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PAPER

Document-Level Neural Machine Translation with Associated
Memory Network∗

Shu JIANG†,††, Rui WANG†,††, Nonmembers, Zuchao LI†,††, Member, Masao UTIYAMA†††,
Kehai CHEN†††, Nonmembers, Eiichiro SUMITA†††, Member, Hai ZHAO†,††a),

and Bao-liang LU†,††b), Nonmembers

SUMMARY Standard neural machine translation (NMT) is on the as-
sumption that the document-level context is independent. Most existing
document-level NMT approaches are satisfied with a smattering sense of
global document-level information, while this work focuses on exploit-
ing detailed document-level context in terms of a memory network. The
capacity of the memory network that detecting the most relevant part of
the current sentence from memory renders a natural solution to model the
rich document-level context. In this work, the proposed document-aware
memory network is implemented to enhance the Transformer NMT base-
line. Experiments on several tasks show that the proposed method signifi-
cantly improves the NMT performance over strong Transformer baselines
and other related studies.
key words: memory network, neural machine translation, document-level
context

1. Introduction

Neural Machine Translation (NMT) [1]–[5] established on
the encoder-decoder framework, where the encoder takes a
source sentence as input and encodes it into a fixed-length
embedding vector, and the decoder generates the translation
sentence according to the encoder embedding, has achieved
advanced translation performance in recent years. So far,
most models take a standard assumption to translate every
sentence independently, ignoring the document-level con-
textual clues during translation.

However, document-level information can improve the
translation performance from multiple aspects: consistency,
disambiguation, and coherence [6]. If translating every sen-
tence is independent of the document-level context, it will
be challenging to keep every sentence translation across
the entire text consistent with each other. Moreover, the
document-level context can also assist the model to disam-
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biguate words with multiple senses, and the global context
is of great benefit to translation in a coherent way.

There have been few recent attempts to introduce the
document-level information into the existing standard NMT
models. Various existing methods [7]–[11] focus on mod-
eling the context from the surrounding text in addition to
the source sentence. For the more high-level context, Mi-
culicich et al. [12] propose a multi-head hierarchical atten-
tion machine translation model to capture the word-level and
sentence-level information. The cache-based model raised
by Kuang et al. [6] uses the dynamic cache and topic cache
to capture the inter-sentence connection. Tan et al. [13]
propose a hierarchical model of global document context to
improve document-level translation. In addition, many stud-
ies [9]–[11] all add the contextual information to the NMT
model by applying the gating mechanism [14] to dynami-
cally control the auxiliary global context information at each
decoding step.

However, most of the existing document-level NMT
methods focus on briefly introducing the global document-
level information but fail to consider selecting the most re-
lated part inside the document context.

Inspired by the observation that human and document-
level machine translation models always refer to the source
sentence’s context during the translation, like query in their
memory, we propose to utilize the document-level sentences
associated with the source sentences to help predict the tar-
get sentence. To reach such a goal, we adopt a Memory
Network component [15]–[17] which provides a natural so-
lution for the requirement of modeling document-level con-
text in document-level NMT. In fact, Maruf and Haffari [18]
have already presented a document-level NMT model which
projects the document contexts into the tiny dense hidden
state space for RNN model using memory networks and up-
dates word by word, and their model is effective in exploit-
ing both source and target document context.

Different from any previous work, this paper presents
a Transformer NMT model with document-level Memory
Network enhancement [15], [16] which concludes contex-
tual clues into the encoder of the source sentence by the
Memory Network. Not like Maruf and Haffari [18] which
memorizes the whole document information into a tiny
dense hidden state, the memory in our work calculates the
associated document-level contextualized information in the
memory with the current source sentence using the attention
mechanism. In this way, our proposed model is able to fo-
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cus on the most relevant part of the concerned translation
from the memory, which precisely encodes the concerned
document-level context.

The empirical results indicate that our proposed
method significantly improves the BLEU score compared
with a strong Transformer baseline and performs better than
other related models for document-level machine translation
on multiple language pairs with multiple domains.

2. Background

2.1 Neural Machine Translation

Given a source sentence with S tokens x = {x1, . . . , xi, . . . ,
xS } in the document to be translated and a target sentence
with T tokens y = {y1, . . . , yi, . . . , yT }, NMT model com-
putes the probability of translation from the source sentence
to the target sentence word by word:

P(y|x) =
T∏

i=1

P(yi|y1:i−1, x), (1)

where y1:i−1 is a substring containing words y1, . . . , yi−1.
Generally, with an RNN, the probability of generating the
i-th word yi is modeled as:

P(yi|y1:i−1, x) = softmax(g(yi−1, si−1, ci)), (2)

where g(·) is a nonlinear function that outputs the probabil-
ity of previously generated word yi, and ci is the i-th source
representation. Then i-th decoding hidden state si is com-
puted as

si = f (si−1, yi−1, ci). (3)

For NMT models with an encoder-decoder framework,
the encoder maps an input sequence of symbol represen-
tations x to a sequence of continuous representations z =
{z1, . . . , zi, . . . , zS }. Then, the decoder generates the corre-
sponding target sequence of symbols y one element at a
time.

2.2 Transformer Architecture

Only based on the attention mechanism, a network archi-
tecture called Transformer [5] for NMT uses stacked self-
attention and point-wise, fully connected layers for both en-
coder and decoder.

A stack of N (usually equals to 6) identical layers
constitutes the encoder, and each layer has two sub-layers:
(1) multi-head self-attention mechanism, and (2) a simple,
position-wise fully connected feed-forward network.

Multi-head attention in the Transformer allows the
model to process information jointly from different repre-
sentation spaces at different positions. It linearly projects
the queries Q, keys K, and values V h times with differ-
ent, learned linear projections to dk, dk, and dv dimensions
respectively, and then the attention function is performed in

parallel, generating dv-dimensional output values, and yield-
ing the final results by concatenating and once again project-
ing them. The core of multi-head attention is Scaled Dot-
Product Attention and calculated as:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V. (4)

The second sub-layer is a feed-forward network con-
taining two linear transformations with a ReLU activation
in between.

Similar to the encoder, the decoder is also composed of
a stack of N identical layers, but it inserts a third sub-layer,
which performs multi-head attention over the output of the
encoder stack. The Transformer also employs residual con-
nections around each of the sub-layers, followed by layer
normalization. Thus, the Transformer is more parallelizable
and faster for translating than earlier RNN methods.

2.3 Memory Network

Memory networks [15] utilize the external memories as
inference components based on long-range dependencies,
which can be categorized into a sort of lazy machine
learning [19]. Using the similar memorizing mechanism,
memory-based learning methods have been also applied
in multiple traditional models [20]–[25]. A memory net-
work [15] is a set of vectors M = {m1, . . . ,mK} and the
memory cell mk is potentially relevant to a discrete object
(for example, a word) xk. The memory is equipped with a
read and optionally a write operation. Given a query vector
q, the output vector produced by reading from the memory
is
∑K

i=1 pimi, where pi = softmax(qT · M) scores the match
between the query vector q and the i-th memory cell mi.

3. Model

3.1 Framework

Our NMT model consists of two components: Contextual
Associated Memory Network and a Transformer model. For
the Contextual Associated Memory Network, the core part
is a neural controller, which acts as a “processor” to read
memory from the contextual storage “RAM” according to
the input before sending it to other components. The con-
troller calculates the correlation between the input and mem-
ory data, i.e., “memory addressing”.

3.2 Encoders

Our model requires two encoders: the source encoder for
translation from input sentence representation and the con-
text encoder for the Contextual Associated Memory Network
from context sentence representation. The source encoder is
composed of a stack of N layers, the same as the source
encoder in the original Transformer [5]. The proposed Con-
textual Associated Memory Network consists of four parts:
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context selection, inter-sentence attention, embedding merg-
ing, and context gating.

3.3 Contextual Associated Memory Network

For each source sentence x at each training step, we assume
the m context sentences {c j}mj=1 related with the current sen-
tence x as the contextual memory with the memory size m.

3.3.1 Context Selection

For the sake of fairness, we can treat all sentences in the
document as our memory. However, it is impossible to at-
tend all the sentences in the training dataset because of the
extremely high computing and memorizing cost. We aim
to utilize the context sentences and their representations to
help our model predict the target sentences. There are three
common ways to select the context sentences: previous sen-
tences of the current sentence, next sentences of the current
sentence, and context sentences randomly selected from the
training corpus [10].

3.3.2 Inter-Sentence Attention

This part aims to attain the inter-sentence attention matrix,
which can also be regarded as the core part of the Contex-
tual Associated Memory Network. The input sentence x and
the context sentences {c j}mj=1 in the contextual memory first
go through a multi-head attention layer to encode the word
representation:

x′ = MultiHead(x, x, x), (5)

and

c′j = MultiHead(c j, c j, c j) j ∈ {1, 2, . . . ,m}, (6)

The lists of new word representations are denoted as
follows:

x′ = {x′1, . . . , x′i , . . . , x′S }, (7)

and

c′j = {c′1, j, . . . , c′k, j, . . . , c′K j, j} j ∈ {1, 2, . . . ,m}. (8)

Each word representation is as a vector x ∈ Rd, where d is
the size of hidden state in MultiHead function.

Then, for each context sentence representation c′j, we
apply the multi-head attention by treating the input sentence
representation x′ as the query sequence, on them and get the
attention matrixMraw

j :

Mraw
j = x′ ⊗ c′Tj j ∈ {1, 2, . . . ,m}. (9)

Every element Mraw(i, k) = x′i · c′Tk, j can be regarded
as an indicator of similarity between the i-th word in input
sentence representation x′ and the k-th word in memory sen-
tence representation c′j.

Finally, we perform a softmax operation on every col-
umn inMraw

j to normalize the value so that it can be consid-
ered as the probability from input sentence representation x′
to memory sentence representation c′j:

αi, j = softmax([Mraw
j (i, 1), . . . , [Mraw

j (i,Kj)]), (10)

and

M j = [α1, j, . . . , αi, j, . . . , αS , j]. (11)

We treat the probability vector αi, j as a set of weights
to sum all the representations in c′j and get the memory-
sentence-specified argument embedding a j:

a j = [a1, j, . . . , ai, j, . . . , aK j, j], (12)

where

ai, j =

K j∑

k=1

αi, jc
′
k, j. (13)

3.3.3 Embedding Merging

To utilize the contextual embeddings a j of the context sen-
tences during training, embedding merging needs to be
done.

Because the context sentences are different, the overall
contributions of these word representations should be differ-
ent. We let the model itself learn how to make use of these
contextual word representations. Following the attention
combination mechanism [17], [26], we consider four ways
to merge the label information.

(1) Concatenation

All the contextual argument embedding are concatenated as
the final attention embeddings.

a = [a1, . . . , a j, . . . , am]. (14)

(2) Average

The average value of all the contextual argument embed-
dings is used as the final attention embedding.

a =
1
m

m∑

j=1

a j. (15)

(3) Weighted Average

The weighted average of all the contextual argument embed-
ding is used as the final attention embedding. We calculate
the mean value of every raw similarity matrix Mraw

j to in-
dicate the similarity between input sentence x and context
sentence c j, and we use the softmax function to normalize
them to get a probability vector β indicating the similarity
of input sentence x towards all the context sentences {c j}mj=1:

β = softmax([g(Mraw
1 ), . . . , g(Mraw

m )])

= [β1, . . . , β j, . . . βm], (16)
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Fig. 1 The framework of our model.

where g(·) represents the mean function.
Then, we use the probability vector β as weight to sum

all the contextual attention embedding ai, j for the final con-
textual attention embedding a of the i-th word xi in input
sentence x:

a =
m∑

j=1

β ja j. (17)

(4) Flat

This method does not use a j. First, we concatenate all the
raw similarity matrixMraw

j along the row.

Mraw = [Mraw
1 , . . . ,Mraw

j , . . . ,Mraw
m ] (18)

Then, we perform softmax operation on every row in Mraw

to normalize the value so that it can be considered as proba-
bility from input sentence x to all context sentences c j.

γ = f ([Mraw
1 , . . . ,Mraw

k , . . . ,Mraw
Kall

]), (19)

where f (·) stands for softmax operation and Kall is the total
length of all context sentences, i.e.

Kall =

m∑

j=1

Kj, (20)

and Kj is the length of context sentences c j.
We also concatenate the contextual information c =

[c1, . . . , c j, . . . , cm] and use γ as weight to sum the concate-
nated contextual argument embedding as final contextual at-
tention embedding.

a = γ · cT . (21)

(5) Contextual RNN

We first pad and concatenate the contextual embeddings a j

of the context sentences by columns.

a′ = [a1; . . . ; a j; . . . ; am]. (22)

Fig. 2 Contextual RNN.

Inspired by the Document RNN method [9] to summa-
rize the cross-sentence context information, we use RNN by
column in the contextual argument embedding to generate
the contextual attention embedding, and the hidden state at
each time step can represent the relation from the first word
embedding to the current word embedding.

As shown in the Fig. 2, the RNN output of the k-th word
embedding a j,k in the contextual argument embedding a j is

h j,k = f (h j−1,k, a j,k) (23)

where f (·) is an activation function, and h j,k is the hidden
state at time j of the k-th word embedding in the contextual
argument embedding a j.

Then we use the hidden state hm,k at the last time m, and
the final contextual attention embedding a is concatenated
by hm,k.

a = [hm,1, . . . , hm,k, . . . , hm,Kmax ] (24)

where Kmax is the max length of context sentences c j, i.e.

Kmax = max j∈{1,2,...,m}{Kj}, (25)

and Kj is the length of context sentences c j.

3.3.4 Context Gating

Since the acquisition of contextual attention embedding a,
we operate the MultiHead attention and feed-forward on
the contextual attention embedding a and source embed-
ding x simultaneously like the original Transformer encod-
ing steps, then we annotate the source attention embedding
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Table 1 Data statistics of sentences.

Dataset
TED Talks Subtitles News

Zh-En Es-En Fr-En En-Ja Es-En Es-En
Training 209,941 180,853 145,503 228,697 48,301,352 238,872
Tuning 887 887 934 871 1,000 2,000
Test 5,473 4,706 1,664 8,469 1,000 14,522

and contextual attention embedding after the above opera-
tions as Hsource and Hcontext. To control and analyze the flow
of information from the extended context to the translation
model, we use a context gate [14] to integrate the source and
context attentions and control the flow from the source side
and the context side. The gate g is calculated by

g = σ(Wg[Hsource,Hcontext] + bg). (26)

Their gated sum H is

H = g ⊗ Hsource + (1 − g) ⊗ Hcontext, (27)

where σ is the logistic sigmoid function, ⊗ is the point-wise
multiplication and Wg is trained by the model. As illus-
trated in Fig. 1, the output of the gate H is integrated into
the encoder-decoder attention part at decoding step.

4. Experimental Setup

4.1 Data

The proposed document-level NMT model will be evaluated
on multiple language pairs, i.e., Chinese-to-English (Zh-
En), Spanish-to-English (Es-En), French-to-English (Fr-
En), and English-to-French (Ja-En) on three domains: talks,
subtitles, and news. Table 1 lists the statistics of all the con-
cerned datasets.

(1) TED Talks

The Zh-En TED talk documents are the parts of the
IWSLT2015 Evaluation Campaign Machine Translation
task†. We use dev2010 as the development set and com-
bine the tst2010-2013 as the test set. The Es-En corpus is
a subset of the IWSLT2014. We use dev2010 for develop-
ment set and test2010-2012 as the test set. The Fr-En corpus
is also a subset of the IWSLT2012, where dev2010 is for de-
velopment, and test2010 is the test set. The Ja-En corpus
is from IWSLT2017 and WMT, dev2010 is for development
and test2010-2015 is for test.

(2) Subtitles

The Es-En corpus is a subset of OpenSubtitles2018†† [27]†††.
We randomly select 1,000 continuous sentences for each de-
velopment set and test set.

(3) News

The Es-En News-Commentaries11 corpus†††† has
†https://wit3.fbk.eu
††http://www.opensubtitles.org/
†††http://opus.nlpl.eu/OpenSubtitles2018.php
††††https://opus.nlpl.eu/News-Commentary-v11.php

document-level delimitation. We evaluate on the WMT
sets [28]: newstest2008 for development, and newstest2009-
2013 for testing.

4.2 Data Preprocessing

The English and Spanish datasets are tokenized by to-
kenizer.perl and truecased by truecase.perl provided by
MOSES†††††, a statistical machine translation system pro-
posed by [29]. The Chinese corpus is tokenized by Jieba
Chinese text segmentation††††††. Words in sentences are
segmented into subwords by Byte-Pair Encoding (BPE) [30]
with 32k BPE operations.

4.3 Model Configuration

We use the Transformer proposed by Vaswani et al. [5] as
our baseline and implement our work using the THUMT, an
open-source toolkit for NMT developed by the Natural Lan-
guage Processing Group at Tsinghua University [31]∗. We
follow the configuration of the Transformer “base model”
described in the original paper [5]. Both encoder and de-
coder consist of 6 hidden layers each. All hidden states have
512 dimensions, eight heads for multi-head attention. The
training batch contains about 6,520 source tokens, and we
train the model about 200,000 training bathes. We use the
original regularization and optimizer in Transformer [5]. Fi-
nally, we evaluate the performance of the model by BLEU
score [32] using multi-bleu.perl on the tokenized text.

5. Results and Analysis

5.1 Translation Performance

We choose the previous m = 3 sentences as the contex-
tual memory and using the Contextual RNN method to
merge the embeddings. Table 2 demonstrates the BLEU
scores for different models on multiple corpora. The
baseline is a re-implemented attention-based NMT system
RNNSearch* [33] and Transformer [5] using THUMT kit.
We also employ the Context-aware model [10] on these
datasets, when we set the contextual memory size m = 1
and without the inter-sentence attention. The results of RNN
with Memory Network [18] and HAN model [12] are re-
ported by the authors.

The results in Table 2 demonstrate that our proposed

†††††https://github.com/moses-smt/mosesdecoder
††††††https://github.com/fxsjy/jieba

∗https://github.com/thumt/THUMT
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Table 2 BLEU scores on the different datasets. The scores in bold indicate the best ones on the same
dataset. The last column indicates the time cost of different models on the News dataset.

Model
TED Talks Subtitles News

Zh-En Es-En Fr-En En-Ja Es-En Es-En Cost. (hours)
RNNSearch* 16.09 36.55 30.79 10.41 39.90 22.95 23.60
Transformer 17.76 38.53 30.92 11.73 39.96 23.71 28.59
RNN with Memory Network [18] - - 22.00 - - - -
Context-aware Transformer [10] 18.24 38.74 31.20 11.87 40.19 23.76 42.09
Transformer with HAN [12] 17.79 37.24 - - 36.23 22.76 -
Our model 18.69 39.20 31.97 12.01 40.74 24.40 42.32

model significantly outperforms all the comparing models,
especially, our model is significantly better than the base-
line Transformer at significance level p-value<0.05. Our
proposed model outperforms the RNNSearch* baseline by
2.60 BLEU point on the TED Talks (Zh-En) dataset, 2.65
BLEU point on the TED Talks (Es-En) dataset, 1.18 BLEU
point on the TED Talks (Fr-En) dataset, 1.60 BLEU point
on the TED Talks (En-Ja) dataset, 0.84 BLEU point on the
OpenSubtitles (Es-En) dataset, and 1.45 BLEU point on the
WMT dataset (Es-En).

Furthermore, our proposed model achieves the gains
of 0.93, 0.67, 1.05, 0.28, 0.78, and 0.69 BLEU points on
these four datasets individually over the Transformer base-
line. Compared with the Context-aware Transformer pro-
posed by [10], our proposed approach also raises the average
0.50 BLEU score on these different datasets. Moreover, the
average increase of the BLEU score over the Transformer
with HAN [12] is 2.25 points.

We note that the results on TED Fr-En are much higher
than the result reported by Maruf and Haffai, and we deduce
that it may be aroused by different prepossessing methods
or BLEU styles.

The last column in Table 1 indicates the time cost of
different models on the News dataset (Es-En) under the
same model setting mentioned in Sect. 4.3. We can figure
out that with the complexity of the model, the performance
improves at the cost of running speed.

5.2 Translation Analysis

To reflect the improvements of our proposed model more
exactly, we will analyze the overall performance from three
aspects mentioned above: consistency, disambiguation, and
coherence. The translation of HAN model [12] for compar-
ison is downloaded from Miculicich’s GitHub†.

5.2.1 Consistency

In our work, the contextual memory is able to store the con-
textual sentences and help the model refine the translation.
Thus, we follow the previous work [6], and calculate the
average number of words in generated translations which
are also in the contextual sentences fed into the contextual
memory. During our calculating process, punctuations, stop
words, and UNK are removed from the contextual sentences

†https://github.com/idiap/HAN NMT/tree/master/test out

Table 3 Consistency test on TED Zh↔En test sets.

Model
TED Zh→En TED Zh→En
pre-3 next-3 pre-3 next-3

Reference 1.22 1.23 1.21 1.21
Transformer model 1.04 1.05 1.02 1.04
HAN model 1.04 1.06 1.03 1.04
Our model 1.12 1.15 1.11 1.13

Table 4 Disambiguation ability test on TED Zh→En and Es→En test
sets.

Model TED Zh→En TED Es→En
Reference 652.15 541.16
Transformer model 2691.81 2143.84
HAN model 2059.89 1457.06
Our model (pre-3) 1380.87 1060.50

and translations. Table 3 shows the results of consistency
on TED datasets with the memory size m = 3. As shown in
Table 3, HAN and our memory method can improve trans-
lation consistency compared to the baseline, confirming the
claim that document translation can improve consistency be-
tween sentences. Our method is clearly closer to the ref-
erence than HAN and the baseline, demonstrating that our
memory method is a more powerful approach for enhancing
translation consistency.

5.2.2 Disambiguation

We also want to investigate the ability of the word dis-
ambiguation of our model. We download the English-
to-Chinese dictionary from free dictionary project††, and
select the words with multiple translation words in the
source language to build a new dict dict = {wordsrc :
transtgt

1 , . . . , transtgt
n }. When the token w in the source sen-

tence and w ∈ {wordsrc}, we count the appearance of the
translation words {transtgt} of w in the corresponding trans-
lation sentence. We argue that if a model is weak at dis-
ambiguation, to translate an ambiguous word with multiple
word senses, the model would prefer one of the senses with
the highest probability. The other corresponding candidate
words’ appearance will decrease accordingly. Thus, we use
the Standard Deviation to evaluate the disambiguation abil-
ity.

Table 4 illustrates the results of the disambiguation

††https://www.dicts.info/
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ability of different models. First, comparing the Trans-
former baseline and reference, it can be seen that the lower
the standard deviation, the better the disambiguation will be.
Second, compared with the baseline transformer, HAN de-
crease this metric on the two datasets. At the same time, our
model achieved the lowest deviation value, indicating that
the introduction of document information can alleviate the
translation variety, i.e., have a disambiguation effect.

5.2.3 Coherence

To further study how our proposed context-aware neural
model improves the coherence in document translation, we
follow the work of Lapata and Barzilay [34] to measure co-
herence as sentence similarity. We represent each sentence
as the mean of the distributed vectors of its words. Then,
the similarity between the two sentences is determined by
the cosine of their means. For a fair comparison, we use the
pre-trained language model BERT [35] to get the distributed
vectors of words.

Table 5 summarizes the comparison results. The Trans-

Table 6 Example of the translation result. The context sentences are three previous sentences before
the source sentence and we use the Contextual RNN method to merge contextual argument embedding.
The words in blue from context indicate the heuristic clues for better translation and the sentences in
Chinese have been provided with English translation.

Table 7 We select the 7,160-th parallel lines from TED Talks (En-Ja) test set and list the three previ-
ous sentences in the contextual memory. Compared with the baseline, for the word figure with multiple
word senses, our proposed model could recognize the correct word sense person instead number, and
the attribute tragic is also translated correctly. We infer that the word guy in the context sentence c3

provides the translation clue, and it verifies that the contextual memory network enhances the disam-
biguation ability of our model.

Context sentence c3 this is a guy called e.p.
Context sentence c2 the worst memory in the world.
Context sentence c1 his memory was so bad, that he didn &apos;t even remember he had a memory problem,

which is amazing.
Source sentence and he was this incredibly tragic figure, but he was a window into the extent to which our

memories make us who we are.
Reference sentence とても悲劇的な人物ですがどの程度記憶が我々を形作っているかを知る

手がかりとなる存在です
Transformer model 彼は本当に悲惨な数字 (disastrous number)でしたが私たちの記憶が私たち

をどう解釈するかに窓をつけていました
Our model 彼は非常に悲劇的な人物 (tragic person)でしたが私たちの記憶が私たちを

どのようにするかについての窓だったのです

former baseline without document information has the low-
est coherence score, while our system outperforms the HAN
model slightly. On the one side, it demonstrates that both
HAN and our model can improve the translation coherence,
which leverages document features; on the other hand, it
shows that our approach has certain advantages over HAN.

5.2.4 Case Study

(1) Example on Chinese-to-English

We extract the 4,123-th parallel lines from TED Talks (Zh-
En) and the contextual memory consists of three previous

Table 5 Coherence test on TED Es→En, Es→En, and Subtitles Zh→En
test sets.

Model
TED Talks Subtitles

Zh→En Es→En Es→En
Reference 0.67 0.67 0.60
Transformer model 0.62 0.61 0.54
HAN model 0.65 0.65 0.60
Our model 0.66 0.66 0.60
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Table 8 The results on TED Talks with the different recurrent cores of Contextual RNN.

Core
TED-Zh-En TED-Es-En

forward backward bi-directional forward backward bi-directional
RNN 18.67 18.55 18.57 39.20 39.28 39.24
LSTM 18.58 18.67 18.56 39.21 39.27 39.21
GRU 18.54 18.63 18.61 39.19 39.23 39.20

Table 9 BLEU scores on the different datasets with various embedding merging ways.

Embedding Merging
TED Talks Subtitles News

Zh-En Es-En Es-En Es-En Cost. (hours)
Concatenation 18.19 38.9 40.14 23.71 30.01
Average 18.23 38.95 40.34 23.82 37.37
Weighted Average 18.44 39.16 40.68 24.37 39.58
Flat 18.48 39.15 40.59 24.33 32.59
Contextual RNN 18.67 39.2 40.74 24.4 42.32

sentences before the source sentence. The the final contex-
tual attention embedding a is merged by Contextual RNN
method. Table 6 shows an example from the TED Talks
(Zh-En), on which the translation of our model is compared
to other methods. This example shows that our proposed
model can recognize the tense and even discourse relation
from the document-level context and enhance the transla-
tion to more consistent and coherent.

(2) Example on English-to-Japanese

We select the 7,160-th parallel lines from TED Talks (En-Ja)
test set and list the three previous sentences in the contextual
memory. Compared with the baseline, for the word figure
with multiple word senses, our proposed model could rec-
ognize the correct word sense person instead number, and
the attribute tragic is also translated correctly. We infer that
the word guy in the context sentence c3 provides the transla-
tion clue, and it verifies that the contextual memory network
enhances the disambiguation ability of our model.

6. Ablation Study

6.1 Effect of Recurrent Core of Contextual RNN

In our proposed model, we use Contextual RNN to integrate
the contextual information. Its recurrent core can also be
replaced by GRU and LSTM with different styles. Table 8
illustrates the results when we change the recurrent core. We
can observe that the recurrent core alteration influences our
model slightly, and forward RNN is most efficient from the
results.

6.2 Effect of Embedding Merging

We choose the different embedding merging ways intro-
duced in Sect. .3.3.3 to produce the final contextual atten-
tion embedding and compare the model performance on the
different datasets with contextual memory size m = 3.

Table 9 demonstrates the BLEU scores of the different
embedding merging methods, and the model performs best
on these datasets by contextual RNN merging method.

Fig. 3 Results on TED Talks (Zh-En) dataset with different context gat-
ing ways.

6.3 Effect of Context Gating

We also investigate the impact of context gate g by using the
different given constants and compare the results with the
context gate trained by the model. For instance, if the con-
text gate g equals 0, the model is the vanilla Transformer
model, and context gate g = 1 means the model only en-
codes the final contextual attention embedding a from the
context sentence(s) without the source attention. Figure 3
illustrates the performance of the different context gate val-
ues when the contextual memory size m = 3. Of course, the
context gate obtained from the model performs better than
the fixed context gate, and meanwhile, both source informa-
tion and context information are essential to the model.

6.4 Effect of Contextual Information

(1) Different context sentence definition

The context sentences in our work are the previous three
sentences of the current sentence. We investigate the ef-
fect of the different context sentence definition on the TED
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Fig. 4 Results on TED Talks (Zh-En) dataset with different contextual
memory size m and different context selection.

Fig. 5 The comparison of time consumption with different contextual
memory size m and different context selection.

Talks (Zh-En) dataset. Following the work of Context-aware
Transformer [10], we use the previous sentence(s), next sen-
tence(s) and the random selected context sentence(s) form
the document as the context sentence(s). As shown in Fig. 4,
the model which uses the previous sentence(s) as the context
sentence(s) could get the best performance on the TED Talks
(Zh-En) dataset, and it is in agreement with the work of the
Context-aware Transformer [10].

(2) Different contextual memory size

We also compare the effect with the different contextual
memory size m on the TED Talks (Zh-En) dataset. If the
contextual memory size m equals 0, the model is the origi-
nal Transformer model. As shown in Fig. 4, more contextual
information appears beneficial to model translation, and the
BLEU score gets better with more context sentences. How-
ever, it changes slightly when the contextual memory size m
greater than 4.

6.5 Time Consumption

We also compare time consumption with different contex-

tual memory sizes and context definitions mentioned in the
above section, and we illustrate Fig. 5 according to the statis-
tics. The original model needs 17.76 hours, and obviously,
the proposed method needs more hours for 200 thousand
steps on the TITAN RTX GPU device. Our proposed model
needs a bit more time because the contextual associated
memory network is more complex and has to train more
hyper-parameters during the training process.

7. Related Work

The existing work about NMT on the document-level can be
divided into two parts: one is how to obtain the document-
level information in NMT, and the other is how to integrate
the document-level information.

7.1 Mining Document-Level Information

Tiedemann et al. [8] merely concatenate the context in two
ways: (1) extending the source sentence, which includes the
context from the previous sentences in the source language,
and (2) extending translation units, which increase the seg-
ments to translate.

Michel et al. [36] propose a simple yet parameter-
efficient adaption method that only requires adapting the
Specific Vocabulary Bias of output softmax to each partic-
ular use of the NMT system and allows the model to reflect
distinct linguistic variations through translation better.

Mac et al. [37] present a Word Embedding Average
method to add source context that captures the whole doc-
ument with accurate boundaries, taking every word into ac-
count by an averaging method.

Kang et al. [38] propose to select dynamic context
so that the document-level translation model can utilize the
more useful selected context sentences to produce better
translations via reinforcement learning.

7.2 Integrating Document-Level Information

(1) Gating Context

The context gate can automatically control the ratios of
source and context representations contributions to the gen-
eration of target words [14]. Wang et al. [9] introduce this
mechanism in their work to dynamically control the infor-
mation flowing from the global text at each decoding step.
Kuang et al. [11] propose an inter-sentence gate model,
which is based on the attention-based NMT and uses the
same encoder to encode two adjacent sentences and con-
trols the amount of information flowing from the preceding
sentence to the translation of the current sentence with an
inter-sentence gate.

(2) Document RNN

Wang et al. [9] propose a cross-sentence context-aware
RNN approach to produce a global context representation
called Document RNN. Given a source sentence in the doc-
ument to be translated and its m previous sentences, they
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can obtain all sentence-level representations after process-
ing each sentence. The last hidden state represents the sum-
mary of the whole sentence as it stores order-sensitive infor-
mation. The last hidden state represents the summary of the
global context over the sequence of the above sentence-level
representations.

(3) Cache-based Neural Model

Tu et al. [39] propose to augment the NMT models with an
external cache to exploit translation history. At each decod-
ing step, the probability distribution over generated words
is updated online depending on the translation history re-
trieved from the cache with a query of the current attention
vector, which helps NMT models adapt over time dynami-
cally.

(4) Context-Aware Transformer Model

Voita et al. [10] introduce the context information into the
Transformer [5] and leave the Transformer’s decoder intact
while processing the context information on the encoder
side. The model calculates the gate from the source sentence
attention and the context sentence attention, exploiting their
gated sum as the encoder output.

Zhang et al. [40] also extend the Transformer with
a new context encoder to represent document-level context
while incorporating it into both the original encoder and de-
coder by multi-head attention.

Miculicich et al. [12] propose a Hierarchical Atten-
tion Networks (HAN) NMT model to capture the context in
a structured and dynamic pattern. Each predicted word uses
word-level and sentence-level abstractions and selectively
focuses on different words and sentences.

Tan et al. [13] propose a hierarchical modeling of
global document context model to improve document-level
translation, which is hierarchically extracted from the entire
global text with a sentence encoder to model intra-sentence
information and a document encoder to model document-
level inter-sentence context representation.

Ma et al. [41] propose a Flat-Transformer model with
a simple and effective unified encoder that model the bi-
directional relationship between the contexts and the source
sentences.

Chen et al. [42] propose to improve document-level
NMT by the means of discourse structure information, and
the encoder is based on a HAN [12]. They parse the doc-
ument to obtain its discourse structure, then introduce a
Transformer-based path encoder to embed the discourse
structure information of each word and combine the dis-
course structure information with the word embedding.

Most of the previous works only focus on integrating
context embedding or considering the context selection, but
our work can mine the most related part among the contex-
tual memory at each step.

8. Conclusion and Future Work

We propose a memory network enhancement over

Transformer-based NMT, which provides a natural solution
for modeling the detailed document-level context. Experi-
ments show that our model performs better on the datasets
of multiple domains and language pairs and can capture
salient document-level contextual clues, select the most rel-
evant part related to the input sequence from the contextual
memory, and effectively enhance strong NMT baselines.

We will consider better context selection in our fu-
ture work, like using discourse information to enhance our
model. On the one hand, the discourse information will pro-
vide the heuristic, but on the other hand, it will bring much
noise, and the internal structure may be incredibly compli-
cated. Therefore, it is necessary to abstract its critical fea-
ture information effectively.
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