of such vocabulary not
only requires an expert of the domain in question but is time
consuming and often requires multiple iterations. This work
aims to aid these problems by replacing hand-written rules
with automatic rule generation and basing the vocabulary
used on an existing ontology.

As the main contribution and focus of this work, we
propose a process for data-driven algorithmic rule genera-
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tion. In this process, knowledge is represented through a
vocabulary consisting of concepts defined in an ontology.
In the current form of the process a simpler list of concepts
is sufficient as relationships between concepts are not used.
However, modifications to the process, such learning gen-
eralized association rules [2], [3] instead of basic ones [4]
can utilize the additional knowledge ontologies include over
simple lists. In addition, ontologies offer a standardized and
structured approach to representing concepts within a spe-
cific domain and the relations between these concepts. We
use an existing ontology designed to be used in ontology-
based ADAS, discuss knowledge representation for traffic
situations, and examine its expressive power and ability to
be used for describing realistic vehicle behavior.

Next, Sect. 2 discusses previous works. Section 3 pro-
vides an in-depth introduction to the main contribution of
this work: the proposed rule generation process. Section 4
discusses issues related to knowledge representation in traf-
fic scenarios. Section 5 presents an experiment conducted
to evaluate the rule generation process in practice and its re-
sults with discussion. Finally, Sect. 6 concludes the work by
discussing the merits of the work and future research direc-
tions.

2. Related Work

Decision-making in ADAS is one of the key aspects to solve
when implementing practical applications of systems in in-
creasingly automated vehicles. As such, it has seen many
different approaches applied to it. Techniques such as ar-
tificial neural networks (ANN) have been applied all the
way from individual tasks involved in ADAS such as lane
detection [5]–[7] for lane following and lane changing pur-
poses to all-encompassing end-to-end systems [8]–[11]. Un-
derstanding, verifying, and testing of the behavior of such
ANN systems in all situations the target system - in this case
ADAS - can encounter is still an active field of research.
This poses significant problems when applying ANNs to a
safety-critical system such as ADAS.

Human understandable approaches to automated
decision-making in traffic include techniques such as usage
of state machines [12]–[14] and ontology-based logical rea-
soning as demonstrated by Zhao et. al. [1]. These systems
can benefit from being combined with other systems, for
example a state machine-based decision-making system can
take advantage of information provided by a state and event
detecting ANN [15]. A notable obstacle for use of these
human-understandable decision-making systems in highly
complex environments - such as traffic - is the creation of
the state machines or rulesets to reason on. The work of
Zhao et. al. [1] focused on evaluating the feasibility of an
ontology-based decision-making system in driving context.
While the system used a set of logical rules in the reasoning
process, these rules were manually written.

Learning decision trees [16] from human behavior to
control robots in rough terrain was presented by Sheh et.
al. in 2011 [17]. Sheh et. al. utilized behavioral cloning [18]

where a machine learning system builds a model of the de-
cision process of a human selecting appropriate actions for
different situations [17].

A key factor for forming explanatory rules is defining
the meaning of each atom or building block of the rule.
Each atom represents some specific knowledge about the
scenario at hand. In traffic these can be, for example, ob-
servations of other vehicles or actions of the ego-vehicle.
Ontologies define hierarchical concepts such as classes and
properties and the relations between these concepts usually
within a specific field of interest. These concepts can be
used as a vocabulary for rules. Many ontologies specifi-
cally designed for use in description of traffic exist. The
ADAS ontology by Zhao et. al. [19] is designed for use in
different ADAS and defines concepts for a wide variety of
traffic situations. The traffic intersection situation descrip-
tion ontology by Hülsen et. al. [20] focuses on intersections
and offers ways to accurately describe even complex inter-
section scenarios through such concepts as degrees of an-
gles between roads and vocabulary relating to vehicle right-
of-way and yielding. A survey conducted by Katsumi and
Fox published in 2018 [21] examines transportation-related
ontologies designed for description of, for example, traffic
management [22] and smart cities [23].

Unexpected situations, such as an actor breaking traffic
rules, often pose a risk to the safety of the ego-vehicle or
other actors involved in the scenario. Identifying and pre-
dicting these risks is a crucial task for making correct deci-
sions. Prediction of this nature is often tied to understanding
the intentions, such as trajectories, of actors. This kind of in-
tention and risk prediction has been studied by, for example,
Takahashi et. al. [24].

3. Rule Generation

The main objective of this work is to formulate and propose
a process for generating explanatory sets of rules in a data-
driven fashion using data collected by a vehicle operating in
traffic.

The process of rule generation can be divided into
seven steps: data collection, initial vocabulary extraction,
data abstraction, rule learning, ruleset refinement, final vo-
cabulary extraction, and rule translation. An overview of
this process is shown in Fig. 1 and it can be seen that the
seven parts of the process can be grouped into three main
categories: data, vocabulary, and rule handling. This section
elaborates on what is done within each of the seven steps,
what they require as input, and what are their outputs.

3.1 Data Collection

As the rule generation process is data-driven, everything be-
gins from collection of data from which the rules will be
learned. As such, this step takes in some form of measure-
ment data describing the traffic situation as its input. The
goal of this step is to have a dataset of traffic data in some
format to be used as an input for the data abstraction step.
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Fig. 1 The rule generation process flowchart.

The dataset can contain a combination of, among others, raw
sensor data from sensors such as Global Navigation Satellite
System (GNSS) data consisting of positioning and timing
data, three-dimensional point cloud data captured through a
Light Detection and Ranging (LiDAR) sensor, images from
cameras, or vehicle steering angle and velocity data. Data of
higher abstraction level that has already gone through some
processing such as an object detection algorithm can also be
included. Sensor data is presented in samples, each repre-
senting one time-instant. While data from different sensors
is often not synchronous, with high enough sampling rate it
is possible to combine data from different sources around a
certain time-instant to an estimated complete sample of that
time-instant. This is possible due to traffic being a relatively
slow process where little change happens in the span of, for
example, milliseconds. Considering the data as samples of
time-instants is beneficial to making subsequent steps of the
process simpler. The data can be obtained from either real-
world sources or through simulations.

3.2 Initial Vocabulary Extraction

Creating explanatory rules requires describing traffic situa-
tions with concepts that are understandable for humans, i.e.
explanatory. As such, a vocabulary must be established and
defined for these concepts. In this step, an initial set of pred-
icates is created to represent concepts for both the actions of
the ego-vehicle and for factors that are suspected or known

to affect the actions of the vehicle. The rules will first be
built using this vocabulary in such a way that any factors af-
fecting ego-vehicle actions appear in the bodies of the rules
while ego-vehicle actions appear in the heads of the rules.
While it is possible to directly define the final vocabulary
(Fig. 1: step 6) introduced in Sect. 3.6 in this step, a separate
initial vocabulary can be used to allow flexibility of using
different final vocabularies later in the process without re-
peating the whole process. Additionally, using new higher-
level concepts based on the target ontology-defined vocab-
ulary can be useful for creating simpler and more compact
rulesets which can then be unpacked in a later step or at a
later time. As seen in Fig. 1, this step takes a definition of
concepts and their meanings acting as a vocabulary as its in-
put. The output of this step is a collection of n-ary predicates
of form

p(t1, . . . , tn) ∈ {true, f alse} (1)

where p is an n-ary predicate representing a relation between
the objects t1 to tn. In this case, the goal of the predicates
is to describe traffic situations through relations of, for ex-
ample, different actors. In addition, the conditions for when
these predicates map to what values must be defined. Thus,
the procedure of this step is the following. First, iterate over
all predicate definitions in the input. For each definition, ex-
tract the name, arity, and type (describes if the predicate rep-
resents an action or an observation) of the predicate. Parallel
to this, extract the conditions of the predicate truth value and
create a function to determine the truth value given a snap-
shot of a time-instant in the raw dataset. Add the predicate
name, arity, type, and its corresponding function to a list.
Finally, output the list.

For example, one predicate of interest could be stop/1.
Here, the name of the predicate is “stop” and its arity is one
(unary predicate), meaning the predicate takes one argument
to determine it truth value. This predicate could appear in
the form

stop(Ego) ∈ {true, f alse} (2)

where Ego is the ego-vehicle object and stop/1 would map
to true if the speed of the ego-vehicle is approximately zero.

3.3 Data Abstraction

At this point, on one hand the data has been collected and
is most likely stored as sensor output values. On the other
hand a human-understandable vocabulary to describe traf-
fic has been defined. The step of data abstraction aims to
combine these two inputs and output a dataset of human-
understandable and highly abstracted data. An input from
step of initial vocabulary extraction provides n-ary predi-
cates and their definitions. As such, this step consists of
computational data processing by going through each sam-
pled time-instant (see Sect. 3.1) in the data and extracting
values for each predicate-objects combination. These com-
binations are created from the predicates obtained from the
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Algorithm 1 Pseudocode for algorithm to abstract raw data
using given initial predicates.
1: Din: input raw dataset
2: Dout: output table-format explanatory dataset
3: P: set of initial predicates
4: PO: set of all valid predicate-objects combinations po of predicates

p ∈ P and objects o present in Din

5: for all samples d ∈ Din do
6: Let R be a false-initialized array of length |PO|
7: for all predicate-object combinations poi ∈ PO do
8: if poi is satisfied by d then
9: set Ri to True;

10: end if
11: end for
12: Add R as a row to Dout

13: end for

Table 1 An example of representing traffic situation knowledge in item-
transaction format usable as input for association rule learning.

turnLeft(Ego) signalRed(Ego) stop(Ego) go(Ego)
True False False True
True True False True
False True True False

initial vocabulary extraction step (Fig. 1: step 2) and the ob-
jects present in the data. Pseudocode for this step is shown
in Algorithm 1. The data is formatted into a table of Boolean
values where each row contains information on one time in-
stant while each column contains the value of one predicate-
objects combination at each time instant. If a predicate-
objects combination is satisfied by the data, the correspond-
ing cell in the table is set to true. If the predicate-objects
combination is not satisfied, the cell is set to false. Through
this process, the original data is wholly abstracted to more
human-understandable form using higher-level concepts.

Continuing from the example of Formula 2, the
predicate-object combination is predicate stop/1 with the ob-
ject Ego. As such, we inspect every sample in the data and
determine if the speed of the ego-vehicle is approximately
zero. If this is true, the corresponding cell in the output ta-
ble is set to true and if this is false, the corresponding cell is
left as false to which it was initialized.

3.4 Rule Learning

Once the raw data has been abstracted to be more human-
understandable, the data is passed to the rule learning step.
In this step, association rule learning [4] is used to detect
patterns in the data and formalize them into rules. This step
produces an initial ruleset which is then passed to the next
step for refinement.

Association rule learning takes as input a set of data in
item-transaction format. In this format, items are assigned
Boolean truth values for each transaction. An example of
such format is shown in Table 1 with each line representing
a transaction or sample from a time instant and each col-
umn representing an item. For our purposes, a transaction
corresponds to one time-instant in the data while an item

corresponds to a predicate-objects combination represent-
ing knowledge of the traffic situation. The data is then pro-
cessed in two steps: discovery of frequent itemsets and rule
formation.

A frequent itemset is a set of items which appear fre-
quently together in the data. The threshold of frequency is a
user-defined value on a metric called support. Support of an
itemset X in database of transactions T is calculated through
following:

S upport(X) =
|X|
|T | (3)

where |X| is the number of transactions in T that include
itemset X and |T | is the total number of transactions in T.
The discovery of frequent itemsets is often done using the
Apriori algorithm [25]. Apriori algorithm is a bottom-up al-
gorithm relying on downwards closure according to which
all frequent itemsets of length k can be formed by extending
frequent itemsets of length k-1 by adding one item and then
pruning any non-frequent itemset.

Once frequent itemsets up to a desired length have been
discovered, some can be pruned by exploiting knowledge
of the desired rule format. If it is known that the rule an-
tecedent (body) or the consequent (head) can only contain
certain items, it is possible to introduce restrictions known
as item constraints [26]. In the rule formation step explained
below, a rule is formed from a single frequent itemset. These
rules include a rule body and a rule head. The goal of the
rules is to map knowledge on the ego-vehicle and its en-
vironment into correct ego-vehicle action. As such, it is
known that the rule head should only contain things that
cause effects: vehicle actions. Similarly, rule bodies should
only include things we can observe. Thus, any frequent
itemset that does not contain both observations and action
can be discarded safely: any itemset consisting only of ac-
tions or observations can not be used to produce a useful
rule. Due to the bottom-up nature of the Apriori algorithm,
this optimization can only be done after the Apriori algo-
rithm has discovered all frequent itemsets up to the desired
maximum length.

The rule formation process is based on a user-defined
threshold value on a metric called confidence, which de-
scribes how often the rule has been found to be true. The
confidence value for a rule X =⇒ Y can be calculated
using the following equation:

Con f idence(X =⇒ Y) =
S upport(X ∪ Y)

S upport(X)
(4)

where X and Y are itemsets. X and Y are chosen by split-
ting a single frequent itemset into two parts and if the con-
fidence value of a rule exceeds the user defined threshold,
a rule is formed. Similarly to the optimization of frequent
itemset pruning, this step can be optimized using the same
knowledge on rule format: only rules with observations in
the body and actions in the head should be examined. This
step generates rules for which the rule bodies consist of con-
junctions of predicates. Additionally, the length of rule head
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is restricted to one. This causes the rules to be simpler and,
if desired, any rules with same bodies but different heads can
be combined to one rule with a longer head at a later stage.
Given this, we produce rules of form

pb1(ti) ∧ . . . ∧ pbn(t j) =⇒ ph(tk) (5)

Where {pb1, . . . , pbn} are observation-related predicates that
can be placed into rule bodies, ph is an action-related predi-
cate that can be place into rule heads, and {ti,t j,tk} are sets of
objects described by the respective predicates. The number
of objects included in, for example, ti is dictated by the arity
of pb1.

3.5 Ruleset Refinement

Often, the ruleset generated in the previous step includes
unwanted rules that can be safely removed without affecting
the integrity of the ruleset. This step focuses on refining
the initial ruleset given as input into a more concise ruleset
through pruning. A pruned ruleset is easier for humans to
understand and requires less computation to infer on.

It is possible to identify and remove redundant rules
that can increase the computational requirements of infer-
ence and clutter the ruleset while never affecting the action
of the vehicle. These redundant rules can be pruned by re-
peatedly looking for two rules R1 and R2 which fulfill two
requirements and then removing R1 from the ruleset. These
requirements state that

(1) head of R2 must be the same as head of R1, and

(2) body of R2 must be a subset of body of R1.

Importantly, safe removal of redundant rules based on these
requirements relies on the assumption that, when using the
ruleset, the reasoner only considers rules which have bodies
that are satisfied to make a decision. In other words, no
knowledge should be gained from a rule for which the body
is not satisfied.

Let us continue the example of previous step where rule
bodies consist of conjunctions of predicates and rule head
length is limited to one by examining a ruleset of two rules
R1 and R2:

R1:
signalRed(Ego) ∧ pedestrianOnLeft(Ped) =⇒ stop(Ego)

R2:
signalRed(Ego) =⇒ stop(Ego)

where signalRed(Ego) indicates that the traffic light affect-
ing the ego-vehicle is red, pedestrianOnLeft(Ped) indicates
that a pedestrian is crossing or about to cross the road on the
left from the point-of-view of the ego-vehicle, and stop(Ego)
indicates that the ego-vehicle takes the action of stopping.
These two rules fulfill requirement (1) as their heads are the
same, thus allowing us to limit the examination to the bodies
of the rules:

R1:
signalRed(Ego) ∧ pedestrianOnLeft(Ped) ∈ {True, False}

R2:
signalRed(Ego) ∈ {True, False}

Now, it is straightforward to see that if the body of R1 is
satisfied, then the body of R2 will also be satisfied. This is
due to the body of R2 being a subset of the body of R1 and,
as such, the rules fulfill requirement (2). When using these
rules, no information should be gained if a rule body is not
satisfied. For example, the body of R1 not being satisfied
results in no knowledge being gained of the correct vehicle
action. The correct action can still be stopping as evidenced
by R2 in the case of signalRed(Ego) being true and pedestri-
anOnLeft(Ped) being false. Thus, R1 can be safely removed.

3.6 Final Vocabulary Extraction

In case of differences between the vocabulary used by the
target system and the initial vocabulary definition, this step
allows defining a final vocabulary into which the rules are
translated. This allows transferring the rules between differ-
ent systems despite some differences between the systems.
If the initial vocabulary was already defined in a way that
does not need translation, this step will define the same pred-
icates.

This step takes in the initial predicate definition used
in the initial vocabulary extraction (Fig. 1: step 2) as well
as a target ontology or a list of target predicates. To con-
nect the initial predicates to the final predicates, a series of
translation rules are made. These translation rules describe
a predicate through a conjunction of one or more predicates
from another vocabulary and must be satisfied in exactly the
same cases in which the original predicate is satisfied.

For example, let predicate pi/1 be included in the initial
predicate definition. However, this predicate is not present
in the target vocabulary given as input. Thus, a rule is
formed to connect pi/1 to the target vocabulary. Due to the
explanatory and highly abstracted nature of the predicates,
these rules are currently written manually. This rule takes
the following form:

p0 ∧ . . . ∧ pn =⇒ pi

where p0 to pn are predicates in the target vocabulary. One
such rule is formed for each pi not present in the target vo-
cabulary and passed onto the next step. In the case of for-
mation of such rule being impossible, it might be necessary
to increase the expressive power of the vocabulary.

3.7 Rule Translation

The final step of the process is the rule translation step
which operates on the pruned human-understandable rule-
set and the translation rules given as input. This step ap-
plies the translation rules to the ruleset by replacing pred-
icates matching the rule head with the body of the trans-
lation rule. Additionally, this step translates the rules into
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the format understood by the target system. At this point,
the rules are simply a list of rules with little standard-
ized formatting. The rules are translated into the Semantic
Web Rule Language (SWRL) [27] easing the parsing of the
rules from a file and transferring the rules between systems.
SWRL is a combination of sublanguages of the Web On-
tology Language (OWL) [28] and Rule Markup Language
(RuleML) [29]. Any relevant metadata can be added to the
file in this step. As a result of this step, the final ruleset is
ready to be used in the target application.

4. Traffic Representation

To create explanatory rules describing actions for a vehicle
to perform, it is of utmost importance to define a way to
describe traffic and represent related knowledge. The aim
of this work is to generate rules which map knowledge of
the state and environment of the vehicle into actions. These
states and environmental factors are described through a vo-
cabulary representing highly abstracted knowledge concepts
based on available data such as sensor feeds. Thus, the
choice of vocabulary is important for practical applications
of the rule generation process. To conduct an experiment,
the ADAS ontology [19] was chosen to be used as a vocab-
ulary to represent necessary information. However, scenar-
ios with multi-step intersection crossing behavior revealed a
need for additions to the ADAS ontology that are proposed
in Sect. 4.3.

4.1 Ontologies

Ontologies are collections of hierarchical concepts usually
relating to a specific area or field and the relations between
those concepts [30]. As such, ontologies can be considered
to contain a vocabulary for a specific field of study. For
this work, an ontology created for autonomous driving and
advanced driver assistant systems was chosen as the vocab-
ulary to be used. This ontology is the ADAS ontology [19].
As its name suggests, ADAS ontology was created to de-
scribe concepts and their relations in traffic in a way that
is useful for ADAS [31]. Other ontologies aimed at use in
traffic-related applications exist, some of which are intro-
duced in Sect. 2. Many of these ontologies are specialized
and highly expressive in their scope. ADAS ontology, how-
ever, aims to be more general.

4.2 ADAS Ontology

The ADAS ontology introduced by Zhao et al. [19] is com-
prised of three distinct parts: Map, Control, and Car on-
tologies. Together, they currently define 159 classes, 35
object properties, and 51 data properties. The Map ontol-
ogy includes concepts to describe and store a map of e.g.
roads and intersections, and the connections between differ-
ent elements. The Control ontology describes the controls
of a vehicle, such as stop, go, and its planned path. Finally,

Fig. 2 Partial visualization of the classes in the Car ontology of the
ADAS ontology [19].

Fig. 3 Partial visualization of the object properties in the Map ontology
of the ADAS ontology [19].

the Car ontology contains concepts to describe different ve-
hicles and their properties. Being oriented towards driver
assistant systems, the ADAS ontology provides vocabulary
to describe situations through the point-of-view of the ego-
vehicle as opposed to many other ontologies, e.g. one by
Hülsen et. al. [20], which describe scenarios without focus-
ing on roles. A more thorough explanation of the ADAS
ontology is presented by Zhao et. al. [32], although it has
since been expanded slightly.

A part of the classes in the Car ontology is visualized
in Fig. 2. The class MyCar at the bottom can be used to indi-
cate the ego-vehicle. It can be seen that MyCar is a subclass
of PassengerCar which is a subclass of RegularVehicle and
so on until the root class of the ontology. Figure 3 on the
other hand shows a partial set of object properties defined
in the Map ontology of the ADAS ontology. These include
properties such as turnLeftTo and turnRightTo which can be
used to provide a relative locations between different roads
connected to the same intersection. This, in turn, can be
used to infer vehicle order as mandated by the applicable
traffic law.

4.3 Expanding ADAS Ontology

To be able to express more realistic vehicle behavior in a
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Fig. 4 Example scenario in an intersection. Ego-vehicle is shown in
black while another vehicle is shown in white.

more concise and human-understandable way, we propose
additions to the ADAS ontology. Let us consider the sce-
nario of Fig. 4 taking place in an uncontrolled intersection
with right-hand traffic. The traffic law for the example
states: in an uncontrolled intersection, a vehicle must yield
if another vehicle is entering the intersection from the right.
The ego-vehicle is approaching a four-way intersection as
shown in Fig. 4 where the ego-vehicle is shown in black on
lane 1. Another vehicle is shown in white on lane 2. In this
scenario, the ego-vehicle must yield. Now, the actions of the
ego-vehicle could be described using the ADAS ontology as
stop while the ego-vehicle is waiting outside the intersection
for the other vehicle to cross the intersection and go once the
ego-vehicle is free to proceed. This, however, describes sim-
plified and overly cautious behavior from ego-vehicle that
is unlike what a human driver would do. A more likely
description of ego-vehicles actions would be that the ego-
vehicle proceeds slowly into the intersection and stops at a
point which is as far as possible while not interfering with
the other vehicle. In some cases the ego-vehicle can proceed
far into the intersection while in some the ego-vehicle has to
wait outside the intersection. In some cases the ego-vehicle
can do multiple stops within one intersection crossing such
as in the case of first avoiding a pedestrian by stopping be-
fore the intersection and later avoiding a crossing vehicle
by stopping inside the intersection. To achieve this behav-
ior using stop and go, they must be accompanied by some
description relating to different positions in and around the
intersection. These descriptions do not currently exist in the
ADAS ontology.

In an earlier work, stop and go were used as rule heads
to create a ruleset which results in the ego-vehicle wait-
ing for its turn outside the intersection (line number 1 in
Fig. 5) [33]. However, as mentioned earlier, this behavior
leaves much to be desired in terms of mimicking real-world
traffic. To create a ruleset that describes more dynamic and
realistic behavior of proceeding into the intersection early,
certain areas of the intersection must be reflected in the cho-
sen vocabulary. Currently, this not possible if using the

Fig. 5 Visualization of conceptual stopping location in and around an
intersection when approaching from the South and turning left.

ADAS ontology as the source for the vocabulary.
As such, we propose expanding the ADAS ontol-

ogy with three new unary predicates for actions related
to intersection crossing: stopAtOne/1, stopAtTwo/1, and
stopAtThree/1. These three new actions represent concep-
tual stopping locations around and within the intersection.
These stops are visualized in Fig. 5 for a scenario where the
ego-vehicle is approaching the intersection from the South
and intends to turn left to the West.

New actions describing stopping at certain locations
were chosen over using stop and go with new positional
observations due to the temporal differences of the two ap-
proaches. An action describing a stop at a certain location
can be used as the current action even before the ego-vehicle
is at that location. Using the action stop with an observation
of ego-vehicle position would be the current action only af-
ter the ego-vehicle has reached the position. In essence,
adding new actions instead of positional observations results
in giving the vehicle control system more time to deceler-
ate smoothly and avoid overshooting the stopping position
which could risk a collision.

stopAtOne corresponds to stopping location number 1
in Fig. 5. It represents the ego-vehicle stopping before enter-
ing the intersection or before a pedestrian crossing in case
one is present. This action has many use cases including
a scenario where the ego-vehicle is giving way to a pedes-
trian crossing the road. Another clear example is in a traf-
fic light-controlled intersection when the light affecting the
ego-vehicle is red. Additionally, this can be used for cau-
tious intersection crossing to keep the ego-vehicle out of the
intersection until the ego-vehicle is free to cross the whole
intersection.

stopAtTwo is visualized in Fig. 5 with number 2. This
conceptual stop location is inside the intersection to allow
the ego-vehicle to enter the intersection even if it is not yet
completely clear of other actors that have priority over the
ego-vehicle. In the example of Fig. 5, the ego-vehicle could
take action stopAtTwo even if there is another vehicle ap-
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proaching from the North and intending to drive straight
across the intersection towards the South.

stopAtThree, shown in Fig. 5 with number 3, repre-
sents a stop that must be made to avoid a pedestrian crossing
the road on which the ego-vehicle is planned to drive after
crossing the intersection.

The use of these actions can differ on a per applica-
tion basis. One possibility is to take the actions simulta-
neously if the ego-vehicle must make more than one stop
when crossing the intersection. Another possibility is as-
signing priorities to the rules based on the sequential na-
ture of the action and considering only the highest priority
rule out of the satisfied rules. For example, the ego-vehicle
can take actions stopAtOne and stopAtThree simultaneously
when approaching the intersection if pedestrians are cross-
ing the corresponding roads. In this case, stopAtOne causes
the ego-vehicle to stop before the first pedestrian crossing to
give way to a pedestrian. After the pedestrian has crossed,
stopAtOne is removed from the actions of the ego-vehicle
as the rules resulting to taking it should no longer be satis-
fied. At this point stopAtThree remains to be executed. The
sequential nature of these actions makes it simple to deter-
mine which action out of multiples is the current action or
which of the satisfied rules should be followed. Both cases
boil down to priority: one assigns priorities to rules while
the other assigns priorities to actions.

5. Experiment

An experiment was conducted to evaluate the viability of the
rule generation process introduced in Sect. 3 and to evaluate
the new predicates introduced in Sect. 4.3. The goal of the
experiment was to generate rules using the process shown in
Fig. 1, use the new predicates, and produce a set of correct
rules according to a set evaluation criteria.

5.1 Experimental Setup

5.1.1 Vehicle Task and Environment

The scope of the experiment was restricted to scenarios in a
four-way intersection. This includes scenarios with two to
three vehicles, with and without pedestrians, and with and
without traffic lights. The traffic follows the right-hand traf-
fic rules where vehicles drive on the right side of the road
and yield to vehicles approaching the same intersection from
the right. The task of the vehicle was to:

• cross the intersection by turning left, turning right, or
driving straight across,

• avoid collisions with vehicles or pedestrians,

• obey vehicle order mandated by traffic law, and

• obey traffic light control if applicable.

Unexpected situations, such as an actor (vehicle or pedes-
trian) running a red light or an emergency vehicle taking

Table 2 The data sampled from the simulations.

Name Description
Description The scenario description used to construct

the scenario
Timestamp The time elapsed since the start of the

scenario (seconds)
Actor-Role Role of each actor in the scenario

(ego-vehicle, other vehicle,
pedestrian)

Actor-Location Coordinates of each actor (x, y, z)
Actor-Velocity Velocity of each actor (x, y, z)
Actor-Acceleration Acceleration of each actor (x, y, z)
TL-Description Description of location of each traffic light

(N, W, S, E)
TL-Location Coordinates of each traffic light (x, y, z)
TL-State State or color of each traffic light

(off, red, yellow, green)

priority, were not included in the scope of the experiment.

5.1.2 Simulation and Data Collection

Collection of data (Fig. 1: step 1) was done through simu-
lations. The simulator chosen for the task was the CARLA
simulator [34] due to previous experience with the simula-
tor and CARLA being a free simulator under active devel-
opment aimed at autonomous vehicle and ADAS research.

A software was created to run scenarios and collect
data. First, the software algorithmically generated descrip-
tions of the possible three and two vehicle scenarios with
and without pedestrians and with and without traffic lights.
The description included information such as actors, start-
ing locations of actors, intended actions of actors, and traf-
fic light starting colors. Next, the software ran the scenarios
by constructing the scenarios within the simulator. During
scenarios, the state of the simulation was sampled and saved
repeatedly. Each sample included a set of data required in
the step of data abstraction (Fig. 1: step 3). This set of data
is described in Table 2. Some of the data is raw numeric
data, such as coordinates, while some of the data is more
abstract, such as the role of an actor.

5.1.3 Vocabulary and Data Abstraction

A vocabulary for data abstraction was created based on the
ADAS ontology [19] and examination of different factors af-
fecting decision making such as which factors traffic laws
are based on. Two different types of predicates were cho-
sen: observations and actions. Table 3 shows the chosen
observation predicates and their explanations while Table 4
introduces the action predicates. Actions cause the ego-
vehicle to behave a certain way while observations describe
the current situation. The distinction is made depending on
the application and used vocabulary. For example, while
turnLeft intuitively sounds like an action, here it is used to
describe the intended path of a vehicle and thus, is classi-
fied as an observation. Knowledge of these intentions allows
the decision-making to exploit knowledge on actor trajecto-
ries to effectively use free areas of the intersection as human
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Table 3 The observation predicates chosen for data abstraction.

Predicate Description
turnLeft/1 A vehicle is intending to cross the

intersection by turning left
turnRight/1 A vehicle is intending to cross the

intersection by turning right
goStraight/1 A vehicle is intending to cross the

intersection by driving straight
signalGreen/1 The traffic light affecting a vehicle is

green
signalYellow/1 The traffic light affecting a vehicle is

yellow
signalRed/1 The traffic light affecting a vehicle is red
signalOff/1 The traffic light affecting a vehicle is not

in use or does not exist
pedestrianAtStart/1 A pedestrian is crossing or intending to

cross the road from which the ego-vehicle
is approaching the intersection

pedestrianOpposite/1 A pedestrian is crossing or intending to
cross the road which is opposite from the
ego-vehicle

pedestrianOnLeft/1 A pedestrian is crossing or intending to
cross the road which is left from the
ego-vehicle

pedestrianOnRight/1 A pedestrian is crossing or intending to
cross the road which is right from the
ego-vehicle

drivers often do. Only unary predicates were used in the ex-
periment. However, some of these unary predicates must be
expressed through a combination of unary and binary pred-
icates if using vocabulary from the ADAS ontology. The
three predicates proposed in Sect. 4.3 are the only new pred-
icates not available through ADAS. However, some predi-
cates and objects used are derived from rules using classes
and properties in ADAS ontology to simplify rule verifi-
cation and evaluation process by producing more compact
rulesets. For example, pedestrianOnLeft/1 appears in the
generated rules as a predicate and is not part of the ADAS
ontology. pedestrianOnLeft/1 describes a situation where a
pedestrian is crossing or about to cross the road on the left
from the point-of-view of the ego-vehicle. Such situation
is visualized in Fig. 6. Following the names in the visual-
ization, pedestrianOnLeft/1 can be expressed using ADAS
through following:

1. myCar(Ego) ∧ human(Ped)
2. ∧ lane(Lane1) ∧ lane(Lane2)
3. ∧ roadSegment(Road1)
4. ∧ crosswalkRoadSegment(Crosswalk1)

5. ∧ isRunningOn(ego, Lane1)
6. ∧ isRunningOn(Ped, Crosswalk1)
7. ∧ isOn(Crosswalk1, Road1)
8. ∧ isOn(Lane2, Road1)
9. ∧ turnLeftTo(Lane1, Lane2)

10. =⇒ pedestrianOnLeft(ped)

where lines 1 to 4 define classes for the ego-vehicle, the
pedestrian, lanes, road, and a crosswalk. Lines 5 and 6 place

Table 4 The action predicates chosen for data abstraction. Numbered
stopping locations are visualized in Fig. 5.

Predicate Description
stopAtOne/1 A vehicle has stopped before entering the

intersection at the conceptual stopping location
number 1

stopAtTwo/1 A vehicle has stopped inside the intersection
at the conceptual stopping location number 2

stopAtThree/1 A vehicle has stopped before exiting the
intersection at the conceptual stopping location
number 3

Fig. 6 Visualization of a situation described by pedestrianOnLeft/1.

the ego-vehicle on Lane1 and the pedestrian on Crosswalk1.
Lines 7 and 8 place Crosswalk1 on Road1 and Lane2 on
Road1. Line 9 states that turning from Lane1 to Lane2 is a
left turn. Finally, line 10 states that if lines 1 to 9 evaluate
to true, then the pedestrian in question is on the left from
the point-of-view of the ego-vehicle. Similar rules can be
derived for the rest of the used predicates and objects except
for the three predicates proposed in 4.3.

Once the vocabulary was decided, Algorithm 1 was
used in conjunction with knowledge of the intersection to
abstract the data. For example, knowledge on the intersec-
tion coordinates allows computing whether a vehicle is in-
side the intersection as coordinates for each vehicle were
included in the raw dataset.

5.1.4 Rule Structure, Learning, and Refinement

When using the generated ruleset, the ego-vehicle was con-
sidered to be proceeding forwards on its planned path if no
rules apply. As such, there are no rules produced that require
the ego-vehicle to proceed. Only actions included in the ini-
tial vocabulary were the three new predicates introduced in
Sect. 4.3. In the case of one of these actions being required
by a rule, the ego-vehicle can proceed until it arrives at the
designated stopping point. This way, multiple rules requir-
ing different stops can be active at the same time, even if
only one of them causes an action. For example, a rule stat-
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ing that the ego-vehicle should take action stopAtOne(Ego)
and a rule requiring action stopAtThree(Ego) being active at
the same time will result in the ego-vehicle effectively taking
the action stopAtOne(Ego) as the stopping location associ-
ated with it is reached first. This creates a priority system of
sorts.

Rule learning from the abstracted dataset was done us-
ing association rule learning. The threshold for support was
set to 0.01 and the threshold for confidence was set to 0.80.
The final values used for support and confidence were set
through manual tuning by inspecting the resulting ruleset
for different values. The items in the item-transaction for-
matted data were the predicates in Tables 3 and 4 com-
bined with objects present in the data while each transaction
was a single sampled time-instant of the simulation. Thus,
the dataset of abstracted samples can be considered to be
in item-transaction format and association rule learning can
be applied. Restrictions on the rule structure introduced in
Sect. 3.3 state that a rule body can only include observations
while a rule head can only contain actions. This knowledge
was used to both restrict the output of association rule learn-
ing and optimize the algorithm to avoid unnecessary com-
putation as described in Sect. 3.4.

Ruleset refinement was applied to the learned ruleset
as introduced in Sect. 3.5 by repeatedly searching for rule
pairs matching the requirements for pruning and removing
any redundant rules. This search was done until no more
requirement fulfilling pairs were found.

5.1.5 Final Vocabulary and Translation

This experiment was conducted to evaluate the proposed
process in terms of its ability to produce correct rules. As
such, a complete translation of the ruleset was not done due
to the translation process not changing the functionality of
the rules. Additionally, the three new proposed additions to
the ADAS ontology can not be translated to match the ontol-
ogy. An example of a translation rule for pedestrianOnLeft/1
is given in Sect. 5.1.3 and similar translation rules could
have been written for other applicable predicates.

5.1.6 Evaluation Criteria

Due to a widely accepted form of system verification or
evaluation not being available for the application, the eval-
uation of the generated ruleset was done through review.
During this review, each rule as well as the whole set was
inspected according to the vehicle task and scope of the ex-
periment, both of which are introduced in Sect. 5.1.1. For
the rules and the ruleset to have been considered correct and
the process to have been considered successful, the rules and
the rulesets were required to fulfill a set of requirements. Re-
quirements 1-3 focus on ensuring that the rules cause correct
operation of the vehicle while requirements 4-6 focus on the
quality of the rulesets. The requirements are:

(1) The rules must cause the ego-vehicle to fulfill its task

of crossing the intersection.

(2) The rules must cause law-obeying behavior, including
vehicle order, obeying traffic lights, and giving priority
to pedestrians on pedestrian crossings.

(3) The rules must cause avoidance of collisions with other
vehicles and pedestrians.

(4) The ruleset must not contain redundant rules that are
always covered by other rules.

(5) The ruleset must not contain rules that simultaneously
result in contradictory actions.

(6) The ruleset must cover all situations included in the
scope of the experiment.

5.2 Results

The ruleset generated from scenarios with vehicles and
pedestrians is shown in Table 5. Similarly, the ruleset gen-
erated from scenarios with vehicles, pedestrians, and traffic
lights is shown in Table 6. The predicates appearing in the
rules are described in Tables 3 and 4. The objects are de-
scribed in Table 7.

Let us inspect the rulesets through the evaluation crite-
ria presented in Sect. 5.1.6.

(1) In both rulesets, there is some situation where the ego-
vehicle is not required to stop and can continue on its
path through the intersection. Thus, the first require-
ment is fulfilled.

(2) Both rulesets respect the traffic laws in terms of vehicle
right-of-way, obeying the relevant traffic light, and giv-
ing priority to pedestrians. Thus, the second require-
ment is fulfilled.

(3) Both rulesets cause the ego-vehicle to avoid collisions
by only allowing the ego-vehicle to proceed as far as is
safe. Thus, the third requirement is fulfilled.

(4) The rulesets do not contain redundant rules. Thus, the
fourth requirement is fulfilled.

(5) The rulesets only contain rules with the three new pred-
icates as their heads. These actions do not contradict
each other as explained in Sect. 5.1.4. Thus, the fifth
requirement is fulfilled.

(6) Both rulesets contain all situations within the chosen
experiment scope where the ego-vehicle must stop.
Due to the default action of the vehicle being proceed-
ing on its path, only and exactly the situation where
stopping is necessary must be covered. Thus, the sixth
requirement is fulfilled.

As seen above, all of the requirements set as the eval-
uation criteria are fulfilled by both of the rulesets. Thus,
we consider the rules to be correct and the rule generation
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Table 5 The set of rules created from scenarios with vehicles and pedestrians with rule head length
limited to one. Support > 0.01 and Confidence > 0.8.

Supp Conf Rule
0.022 1.00 turnLe f t(Ego) ∧ pedestrianAtS tart(Ped) ∧ signalO f f (Ego)⇒ stopAtOne(Ego)
0.023 1.00 goS traight(Ego) ∧ pedestrianAtS tart(Ped) ∧ signalO f f (Ego)⇒ stopAtOne(Ego)
0.022 1.00 turnRight(Ego) ∧ pedestrianAtS tart(Ped) ∧ signalO f f (Ego)⇒ stopAtOne(Ego)

0.115 1.00 turnLe f t(Ego) ∧ pedestrianOnLe f t(Ped) ∧ signalO f f (Ego)⇒ stopAtThree(Ego)
0.172 0.99 goS traight(Ego) ∧ pedestrianOpposite(Ped) ∧ signalO f f (Ego)⇒ stopAtThree(Ego)
0.100 1.00 turnRight(Ego) ∧ pedestrianOnRight(Ped) ∧ signalO f f (Ego)⇒ stopAtThree(Ego)

0.020 0.95 turnLe f t(Ego) ∧ goS traight(CarO) ∧ signalO f f (Ego)⇒ stopAtTwo(Ego)
0.019 0.97 turnLe f t(Ego) ∧ turnRight(CarO) ∧ signalO f f (Ego)⇒ stopAtTwo(Ego)
0.020 0.93 turnLe f t(Ego) ∧ turnLe f t(CarR) ∧ signalO f f (Ego)⇒ stopAtTwo(Ego)
0.022 0.92 turnLe f t(Ego) ∧ goS traight(CarR) ∧ signalO f f (Ego)⇒ stopAtTwo(Ego)
0.020 0.91 goS traight(Ego) ∧ turnLe f t(CarR) ∧ signalO f f (Ego)⇒ stopAtTwo(Ego)
0.020 0.86 goS traight(Ego) ∧ goS traight(CarR) ∧ signalO f f (Ego)⇒ stopAtTwo(Ego)
0.019 1.00 goS traight(Ego) ∧ turnRight(CarR) ∧ signalO f f (Ego)⇒ stopAtTwo(Ego)

Table 6 The set of rules created from scenarios with vehicles, pedestrians, and traffic lights with rule
head length limited to one. Support > 0.01 and Confidence > 0.8.

Supp Conf Rule
0.125 1.00 turnLe f t(Ego) ∧ signalRed(Ego) ⇒ stopAtOne(Ego)
0.118 1.00 goS traight(Ego) ∧ signalRed(Ego)⇒ stopAtOne(Ego)
0.118 1.00 turnRight(Ego) ∧ signalRed(Ego)⇒ stopAtOne(Ego)

0.013 0.88 turnLe f t(Ego) ∧ goS traight(CarO) ∧ signalGreen(Ego)⇒ stopAtTwo(Ego)
0.012 1.00 turnLe f t(Ego) ∧ goStraight(CarO) ∧ signalRed(Ego) ⇒ stopAtTwo(Ego)
0.013 0.92 turnLe f t(Ego) ∧ turnRight(CarO) ∧ signalGreen(Ego)⇒ stopAtTwo(Ego)
0.013 1.00 turnLe f t(Ego) ∧ turnRight(CarO) ∧ signalRed(Ego)⇒ stopAtTwo(Ego)

0.087 1.00 turnLe f t(Ego) ∧ pedestrianOnLe f t(Ped) ∧ signalGreen(Ego)⇒ stopAtThree(Ego)
0.063 1.00 turnLe f t(Ego) ∧ pedestrianOnLe f t(Ped) ∧ signalRed(Ego)⇒ stopAtThree(Ego)
0.071 1.00 turnRight(Ego) ∧ pedestrianOnRight(Ped) ∧ signalGreen(Ego)⇒ stopAtThree(Ego)
0.059 1.00 turnRight(Ego) ∧ pedestrianOnRight(Ped) ∧ signalRed(Ego)⇒ stopAtThree(Ego)

Table 7 The objects present in the generated rulesets and their explana-
tions.

Object Description
Ego The ego-vehicle.
Ped A pedestrian.
CarL A vehicle approaching the intersection from left from

the point-of-view of the ego-vehicle.
CarR A vehicle approaching the intersection from right from

the point-of-view of the ego-vehicle.
CarO A vehicle approaching the intersection from opposite

side of the intersection from the point-of-view of the
ego-vehicle.

process to have been successful. The new predicates intro-
duced in Table 4 enabled description of stops at different
positions in and around the intersection and thus fulfilled
their intended purpose.

5.3 Discussion

The conducted experiment covered most of the proposed
process. Rule translation step was demonstrated, but not
exhaustively applied. The results show that the proposed
process was able to generate correct rulesets within the de-
sired scope from simulated data and no incorrect rules were
included in the rulesets. Rules from different intersection

scenarios matching suggests that the process can be applied
to different situations to generate rulesets with higher cover-
age of different traffic situations.

Some of the generated rules, such as the first and fifth
rules in Table 6 (marked in bold), can be satisfied simulta-
neously. This effectively results in two actions having to be
taken simultaneously. However, the actions were designed
to be sequential in nature and one is always higher prior-
ity. That is, stopAtOne always occurs before stopAtTwo and
stopAtThree always occurs last. Thus, both rules being sat-
isfied at the same time poses no problems. However, the rea-
soner has to accommodate such relations between different
actions, possibly through a priority system. This highlights
the relationship between choices made during the ruleset
generation process and the design of the reasoner. Either the
target system should be understood when defining vocabu-
laries and refining the rulesets or the target system must be
designed with the properties of the ruleset in mind.

Rule learning was done through association rule learn-
ing [4] using the Apriori algorithm [25] to discover frequent
itemsets and using support and confidence thresholds for
itemset frequency and rule significance. This traditional ap-
proach is known to have several shortcomings. Moreno et.
al. list obtaining non-interesting rules, huge number rules,
and low algorithm performance as the main drawbacks [35]
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while Ng et. al. focus on opening the black box to allow
user guidance during learning [36]. While the results of this
experiment were deemed to be the correct and desired re-
sults, the complexity of the rules is likely to increase on the
way towards practical applications. As such, improved tech-
niques of association rule learning could be used. Different
measures of rule usefulness can be used to refine the rule-
sets. Examples of such measures are unexpectedness and
actionability as defined by Liu et. al. [37]. The hierarchical
nature of ontologies could prove to be useful if methods of
learning generalized association rules [2], [3] are used.

Many rules resemble each other with only the traffic
light color being different. For example, the following rules
are included in either Table 5 or 6 (marked in underline):

turnLe f t(Ego) ∧ goS traight(CarO)
∧signalO f f (Ego) =⇒ stopAtTwo(Ego)

turnLe f t(Ego) ∧ goS traight(CarO)
∧signalGreen(Ego) =⇒ stopAtTwo(Ego)

turnLe f t(Ego) ∧ goS traight(CarO)
∧signalRed(Ego) =⇒ stopAtTwo(Ego)

If the absence of yellow traffic light is ignored due to it being
possible to be interpreted as red or green, at a glance these
three rules seem to be a candidate for combining them into
a single rule by removing the atom describing traffic light:

turnLe f t(Ego) ∧ goS traight(CarO)
=⇒ stopAtTwo(Ego)

This kind of ruleset refinement is difficult to generalize. It is
heavily reliant on the meaning of each predicate as defined
by humans while the pruning described in Sect. 3.5 relies
on mathematical properties of conjunctions. However, this
refinement could be done with some restrictions: rule heads
must be the same, rule bodies must be the same except for
one atom, and the differing atoms must appear in all possible
variations out of which one variation is always present in the
scenario. This is the case for the above three rules assuming
the traffic light would always be off, green, or red. Due to the
generalization challenges, this refinement technique was not
described in the process or implemented in the experiment.

6. Conclusion

This paper proposed a process for generating explanatory
rules for use in ADAS from raw data. The process covers
everything from data collection to translating the ruleset to
use the desired vocabulary. On the way towards simulat-
ing scenarios more complex than in the author’s previous
work [33], pedestrians and traffic lights were added to in-
tersection scenarios. Due to this, depicting more realistic
vehicle behavior than before using human-understandable
vocabulary became desirable. Thus, we proposed three ad-
ditions to the ADAS ontology to describe vehicle actions in
an intersection: stopAtOne, stopAtTwo, and stopAtThree.

The proposed process was demonstrated to be able to

generate correct rulesets for the chosen experiment scope.
This suggests the process is viable for generating explana-
tory rules from data and should be applied to more diverse
datasets to further examine its applicability for different
datasets.

The three new classes of actions proposed to be added
into the ADAS ontology were successfully used to capture
more realistic vehicle behavior than in author’s previous
work [33] where only actions used were stop and go. The
proposed new actions are inherently sequential in nature and
thus can easily be prioritized over one another during the
decision-making process.

In the future, improvements of the proposed process
can come from different directions, such as examination of
using different rule learning methods. In addition to meth-
ods which directly learn rules, other classifiers such as ones
producing decision trees could be used, for example C4.5
introduced by Quinlan in 1993 [16]. C4.5 generates a deci-
sion tree to classify an example based on a set of features.
In this case, the features or decision points in the tree would
be different values for observations while classes would be
ego-vehicle actions. Other future research directions include
applying the process to datasets containing real-world driv-
ing data and unexpected situation as well as automated as-
signment of rule priority for the generated rules.
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