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PAPER

How Centrality of Driver Nodes Affects Controllability of Complex
Networks

Guang-Hua SONG†, Xin-Feng LI†, Nonmembers, and Zhe-Ming LU†a), Member

SUMMARY Recently, the controllability of complex networks has be-
come a hot topic in the field of network science, where the driver nodes
play a key and central role. Therefore, studying their structural charac-
teristics is of great significance to understand the underlying mechanism
of network controllability. In this paper, we systematically investigate the
nodal centrality of driver nodes in controlling complex networks, we find
that the driver nodes tend to be low in-degree but high out-degree nodes,
and most of driver nodes tend to have low betweenness centrality but rela-
tively high closeness centrality. We also find that the tendencies of driver
nodes towards eigenvector centrality and Katz centrality show very simi-
lar behaviors, both high eigenvector centrality and high Katz centrality are
avoided by driver nodes. Finally, we find that the driver nodes towards
PageRank centrality demonstrate a polarized distribution, i.e., the vast ma-
jority of driver nodes tend to be low PageRank nodes whereas only few
driver nodes tend to be high PageRank nodes.
key words: complex networks, network controllability, driver nodes, nodal
centrality

1. Introduction

Complex networks are ubiquitous in natural, social, and
man-made systems [1], the dynamics taking place on them
has been deeply studied to understand their principles and
underlying mechanisms [2]. However, as Barabási said, the
ultimate proof of our understanding of complex networks
is reflected in our ability to control them [3]. That is, with
a suitable choice of inputs, driving the networked system
from any initial state to any desired final state within fi-
nite time [4]. Although great effort [5]–[9] has been devoted
to understand the controllability of complex networks, the
progress is less than satisfactory. The challenge lies in how
to efficiently determine the minimal number of controllers
to make sure the network is fully controllable. Until re-
cently, Liu et al. [3] made a breakthrough that they devel-
oped a minimum input theory to efficiently characterize the
structural controllability of directed networks, allowing a
minimum set of nodes (called driver nodes) to be identi-
fied to achieve full control. In particular, the authors proved
that the structural controllability problem can be converted
into an equivalent maximum matching problem [10], where
external control is necessary for every unmatched node.
Liu et al.’s work caused a huge sensation and triggered an
avalanche of research on network controllability. Several

Manuscript received November 12, 2020.
Manuscript revised April 2, 2021.
Manuscript publicized May 20, 2021.
†The authors are with the School of Aeronautics and Astronau-

tics, Zhejiang University, Hangzhou 310027, P. R. China.
a) E-mail: zheminglu@zju.edu.cn (Corresponding author)

DOI: 10.1587/transinf.2020EDP7238

basic issues have been carefully addressed, such as linear
edge dynamics [11], exact controllability of networks [12],
upper and lower bounds of energy required for control [13],
robustness of controllability [14]–[16], optimization of con-
trollability [17], [18], and so on.

Besides, it is also important to understand how net-
work’s structural characteristics affect its controllability. In
this direction, there have been many good attempts. Liu
et al. [3] first pointed out that the controllability of a net-
work is mainly determined by its degree distribution, and
thus sparse and heterogeneous networks are the most diffi-
cult to control. Banerjee and Roy [19] argued that despite
degree distribution, the distance based measures such as be-
tweenness and closeness also affect network’s controllabil-
ity. Pósfai et al. [20] studied the effects of clustering, mod-
ularity and degree correlations on network controllability,
found that clustering and modularity have no discernible im-
pact on controllability, but degree correlations show a robust
effect, whose magnitude and direction depends on the type
of correlation. Menichetti et al. [21] claimed that the struc-
tural controllability of a network depends strongly on the
fraction of nodes with in-degree and out-degree equal to one
and two.

Recently, some studies start to pay attention to the in-
trinsic properties of driver nodes themselves. The driver
node, applying external inputs to which can bring network
under full control, is in the central position of network con-
trollability. Therefore, it is necessary and fundamental to
first investigate the properties of driver nodes themselves be-
fore studying the overall structural impact on controllability.
In fact, Liu et al. [3] have showed that the driver nodes tend
to avoid high degree nodes (hub nodes). There also have
been many related works on how to choose driver nodes
focusing on centrality measures. Moradiamani et al. [22]
proposed a new centrality measure and compared with the
cases with the driver nodes with the proposed measure and
the cases with other centrality measures. Jalili et al. [23]
also proposed an optimal placement strategy and discussed
the difference between effects of the chosen nodes from the
proposed method and the nodes with different network cen-
trality on the controllability of networks.

Since degree is just one metric of nodal centrality, and
nodal centrality has been shown to be crucial to many net-
work dynamics such as synchronization [24] and robust-
ness [25], therefore, it is natural and interesting to ask: how
is nodal centrality of driver nodes? In this paper, we are
dedicated to studying the nodal centrality of driver nodes
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in controlling complex networks. Seven popular metrics of
nodal centrality, including in-degree, out-degree, between-
ness, closeness, eigenvector, Katz and PageRank, are stud-
ied to show the tendencies of driver nodes towards various
nodal centralities. Many previous valuable works are ded-
icated to proposing new centrality measures [22], finding
driver nodes or key nodes [9], designing an optimal place-
ment strategy [23] or designing attacking strategies [26], but
our paper focuses on studying the properties of driver nodes
in terms of their centralities in detail. Our contributions are
as follows: (1) The tendencies of driver nodes towards vari-
ous nodal centralities are studied. (2) We find that the driver
nodes tend to be low in-degree but high out-degree nodes.
(3) We find that the driver nodes tend to be low between-
ness but relatively high closeness nodes. (4) We find that
both the eigenvector centrality and Katz centrality of most
driver nodes are low. (5) We find that the vast majority
of driver nodes have low PageRank centrality whereas only
few driver nodes have high PageRank centrality.

The rest of the paper is organized as follows. In Sect. 2,
we give a brief review of network controllability. In Sect. 3,
we investigate the relationship between centrality of driver
nodes and controllability of complex networks based on nu-
merical results and related discussions. Finally, Sect. 4 con-
cludes the whole paper.

2. Network Controllability

Consider a network of N nodes governed by the following
linear time invariant dynamics:

dx(t)
dt
= Ax(t) + Bu(t) (1)

where x(t) = (x1(t), x2(t), . . . , xN(t))T captures the states of
N nodes at time t, A ∈ RN×N denotes the coupling ma-
trix, in which ai j represents the weight of a directed link
from node j to node i (for undirected networks, ai j = a ji).
u(t) = (u1(t), u2(t), . . . , uM(t))T is the input vector of M ex-
ternal controllers, and B ∈ RN×M (M ≤ N) is the input ma-
trix which identifies nodes (called driver nodes) controlled
by external controllers.

According to the classic Kalman rank condition [4], the
system described by Eq. (1) is said controllable if it can be
driven from any initial state to any desired final state within
finite time, which is possible if and only if the N × NM
controllability matrix

C = (B,AB,A2B, . . . ,AN−1B) (2)

has full rank, that is

rank(C) = N (3)

The standard way to address the controllability prob-
lem is to find a suitable control matrix B consisting of the
minimal number of driver nodes so as to satisfy the Kalman
rank condition [12]. However, the practical difficulty lies in
that there are 2N possible combinations of selecting driver

nodes, which is computationally prohibitive for large net-
works. Even though one can enumerate all the combina-
tions efficiently, the link weights (ai j) are often unknown
for real-world networks. Therefore, Liu et al. [3] introduced
the so called structurally controllability [27] to complex net-
works to overcome the inherently incomplete knowledge of
link weights. A matrix is called structured matrix if its ele-
ments are either constant zeros or independent free parame-
ters. The system (A,B) is said to be structurally controllable
if it is possible to fix non-zeros in A and B to certain values
so that rank(C) = N [27]. The structurally controllable sys-
tem can be shown to be controllable for almost all weight
combinations except for some pathological cases [3].

Liu et al. [3] also proved that the structural controlla-
bility of a network can be mapped into its maximum match-
ing [10], where the unmatched nodes are exactly the driver
nodes we are looking for. Since the maximum matching
problem can be solved in O(

√
NL ) time, where L is the num-

ber of links in the network, it is efficient to detect driver
nodes for any directed networks. Finally, the controllabil-
ity nD of a network is characterized by the proportion of the
minimal number of driver nodes ND, i. e.

nD = ND/N (4)

3. Relationship between Centrality of Driver Nodes
and Controllability of Complex Networks

The method used in this paper is simple and straightfor-
ward, which was first adopted by Liu et al. [3] to show the
driver nodes tend to avoid hub nodes. Specifically speak-
ing, we divide all the nodes into three groups of equal
size according to some metric of centrality low-centrality
group, medium-centrality group and high-centrality group,
and then we count the fraction of driver nodes falling in
each group to characterize the tendency of driver nodes
towards this centrality. The canonical Erdös-Rényi (ER)
random [28], Barabási-Albert (BA) scale-free [29], Watts-
Strogatz (WS) small-world [30], and Newman-Watts (NW)
small-world [31] networks are used as benchmarks, and all
the network size is set to N = 1000.

3.1 In-Degree and Out-Degree Centralities of Driver
Nodes

The in-degree kv in of a node v is defined as the number of
edges coming into v whereas the out-degree kv out is defined
as the number of edges going out of v. The degree kv of
a node v is defined as the number of edges adjacent to v,
for directed networks, kv = kv in + kv out. Despite that Liu
et al. [3] have showed the driver nodes tend to avoid high
degree nodes, we want to further know the specific tendency
of driver nodes towards in-degree centrality and out-degree
centrality.

In Fig. 1, we show the tendency of driver node to in-
degree centrality. The bars show the fractions of driver
nodes, fD, among low, medium and high in-degree nodes for



1342
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

Fig. 1 The tendency of driver node to in-degree centrality.

(a) ER, (b) BA, (c) WS and (d) NW networks with different
parameters. The legend is shown in (a), the results are aver-
aged over 50 independent runs. From Fig. 1, we can see that
for the ER and BA networks, fD among low in-degree nodes
is significantly higher than both fD in the medium and high
in-degree groups, this trend is even more obvious for the WS
and NW small networks shown in Fig. 1 (c) and Fig. 1 (d),
which clearly indicates that the driver nodes tend to be low
in-degree nodes. In addition, comparing the histograms un-
der different average degree <k>, we notice that as <k>

increases, fD in all the groups decreases, which means that
the total number of driver nodes ND is declining, verify-
ing the previous conclusion that denser networks are easier
to control [3]. It should be stressed that for WS and NW
networks with different <k>, the tendencies of driver nodes
show similar behaviors as shown in Fig. 1 (c) and Fig. 1 (d),
and these behaviors have also been checked in other exper-
iments. Therefore, hereafter for WS and NW networks, we
only show the results with <k> = 2 as representatives.

Figure 2 shows the tendency of driver nodes towards
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Fig. 2 The tendency of driver nodes towards out-degree centrality.

out-degree centrality. The bars show the fractions of driver
nodes, fD, among the low, medium and high out-degree
nodes for (a) ER, (b) BA, (c) WS with <k> = 2 and (d) NW
with <k> = 2 networks under different parameters. The leg-
end is shown in (a), the results are averaged over 50 indepen-
dent runs. From the results, we can see that for the ER net-
work, fD in low, medium and high out-degree groups are al-
most equal, indicating that the driver nodes have no bias to-
wards the out-degree centrality for random networks. How-
ever, this unbias behavior starts to change for BA scale-free
network, where fD in the high out-degree group is higher
than that in the medium group, and so is fD in the medium
out-degree group than that in the low group, suggesting that
the driver nodes, to some extent, prefer to be relatively high
out-degree nodes. This preference finally reaches its peak
in the WS and NW networks, where the fraction of driver
nodes in the high out-degree group is far higher than all the
other groups, clearly showing that the driver nodes tend to
be high out-degree nodes for small-world networks.

Put these results together, we find that the driver nodes
tend to low in-degree but relatively high out-degree nodes,
which can be seen as a refinement of previous conclusion
that the driver nodes tend to avoid high degree nodes [3].
One exception is the ER random network where the driver

nodes show no bias towards the out-degree centrality.

3.2 Betweenness Centrality of Driver Nodes

The nodal betweenness centrality measures the extent to
which a node is needed by others when connecting along
the shortest paths. Mathematically, the betweenness Bv of a
node v is defined as

Bv =
∑

s�v�t

σst(v)
σst

(5)

where σst is the total number of shortest paths existing from
node s to node t, σst(v) is the number of shortest st-paths
that pass through v. In Fig. 3, we show the tendency of driver
nodes towards betweenness centrality. The bars show the
fractions of driver nodes, fD, among the low, medium and
high betweenness nodes for (a) ER, (b) BA, (c) WS with
<k> = 2 and (d) NW with <k> = 2 networks under differ-
ent parameters. The legend is shown in (a), the results are
averaged over 50 independent runs. From Fig. 3, we can see
that the driver nodes in the high betweenness group account
for a much smaller proportion than the other two groups for
the ER random and BA scale-free networks, the disparity is
even more pronounced for the WS and NW small-world net-
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Fig. 3 The tendency of driver nodes towards betweenness centrality.

works where the former is only about 1/4 (or even 1/5) of the
latter, indicating that for all the networks, the driver nodes
tend to avoid high betweenness nodes. This is an interest-
ing finding as the maximal nodal betweenness centrality has
been thought as another key indicator of network dynamics
synchronizability [24].

3.3 Closeness Centrality of Driver Nodes

The nodal closeness centrality measures how close a node
is to other nodes. Formally, the closeness Cv of a node v is
defined as the reciprocal of the sum of its distances d(v, u) to
all the other nodes u, i.e., Cv = 1/Σu�vd(v, u). In Fig. 4, we
show the tendency of driver nodes to closeness centrality.
The bars show the fractions of driver nodes, fD, among the
low, medium and high closeness nodes for (a) ER, (b) BA,
(c) WS with <k> = 2 and (d) NW with <k> = 2 networks
under different parameters. The legend is shown in (a), the
results are averaged over 50 independent runs. From Fig. 4,
we can see that for the ER network, the fraction of driver
nodes in the low, medium, high closeness groups are almost
equal, suggesting that the driver nodes have no inclination
to closeness centrality for random networks. However, for

BA network, the proportions of driver nodes in the medium
and high closeness groups are higher than that in the low
group, the gap is even more evident for the WS and NW
small-world networks, where the majority of driver nodes
fall in the high and medium groups with an overwhelming
advantage, which clearly indicates that the driver nodes tend
to avoid low closeness nodes. Note that this opposite behav-
ior of driver nodes towards closeness centrality compared
with betweenness centrality are within our expectations,
which can be more or less guessed from their reciprocal
definitions.

3.4 Eigenvector Centrality and Katz Centrality of Driver
Nodes

The nodal eigenvector centrality measures the importance of
a node via the number of neighbor nodes and the importance
of these neighbor nodes. Mathematically, the eigenvector
centrality Ev of a node v is defined as

Ev =
1
λ

N∑

u=1

avuEu (6)

where λ is a constant, and avu = 1 if there is a link from
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Fig. 4 The tendency of driver nodes to closeness centrality.

node v to node u, otherwise avu = 0.
The nodal Katz centrality [32] is a variant of the eigen-

vector centrality. Formally, the Katz centrality Kv of a node
v is defined as

Kv = α

N∑

u=1

avu(Ku + 1) (7)

where α ∈ (0, 1) is an attenuation factor, and avu is the same
as Eq. (6).

In Table 1 and Table 2, we show the tendencies of
driver nodes towards eigenvector and Katz centralities. The
mean degree for WS and NW networks is <k> = 4, the
results are averaged over 50 independent runs. Network Pa-
rameters fD for eigenvector centrality fD for Katz centrality.
It can be seen that for the ER, WS and NW networks, the
fraction of driver nodes fD in the low eigenvector group is
10 times larger than the other two groups, indicating that the
driver nodes are much inclined to be low eigenvector cen-
trality nodes. For the BA scale free network, although the
gap is not that significant, the former is still 2 times larger
than the latter. The tendency of driver nodes towards Katz
centrality shows much similar behaviors, the vast majority
of driver nodes fall in the low Katz centrality groups with

Table 1 The tendencies of driver nodes towards eigenvector centrality.

overwhelming advantages, suggesting that the driver nodes
also tend to be low Katz centrality nodes.

3.5 PageRank Centrality of Driver Nodes

The PageRank centrality [33] was proposed to measure the
importance of web pages, its main idea is that the more im-
portant pages (nodes) are likely to receive more links from
other pages (nodes). Mathematically, the PageRank central-
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ity PRv of a node v is defined as

PRv =
1 − d

N
+ d

N∑

u=1

auv
PRu

L(u)
(8)

where PRu is the PageRank centrality of node u, L(u) is the
out-degree of node u, auv = 1 if there exists a link from
node-u to node-v and otherwise auv = 0, d ∈ (0, 1) is a
constant damping factor which is usually set around 0.85.

In Fig. 5, we show the tendency of driver nodes towards

Table 2 The tendencies of driver nodes towards Katz centrality.

Fig. 5 The tendency of driver nodes towards PageRank centrality.

PageRank centrality. The bars show the fractions of driver
nodes, fD, among the low, medium and high PageRank cen-
trality nodes for (a) ER, (b) BA, (c) WS with <k> = 2 and
(d) NW with <k> = 2 networks under different parameters.
The legend is shown in (a), the results are averaged over 50
independent runs. From Fig. 5, we can see that the driver
nodes demonstrate a polarized distribution to the PageRank
centrality. On the one hand, the overwhelming majority of
nodes in the low PageRank groups are driver nodes, for ex-
ample, for WS and NW networks, about 80% of the nodes in
the low PageRank group are driver nodes, this ratio is even
up to 100% for ER network with <k> = 2 and BA network
with m = m0 = 1. This extreme phenomenon has not been
observed in other experiments, which clearly show that the
driver nodes tend to be low PageRank nodes. On the other
hand, the driver nodes in the high PageRank groups only ac-
count for less than 20%, this ratio is even down to less than
1% for the WS and NW networks, indicating that the driver
nodes tend to avoid being high PageRank nodes.

Based on above results, we can find that: (1) the driver
nodes tend to be low in-degree but high out-degree nodes.
(2) the driver nodes tend to be low betweenness but rela-
tively high closeness nodes. (3) both the eigenvector central-
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ity and Katz centrality of most driver nodes are low. (4) the
vast majority of driver nodes have low PageRank central-
ity whereas only few driver nodes have high PageRank
centrality.

Compared with previous work [3] that found that the
driver nodes tend to avoid high degree nodes, our work fur-
ther found that the driver nodes tend to low in-degree but
relatively high out-degree nodes, which is a refinement of
previous work [3]. We also found many properties that pre-
vious works have not found. Thus, the properties that our
work found can serve as references for other works to de-
sign networks. For example, for previous work [22], our re-
sults can be used as a reference to design a more efficient
centrality measure. For previous work [23], our findings can
serve as a partial guidance to design an optimal placement
strategy.

4. Conclusion

In this paper, we have studied the tendencies of driver nodes
towards various nodal centralities. Extensive numerical re-
sults on the canonical model networks show that the driver
nodes tend to be low in-degree but high out-degree nodes,
which is a refinement of the previous conclusion that driver
nodes tend to avoid high degree nodes. We also find that
most of the driver nodes tend to have low betweenness cen-
trality but relatively high closeness centrality with one ex-
ception, i.e., ER random networks, in which the driver nodes
have no inclination towards the closeness centrality. More-
over, the driver nodes towards eigenvector centrality and
Katz centrality show much similar behaviors, avoiding be-
ing high eigenvector and Katz nodes.

Finally, it is found that the driver nodes towards
PageRank centrality demonstrate a polarized distribution,
and the vast majority of driver nodes tend to be low
PageRank nodes whereas only few driver nodes tend to be
high PageRank nodes. Our results may help to understand
the structural properties of driver nodes, and the future work
will focus on studying the relations between average dis-
tance, standard deviation of degree distribution, maximal
betweenness and network controllability.
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