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PAPER

Real-Time Full-Band Voice Conversion with Sub-Band Modeling
and Data-Driven Phase Estimation of Spectral Differentials

Takaaki SAEKI†a), Nonmember, Yuki SAITO†b), Shinnosuke TAKAMICHI†c),
and Hiroshi SARUWATARI†d), Members

SUMMARY This paper proposes two high-fidelity and computation-
ally efficient neural voice conversion (VC) methods based on a direct wave-
form modification using spectral differentials. The conventional spectral-
differential VC method with a minimum-phase filter achieves high-quality
conversion for narrow-band (16 kHz-sampled) VC but requires heavy com-
putational cost in filtering. This is because the minimum phase obtained
using a fixed lifter of the Hilbert transform often results in a long-tap filter.
Furthermore, when we extend the method to full-band (48 kHz-sampled)
VC, the computational cost is heavy due to increased sampling points,
and the converted-speech quality degrades due to large fluctuations in the
high-frequency band. To construct a short-tap filter, we propose a lifter-
training method for data-driven phase reconstruction that trains a lifter of
the Hilbert transform by taking into account filter truncation. We also pro-
pose a frequency-band-wise modeling method based on sub-band multi-
rate signal processing (sub-band modeling method) for full-band VC. It en-
hances the computational efficiency by reducing sampling points of signals
converted with filtering and improves converted-speech quality by model-
ing only the low-frequency band. We conducted several objective and sub-
jective evaluations to investigate the effectiveness of the proposed methods
through implementation of the real-time, online, full-band VC system we
developed, which is based on the proposed methods. The results indicate
that 1) the proposed lifter-training method for narrow-band VC can shorten
the tap length to 1/16 without degrading the converted-speech quality, and
2) the proposed sub-band modeling method for full-band VC can improve
the converted-speech quality while reducing the computational cost, and
3) our real-time, online, full-band VC system can convert 48 kHz-sampled
speech in real time attaining the converted speech with a 3.6 out of 5.0
mean opinion score of naturalness.
key words: voice conversion, spectral differentials, deep neural networks,
data-driven phase, sub-band modeling

1. Introduction

Voice conversion (VC) converts the characteristics of source
speech into those of target speech while keeping the linguis-
tic information unchanged [1]. It has the potential to achieve
speech communication beyond the physical constraints of
the human vocal organs [2].

The most common VC method is statistical VC [3], [4],
which is used to construct an acoustic model that converts
speech features of a source speaker into those of a target
speaker. Deep neural network (DNN)-based VC [5], [6] has
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been widely studied, and many models for achieving higher-
converted-speech quality have been proposed. From a prac-
tical point of view, VC must be real-time and online with
limited computational resources, and real-time VC methods
based on a Gaussian mixture model [7] and DNN [8] have
been studied. They achieve online conversion of narrow-
band (16 kHz-sampled) speech using a single CPU on a lap-
top PC. However, their computational cost is still high, and
we need to reduce this cost towards portable (e.g., VC using
a low-power CPU on a smart phone) or full-band (48 kHz-
sampled) VC that covers the human audible range.

VC consists of three steps: feature analysis, feature
conversion, and waveform synthesis. For the last step,
which is the most computationally exhaustive part, we fo-
cus on a spectral-differential VC method [9] that performs
conversion in the waveform-domain by applying a spec-
tral differential filter to the source speech waveform. This
1) achieves high-quality conversion by avoiding vocoder
errors and 2) incurs less computational cost than neural
vocoders [10]–[12] that use large DNNs and require sample-
by-sample heavy computation. Spectral-differential VC
method originally used a mel-log spectrum approximation
(MLSA) filter [13] to filter a source speech, but Suda et al.
found that using a minimum-phase filter achieved higher
converted-speech quality than using the MLSA filter [14].
Regarding the minimum-phase filter, an acoustic model
(e.g., DNN) outputs a real cepstrum of the converted speech,
and the Hilbert transform using a lifter with fixed parameters
determines the phases of the filter from the real cepstrum.
These processes are suitable for our aim because their com-
putational costs (i.e., filter design) are very low. However,
since the minimum-phase filter is not guaranteed to have a
short tap length (i.e., the number of samples of the filter), it
increases the computational cost of filtering. Furthermore,
there are two problems when we extend this method from
narrow-band VC to full-band VC: 1) converted-speech qual-
ity degrades due to large fluctuations in the high-frequency
band, and 2) computational cost is high (mainly in the filter-
ing operation) due to increased sampling points.

We propose two methods to achieve real-time and
high-fidelity conversion. First, we propose a lifter-training
method with filter truncation for significantly reducing com-
putational cost without degrading converted-speech quality.
This method jointly trains not only a DNN-based acoustic
model but also a lifter with trainable parameters. Since pa-
rameters of the DNNs and the lifter are optimized to maxi-
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Fig. 1 Overview of conventional method, proposed lifter training
method and proposed sub-band modeling method. In Sect. 5, we present
implementation of our real-time, online, full-band VC system based on
proposed methods.

mize conversion accuracy with the consideration of a trun-
cated (i.e., short-tap) filter, this method can reduce the com-
putational cost while preserving conversion accuracy. The
main difference between our method and the conventional
spectral-differential VC method using a minimum-phase fil-
ter is with the lifter to determine the phase of the filter.
Whereas the lifter of the minimum-phase filter is fixed, that
of our method is trained from speech data to determine the
phases of a truncated filter. Our lifter-training method can
be viewed as a framework of DNN-based phase reconstruc-
tion from the amplitude spectrum [15]. Second, for full-
band VC, we also propose a frequency-band-wise model-
ing method based on sub-band multi-rate signal process-
ing (hereafter, “sub-band modeling method”) [16]. Since
the characteristics of a speech waveform vary significantly
from band to band, it is effective to process the waveform
separately for each band. In sub-band WaveNet [17], the
speech waveform is divided into several bands and down-
sampled, and the waveform in each band is processed sep-
arately. This method enhances the computational efficiency
by reducing sampling points of signals converted with fil-
tering and improves the converted-speech quality by model-
ing only the low-frequency band that contributes to speaker
identity and avoiding high-frequency modeling. Figure 1
shows an overview of our proposed methods. We apply our
lifter-training method to narrow-band VC to significantly re-
duce computational cost and achieve real-time VC with a
low-power CPU of a single-board computer (e.g., Raspberry
Pi). Furthermore, our sub-band modeling method for full-
band VC achieves real-time conversion with a single CPU
of a mobile device. We also present implementation of the
real-time online VC systems based on our proposed meth-
ods. This system is highly applicable because it supports
F0 transformation and online conversion. Experimental re-
sults indicate that 1) the proposed lifter-training method for
narrow-band VC can shorten the tap length to 1/16 with-
out degrading converted-speech quality and 2) the proposed
sub-band modeling method for full-band VC can improve
the converted-speech quality while reducing computational

cost, and 3) our online VC system can convert 48 kHz-
sampled speech in real time attaining converted speech with
a 3.6 out of 5.0 mean opinion score (MOS) of naturalness.

In Sect. 2, we describe the conventional spectral-
differential VC method with a minimum-phase filter. We
describe data-driven phase reconstruction with our lifter-
training method for short-tap filtering in Sect. 3 and our
sub-band modeling method for full-band VC in Sect. 4. In
Sect. 5, we present the implementation of our online full-
band VC system. We explain the objective and subjective
evaluations and the results in Sect. 6 and conclude this pa-
per in Sect. 7. The main contributions of this work are as
follows:

• We propose a liftering-based phase-estimation method
with filter truncation. This method reduces the compu-
tational cost for filtering without lowering conversion
accuracy. This is also presented in our conference pa-
per [18].
• We propose a sub-band modeling method for full-band

VC. It improves full-band converted-speech quality
and provides new insights into high-frequency process-
ing of a speech signal that can be applied to various
tasks.
• We implement the real-time, online, full-band VC sys-

tem based on the proposed methods. We presented an
overview and demonstration of this system in our demo
paper [19]. In this paper, we describe the structure
and evaluation results of our system in detail. Further-
more, we introduce several enhancement techniques
for a higher-quality real-time VC system. These tech-
niques include our proposed F0 equalization method,
which can be applied to other VC frameworks to im-
prove feature analysis.

2. Spectral-Differential VC with Minimum-Phase Fil-
ter

This section describes the training and conversion processes
of the conventional spectral-differential VC method with a
minimum-phase filter (hereafter, “conventional method”).

2.1 Training Process

Let F(X) =
[
F(X)

1

�
, . . . , F(X)

t
�
, . . . , F(X)

T

�]�
be a complex fre-

quency spectrum sequence obtained by applying the short-
time Fourier transform (STFT) to an input speech wave-
form, where t represents the frame index and T is the to-
tal number of frames. For simplicity, we focus on frame
t. A low-order real cepstrum C(X)

t can be extracted from
F(X)

t [20]. The DNNs then estimate a real cepstrum of dif-

ferential filter Ĉ
(D)
t from C(X)

t . The loss function for t is

calculated as L(MSE)
t =

(
C(Y)

t − Ĉ
(Y)
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)
, where

Ĉ
(Y)
t is a real cepstrum of converted speech given as Ĉ

(Y)
t =

C(X)
t + Ĉ

(D)
t , and C(Y)

t is a real cepstrum of the target speech.
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The DNNs are trained to minimize the loss function for all
time frames represented as follows:

L(MSE) =
1
T

T∑
t=1

L(MSE)
t . (1)

2.2 Conversion Process

The Ĉ
(D)
t is estimated with the DNNs. After the high-order

components of the cepstrum are padded with zeros, Ĉ
(D)
t is

multiplied by a time-independent lifter umin for a minimum-
phase filter. The complex frequency spectrum of differen-

tial filter F̂
(D)
t can be obtained by taking the inverse discrete

Fourier transform (IDFT) of the liftered cepstrum. The lifter
umin is represented as follows [21]:

umin(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 (n = 0, n = N/2)

2 (0 < n < N/2) ,

0 (n > N/2)

(2)

where N is the number of frequency bins of the DFT. A

differential filter in the time domain f̂
(D)
t is obtained by ap-

plying the IDFT to F̂
(D)
t . The tap length of f̂

(D)
t is equal to

N.

2.3 Trade-off between Computational Cost and Converted-
Speech Quality

The most computationally expensive step of the conversion
process described in Sect. 2.2 is that of convolving the dif-
ferential filter into the source speech waveform. To reduce
computational cost, we can introduce a simple method of

truncating the differential filter f̂
(D)
t with a fixed tap length

l (l < N). For example, when the filter length N = 512,
we can reduce the computational cost of filtering by 1/4
by setting l = 128 and performing the convolution using
only the first 128 samples of the 512-tap filter. We define

the l-tap truncated filter as f̂
(l)
t . Since the power of the

minimum-phase filter is concentrated around 0, it is pos-
sible to truncate up to a certain length without losing the
converted-speech quality. When we increase l, converted-
speech quality does not degrade, but the computational cost
of the filtering operation increases. On the other hand, when
we decrease l, we can efficiently reduce computational cost,

but f̂
(l)
t degrades converted-speech quality.

2.4 Extension to Full-Band VC

When we apply the conventional method to full-band VC,
there are two problems, i.e., 1) converted-speech quality de-
grades due to large fluctuations in the high-frequency band,
and 2) computational cost is high (mainly in the filtering op-
eration) due to increased sampling points. Problem 1 is that
the high-frequency components with high variability are dif-
ficult to predict using a statistical model due to the low cor-
relation between speakers. Problem 2 occurs because the

computational cost of the filtering operation depends on the
signal length and filter length, and both lengths increase as
the sampling frequency increases.

3. Data-Driven Phase Reconstruction with Lifter
Training

In this section, we present the training and conversion pro-
cesses of our lifter-training method. The main difference
between this method and the conventional one is with the
lifter to determine the phase of the filter, as shown in Fig. 2.

3.1 Training Process

Our lifter-training method trains not only DNNs but also a
lifter to avoid converted-speech-quality degradation caused
by filter truncation. Let u = [u1, . . . , uc]� be a time-
independent trainable lifter, where c is the dimension of the
real cepstrum. The filter-truncation process with l is inte-
grated into the training, as shown in Fig. 3.

As we described in Sect. 2.1, the DNNs estimate Ĉ
(D)
t

from C(X)
t . Then Ĉ

(D)
t is multiplied by the trainable lifter

u, and the complex frequency spectrum of the differential

filter F̂
(D)
t is obtained from the IDFT of Ĉ

(D)
t and exponential

calculation. The differential filter in the time domain f̂
(D)
t is

obtained by applying the IDFT to F̂
(D)
t . The f̂

(D)
t is truncated

Fig. 2 Comparison of proposed lifter-training method and conventional
method.

Fig. 3 Procedure of proposed lifter-training method.
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to f̂
(l)
t by applying a window function w given as:

f̂
(l)
t = f̂

(D)
t · w, (3)

w =

[
0th
1 , · · · , (l−1)th

1 ,
lth
0 , · · · , (N−1)th

0

]�
. (4)

By using the DFT again, a complex spectrum of the l-tap

truncated differential filter F̂
(l)
t can be obtained. A com-

plex spectrum of converted speech F̂
(Y)
t is obtained by mul-

tiplying F(X)
t by F̂

(l)
t , and the real cepstrum of converted

speech Ĉ
(Y)
t is extracted from F̂

(Y)
t . The parameters of the

DNNs and the lifter are jointly trained to minimize the
same loss function as Eq. (1). Since all processes of this
method are differentiable, the training can be done by back-
propagation [22].

3.2 Conversion Process

In the conversion process, the trained DNNs and lifter es-

timate F̂
(D)
t . The f̂

(D)
t is obtained by applying the IDFT to

F̂
(D)
t , and f̂

(l)
t is obtained by truncating with l. We can ob-

tain the converted speech waveform by applying f̂
(l)
t to the

source speech waveform.

3.3 Discussion

With the conventional method, the cepstrum is multiplied
by the lifter coefficient to determine the shape of the filter
to have minimum phase. Although the shape of the dif-
ferential filter changes due to truncation, it is transformed
to compensate for the effect of the truncation by applying
the Hilbert transform using the lifter trained with the pro-
posed lifter-training method. As a result, our lifter-training
method can reduce the calculation amount while suppress-
ing converted-speech quality degradation caused by the fil-
ter truncation. Figure 4 shows the cumulative power distri-
bution of the differential filter with the conventional method
(l = 512) and proposed lifter-training method (l = 32).
The values on the vertical axis are normalized with the cu-
mulative total. We can see that the proposed lifter-training
method concentrates the power in the short taps whereas the
conventional method does not. Figure 5 also shows the dif-
ference between the lifter trained with the proposed method
(l = 64) and that for minimum phasing. The trained lifter
is entirely different from that with the conventional method
and has a complicated shape. Figure 6 shows zero plots with
truncated (l = 32) differential filters using the conventional
method and the proposed lifter-training method. Some ze-
ros are distributed outside the unit circle in the conventional
method because the shape of the filter changes by truncat-
ing the estimated minimum-phase filter. The proposed lifter-
training method works to correct the distribution of the zeros
to the inside of the unit circle, suggesting that the proposed
lifter-training method compensates for the shape change of
the filter caused by filter truncation and estimate short-tap

Fig. 4 Cumulative power distributions of differential filter with conven-
tional method and proposed lifter-trainig method.

Fig. 5 Difference between lifter trained with proposed lifter-trained
method (l = 64) and that for minimum phasing with conventional method.

Fig. 6 Zero plots of differential filters with conventional method and pro-
posed lifter-training method.

filter while avoiding accuracy deterioration. Furthermore,
most of the zeros with the conventional method are located
near the unit circle, while the zeros with the proposed lifter-
training method are relatively far from the circle. This result
indicates that the proposed lifter-training method flattens the
amplitude-frequency characteristics of the differential filter.
Note that we used the female-to-female data pairs described
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in Sect. 6.1 and down-sampled them to 16 kHz to get the
results shown in Fig. 4 and Fig. 5.

As explained in Sect. 1, liftering-based phase estima-
tion requires only small computation. Since our lifter-
training method adopts the same estimation as the conven-
tional method, there is no increase in computational cost of
phase estimation.

We applied our lifter-training method to VC, i.e.,
speaker conversion. We expect that this method can be ap-
plied to other tasks processed by filtering, e.g., source sepa-
ration and speech enhancement.

4. Frequency-Band-Wise Modeling with Sub-Band
Multirate Processing

As described in Sect. 2.4, when we use the conventional
method for full-band VC, 1) converted-speech quality de-
grades due to large fluctuations in the high-frequency band,
and 2) computational cost is high (mainly in the filtering
operation) due to increased sampling points. We use our
sub-band modeling method to solve these problems. This
method divides the full-band source speech into multiple
sub-band signals and only converts the lowest-band signal
with the differential filter. Figure 7 shows the workflow
of this method. After the full-band signal is divided into
sub-band signals by sub-band analysis (Sect. 4.1), they are
converted with the trained model (Sect. 4.2), and the full-
band converted speech is obtained by sub-band synthesis
(Sect. 4.3).

The 0–8 kHz signal converted with this method is con-
sistent with the bandwidth handled with the conventional
method for narrow-band VC, and with the bandwidth of
wide-band speaker verification [23]. Therefore, it is reason-
able to focus on this bandwidth in converting speaker iden-
tity. Since 8–24 kHz signal contributes to speech quality, we
can enhance the output-speech quality by directly using the
input signal. Unlike other VC methods, such as seq-to-seq
VC [24]–[26], the number of frames of the lowest-band sig-
nal does not change between the input and output speech.

Fig. 7 Workflow of our sub-band modeling method for full-band VC.

Since the converted-lowest-band signal is frame-wise syn-
chronized with the higher-band signals, we can directly syn-
thesize the full-band converted speech without time align-
ment.

4.1 Sub-Band Analysis

An original full-band signal x (t) is divided into N sub-band
streams (N = 3 in this paper), and modulated by W−t(n−1/2)

N
and shifted to the base band (Fig. 8 (a)):

xn (t) = x (t) W−t(n−1/2)
N , (5)

where n = 1, 2, · · · ,N is a frequency-band index, and WN =

exp ( j2π/2N). Then xn (t) is bandlimited using low-pass fil-
ter f (t) (Fig. 8 (b)):

xn,pp (t) = f (t) ∗ xn (t) , (6)

where the cutoff frequency of f (t) is π/2N, and ∗ represents
the convolution operator. By introducing single-sideband
(SSB) modulation, real-valued signal xn,SSB (t) is obtained
(Fig. 8 (c)):

xn,SSB (t) = xn,pp (t) Wt/2
N + x∗n,pp (t) W−t/2

N , (7)

where ·∗ denotes the complex conjugate. The n-th sub-band
waveform xn (k) is obtained with decimation (Fig. 8 (d)):

xn (k) = xn,SSB (kM) . (8)

4.2 Training and Conversion Processes

In the training process, we train the model as described in
Sect. 2.1 or Sect. 3.1 using only the lowest-band signal (n =
1). This training process improves the converted-speech
quality by modeling only the low-frequency band that con-
tributes to speaker identity and avoiding high-frequency
modeling. In the conversion process, only the lowest-band

Fig. 8 Procedures of sub-band analysis and synthesis.
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Fig. 9 Spectrograms of (a) converted speech obtained by applying differential filter to full-band
source speech, (b) converted speech obtained by applying differential filter to only lowest-band signal,
and (c) full-band target speech.

signal is converted, as described in Sect. 2.2 or Sect. 3.2,
and higher-band signals are not converted. We can enhance
computational efficiency by using this conversion because it
reduces sampling points of signals converted with filtering.

4.3 Sub-Band Synthesis

To synthesize a full-band signal, the converted sub-band sig-
nals x̂n (t) are up-sampled as follows:

x̂n,SSB (t) =

⎧⎪⎪⎨⎪⎪⎩
x̂n (t/M) (t = 0,M, 2M, · · · )
0 (otherwise) .

(9)

The x̂n,SSB (t) is shifted to the base band, and bandlimited
with low-pass filter g (t) (Fig. 8 (e)):

x̂n,pp (t) = g (t) ∗
(
x̂n,SSB (t) W−t/2

N

)
. (10)

Finally, the full-band signal x̂ (t) is synthesized (Fig. 8 (f)):

x̂ (t)=
N∑

n=1

{
x̂n,pp (t) Wt(n−1/2)

N + x̂∗n,pp (t) W−t(n−1/2)
N

}
. (11)

4.4 Discussion

The number of sub-band streams N is a hyperparameter.
When we increase N, the bandwidth to pass through the
input signal increases. This enhances speech quality but
degrades speaker similarity. On the other hand, when we
decrease N, speech quality and computational efficiency de-
crease because the bandwidth to convert the input signal in-
creases. As a result of a preliminary experiment, we use
N = 3 as shown in Fig. 7, which achieves the best speaker
similarity and speech quality.

In this study, we passed through the mid-band (8–
16 kHz) and high-band (16–24 kHz) signals. The simplest
way to further improve speaker similarity is to convert the
mid-band and high-band signals by using statistical mod-
els. In a preliminary experiment, we evaluated the method
of converting the mid-band and high-band signals by using

a DNN and confirmed that the converted-speech quality de-
graded.

Figure 9 shows the spectrograms of the converted
speech obtained by applying the differential filter to the full-
band source speech (defined as “benchmark” in Sect. 6), the
converted speech obtained by applying the filter to only the
lowest-band signal, and the full-band target speech. In these
results, we used the female-to-female data pairs described
in Sect. 6.1. When we apply the differential filter to the full-
band source speech, the accuracy of estimating the differ-
ential spectrum by using a DNN degrades and we can ob-
serve the over-smoothing of the spectrum in the whole band
(Fig. 9 (a)). When we apply the differential filter only to the
lowest band, however, the DNN can estimate the differential
spectrum of the lowest band with high accuracy, and we can
observe the fine structures of the spectrum (Fig. 9 (b)).

Our sub-band modeling method can significantly re-
duce the computational cost for full-band VC because it can
decrease both the source-signal length and the filter length.
Furthermore, we can use our lifter-training method with fil-
ter truncation when we convert the lowest-band signal and
can further reduce the computational cost of the filtering op-
eration.

5. Implementation of Real-Time, Online, Full-Band
VC System

In Sects. 3 and 4, we presented computationally efficient
and high-fidelity full-band VC methods respectively. We
now present the implementation of our online full-band VC
system by combining these methods. Figure 10 shows the
pipeline of our system. It receives a 5-ms waveform of
source speech and outputs a 5-ms waveform of the converted
speech. In this section, we also present several methods for
enhancing the performance of our online VC system without
increasing the computational cost during conversion.

5.1 Basic Structure

We describe the basic structure of our online full-band VC
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Fig. 10 Pipeline of our real-time, online, full-band VC system.

system, which consists of analysis, conversion, and synthe-
sis steps.

5.1.1 Analysis Step

In the analysis step, our system extracts the input feature of
the DNN. First, we apply the Hanning window to the input
frame obtained from full-band source speech and use the
sub-band multi-rate signal processing described in Sect. 4.
To reduce the redundancy of the source cepstrum extracted
from the 0–8 kHz signal, we apply a first-order pre-emphasis
filter E(z) = 1 − αz−1 to the lowest-band signal, with α =
0.97. In our preliminary experiments, we found that this pre-
emphasis processing improved converted-speech quality of
the system. We then extract the low-order cepstrum C(X)

by applying DFT analysis to the frame of the lowest-band
signal.

5.1.2 Conversion Step

In the conversion step, our system constructs a time-domain
differential filter from C(X), as mentioned in Sect. 3. The
DNN estimates the real cepstrum of the differential filter

Ĉ
(D)

from the real cepstrum of the source speech C(X), and

we construct the truncated differential filter f̂
(l)

from the real
cepstrum using a minimum-phase filter or data-driven phase
proposed in Sect. 3.

Since spectral-differential VC method can only convert
vocal tract characteristics, we incorporate F0 transformation
into our system for cross-gender conversion using a direct
waveform modification with PICOLA [27]. This method is
more computationally efficient and suitable for our purpose
than vocoder-based F0 transformation.

5.1.3 Synthesis Step

In the synthesis step, we obtain the converted speech by

applying the truncated differential filter f̂
(l)

to the source
speech waveform. Then we apply the de-emphasis filter
D(z) = 1/

(
1 − αz−1

)
to the converted-lowest-band signal.

We do not convert the higher-band signals and pass through
them. We can obtain the frame of the full-band converted
signal by combining the processed lowest-band signal and

Fig. 11 Procedure of our F0 equalization methods in pre-processing. (a)
We first obtain DTWed WORLD features. “SP” and “AP” indicate spec-
tral envelope and aperiodicity, respectively. Then we have two options for
equalizing F0: (b) F0 of source speech is replaced with that of target speech
and (c) its inverse procedure. Re-synthesized waveform becomes a new
source or target speech waveform of training data. When using F0 trans-
formation described in Sect. 5.1.2, we apply it to source speech in advance.

higher-band signals. Finally, we overlap-add the frame to
the previous calculation results and the first 5-ms waveform
is output.

5.2 Methods for Enhancing Performance of our Online
VC System

We present several methods for enhancing naturalness and
speaker similarity of converted speech obtained with our on-
line VC system. Since all the methods are for training data
refinement or DNN training, they do not increase the com-
putational cost of our system during conversion.

5.2.1 F0 Equalization in Pre-Processing

In the analysis step of our VC system, we should calcu-
late the spectral envelope component independently of the
excitation components. The well-known method for esti-
mating the spectral envelope is a high-quality vocoder, e.g.,
WORLD [28]. However, it is not practical in real-time VC
due to its high computational cost and large time delays for
analysis. We use a real cepstrum of a DFT spectrum†. How-
ever, a real cepstrum of a DFT spectrum suffers from the ex-
citation component [29]. This fact affects not only the anal-
ysis step but also the conversion step; the DNN has to pre-
dict the excitation differences between speakers in addition
to spectral-envelope differences. Such prediction becomes
more difficult than the prediction of only spectral-envelope
differences and degrades the prediction accuracy. Therefore,
we use data refinement methods so that the DNN predicts
only spectral-envelope differences.

Figure 11 shows these methods. The essential point is
to remove F0 differences between speakers, i.e., we equalize
one speaker’s F0 to the other speaker’s one. After aligning

†The most simple solution is to use the vocoder during only
training. In this solution, we use a real cepstrum of the WORLD’s
spectral envelope during training and use that of a DFT spectrum
during conversion. However, in our preliminary experiment, we
found that such a method significantly degraded converted-speech
quality.



SAEKI et al.: REAL-TIME FULL-BAND VC WITH SUB-BAND MODELING AND DATA-DRIVEN PHASE ESTIMATION OF SPECTRAL DIFFERENTIALS
1009

the source speaker’s frames and target speaker’s frames us-
ing the dynamic time warping (DTW) algorithm, we obtain
temporally aligned F0, a spectral envelope, and aperiodicity
using WORLD (Fig. 11 (a)). We have two options to equal-
ize the F0s; equalizing the source speaker’s F0 to the target
speaker’s (Fig. 11 (b)) or its inverse procedure (Fig. 11 (c)).
The former replaces F0 of the source speech with that of the
target speech and synthesizes a speech waveform. The syn-
thesized waveform is used as a new source speech waveform
of the training data. The latter is their inverse, i.e., a method
that exchanges “source” and “target” of the above sentences.
When using a real-time F0 transformation method (see 2nd
paragraph of Sect. 5.1.2) during conversion, we apply this
method to the source speech and carry out the above F0
equalization.

The above pre-processing of the training data effi-
ciently removes F0 differences between speakers. There-
fore, prediction by using a DNN is expected to become less
affected by F0.

5.2.2 Vocoder-Guided Training

The F0 equalization method uses a vocoder to alleviate the
effect of F0 differences in the training data. In this section,
we present a method of using a vocoder for DNN training to
enhance the alleviation effect. As a pre-process, we extract
the spectral envelopes of the source speech and target speech
with WORLD because it is more robust against F0 com-
pared with DFT-based analysis. From the source and target
speech in the training data, we extract not only real cepstra
of DFT spectra, C(X)

t and C(Y)
t , but also those of WORLD

spectral envelopes denoted as c(X)
t and c(Y)

t . In DNN train-
ing, we add the extra term L(VOC) as

L(MSE) + λL(VOC) =
1
T

T∑
t=1

(
C(Y)

t − Ĉ
(Y)
t

)� (
C(Y)

t − Ĉ
(Y)
t

)

+
λ

T

T∑
t=1

(
c(D)

t − Ĉ
(D)
t

)� (
c(D)

t − Ĉ
(D)
t

)
,

(12)

where λ is a weight parameter of vocoder-guided training
and c(D)

t = c(Y)
t − c(X)

t . This training method works to
match the predicted spectral differentials of the DFT spec-
tra and those of the WORLD spectral envelopes. Since c(D)

t
is ideally independent on F0, this training helps predict F0-
independent spectral differentials. Note that, we cannot add

a loss function that directly matches c(Y)
t and Ĉ

(Y)
t . This is

because Ĉ
(Y)
t is explicitly calculated by DFT and IDFT.

5.2.3 Statistical Compensation Training

The well-known method for improving VC quality is to
compensate for the statistics of the converted features, e.g.,
GAN-based compensation [30]. We now introduce global
variance (GV) compensation [4], which alleviates the over-
smoothing effect of converted spectra. We can write the full

objective by adding the loss term for the GV compensation
as

L(MSE) + μL(GV)

=
1
T

T∑
t=1

(
C(Y)

t − Ĉ
(Y)
t

)� (
C(Y)

t − Ĉ
(Y)
t

)
(13)

+
μ

T

T∑
t=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝C(Y)

t −
1
T
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2

−
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1
T
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τ=1

Ĉ
(Y)
τ

⎞⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

6. Evaluations

We first investigated the effectiveness of our proposed meth-
ods: lifter training described in Sect. 3 and sub-band model-
ing described in Sect. 4. In this evaluation, we implemented
the proposed methods and conventional method in the form
of offline conversion and created two intra-gender VC cases:
for female-to-female (f2f) and male-to-male (m2m) conver-
sion. We also evaluated the computational efficiency and
converted-speech quality of our online VC systems based on
the proposed methods and incorporating several improve-
ments. Note that we implemented the online narrow-band
VC system in the same manner as Sect. 5. In addition to the
intra-gender VC cases, we also evaluated two cross-gender
VC cases: female-to-male (f2m) and male-to-female (m2f)
for this evaluation.

6.1 Evaluation Conditions

The source and target speakers in the f2f case were stored
in the JSUT corpus [31] and Voice Actress Corpus [32], re-
spectively. Those in m2m, f2m and m2f cases were stored
in the JVS corpus [31]. We used 100 utterances (approx. 12
min.) of each speaker, and the numbers of utterances for
training, validation, and test data were 80, 10, and 10, re-
spectively.

When analyzing the narrow-band (16 kHz) signal, the
window length was 25 ms, frame shift was 5 ms, the fast
Fourier transform (FFT) length was 512 samples, and num-
ber of dimensions of the cepstrum was 40 (0th-through-
39th). When applying the conventional method to full-band
(48 kHz) VC, as described in Sect. 2.4, the window length
and frame shift were the same as those in the narrow-band
case, but the FFT length was 2048 samples, and number of
dimensions of the cepstrum was 120 (0th-through-119th).
For pre-processing, the silent intervals of training and vali-
dation data were removed, and the lengths of the source and
target speech were aligned using DTW.

The DNN architecture of the acoustic model was multi-
layer perceptron consisting of two hidden layers. We deter-
mined the hyperparameters of the DNN using Optuna [33],
with the numbers of each hidden unit set to 280 and 100
for the narrow-band signal and set to 840 and 300 when
applying the conventional method to full-band VC with-
out our sub-band modeling method. The DNNs consisted
of a gated linear unit [34] including the sigmoid activation
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layer and tanh activation layer, and batch normalization [35]
was carried out before applying each activation function.
Adam [36] was used as the optimization method. During
training, the cepstrum of the source and target speech was
normalized to have zero mean and unit variance. The batch
size and number of epochs were set to 1,000 and 100, re-
spectively. The model parameters of the DNNs used with
the proposed lifter-training method were initialized with the
conventional method. The initial value of the lifter co-
efficient was set to that of the lifter for minimum phas-
ing. For narrow-band VC and full-band VC with our sub-
band modeling method, the learning rates for the conven-
tional method and proposed lifter-training method were set
to 0.0005 and 0.00001, respectively. When applying the
conventional method to full-band VC without our sub-band
modeling method, the learning rate was set to 0.0001.

We used an Intel (R) Core i7-6850K CPU @ 3.60 GHz
in the evaluation of processing time to show the effective-
ness of our online VC system in a CPU environment. We
set the weight of vocoder-guided training λ and that of GV
compensation μ to 10 and 100, respectively. In the prelim-
inary experiment, we used three methods for data augmen-
tation: pitch shift, time stretch, and time shift referring to
Arakawa’s study [8]. As a result, the data augmentation did
not improve the converted-speech quality in both intra- and
cross-gender cases, so we did not apply it in the following
evaluations.

6.2 Evaluation of Lifter-Training Method

6.2.1 Objective Evaluation

We compared root mean squared error (RMSE) of the pro-
posed lifter-training method and conventional method when
changing l. We set the truncated tap length l to 128, 64, 48,
and 32. The RMSE was obtained by taking the squared root
of Eq. (1). Figure 12 shows a plot of the RMSEs in m2m and
f2f cases VC using narrow-band speech (16 kHz). The pro-
posed lifter-training method achieved higher-precision con-
version than the conventional method for all l. The dif-
ferences in the RMSEs between the proposed and conven-
tional methods also tended to become more significant when
l was smaller. This result indicates that the proposed lifter-
training method can reduce the effect of filter truncation.

6.2.2 Subjective Evaluation

To investigate the effectiveness of the proposed lifter-
training method, we conducted a series of preference AB
tests on speech quality and XAB tests on speaker similarity
of converted speech. Thirty listeners participated in each of
the evaluations through our crowd-sourced evaluation sys-
tems, and each listener evaluated ten speech samples. We
used a t-test with a significance level α of 0.05. The target
speaker’s natural speech was used as the reference X in the
preference XAB tests. We used the same conditions for all
the XAB and AB tests.

Fig. 12 RMSEs of our lifter-training (“Proposed”) and conventional
methods at each l in narrow-band (16 kHz) VC.

Table 1 Preference scores with our lifter-training (“Proposed”) and con-
ventional methods in narrow-band case (16 kHz).

(a) Speaker similarity

Spkr Proposed Score p-value Conventional

m2m

l = 32 0.587 vs. 0.413 1.3 × 10−5 l = 32
l = 32 0.463 vs. 0.537 7.3 × 10−2 l = 512
l = 48 0.533 vs. 0.467 1.0 × 10−1 l = 48
l = 48 0.550 vs. 0.450 1.4 × 10−2 l = 512

f2f

l = 32 0.642 vs. 0.358 < 10−10 l = 32
l = 32 0.543 vs. 0.457 3.4 × 10−2 l = 512
l = 48 0.613 vs. 0.387 1.3 × 10−8 l = 48
l = 48 0.548 vs. 0.452 2.0 × 10−2 l = 512

(b) Speech quality

Spkr Proposed Score p-value Conventional

m2m

l = 32 0.687 vs. 0.313 < 10−10 l = 32
l = 32 0.529 vs. 0.471 2.3 × 10−1 l = 512
l = 48 0.606 vs. 0.394 8.7 × 10−8 l = 48
l = 48 0.523 vs. 0.477 2.6 × 10−1 l = 512

f2f

l = 32 0.807 vs. 0.193 < 10−10 l = 32
l = 32 0.742 vs. 0.258 < 10−10 l = 512
l = 48 0.581 vs. 0.419 5.5 × 10−5 l = 48
l = 48 0.513 vs. 0.487 5.1 × 10−1 l = 512

In the preliminary experiments, we confirmed that the
converted-speech quality with the conventional method sig-
nificantly deteriorated when we truncate the filter length to
32 and 48. Therefore, we compared several settings of the
conventional method and proposed lifter-training method
with l = 32 and 48. Table 1 lists the results for narrow-
band (16 kHz) VC. Compared to the truncated conven-
tional method (“Conventional (l = 32, 48)”), we can see
that the proposed lifter-training method significantly outper-
formed the conventional one in terms of speaker similarity
and speech quality. Also, compared to the non-truncated
conventional method (“Conventional (l = 512)”), the pro-
posed lifter-training method (“Proposed (l = 32, 48)”) had
the same or higher quality. These results indicate that the
proposed lifter-training method can reduce the tap length to
1/16 without degrading converted-speech quality whereas
the truncated conventional method significantly degrades
converted-speech quality.
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Table 2 Preference scores with a combination of our methods (“Pro-
posed”) and benchmark in full-band (48 kHz) VC.

(a) Speaker similarity

Spkr Proposed Score p-value Benchmark

m2m
l = 32 0.537 vs. 0.463 7.3 × 10−2 l = 2048
l = 48 0.493 vs. 0.507 7.4 × 10−1 l = 2048

f2f
l = 32 0.516 vs. 0.484 2.5 × 10−1 l = 2048
l = 48 0.475 vs. 0.525 8.3 × 10−2 l = 2048

(b) Speech quality

Spkr Proposed Score p-value Benchmark

m2m
l = 32 0.840 vs. 0.160 < 10−10 l = 2048
l = 48 0.828 vs. 0.172 < 10−10 l = 2048

f2f
l = 32 0.810 vs. 0.190 < 10−10 l = 2048
l = 48 0.593 vs. 0.407 4.2 × 10−6 l = 2048

6.3 Evaluation of Sub-Band Modeling Method

We evaluated a combination of our lifter-training and sub-
band modeling methods (hereafter, “sub-band lifter mod-
eling method”) in the full-band VC. We defined the con-
ventional method simply extended to full-band VC with-
out our sub-band modeling method (Sect. 2.4) as the bench-
mark, which was also used in the following sections. The
tap length of the differential filter was 2048 in the bench-
mark. With our method, we truncated the tap length of the
filter to 48 and 32. Table 2 shows the results of XAB tests
on speaker similarity and AB tests on speech quality. In
terms of speaker similarity, there were no significant differ-
ences between our method and the benchmark. On the other
hand, our method significantly outperformed the benchmark
in terms of speech quality. Therefore, we can confirm that
our method can improve converted-speech quality while sig-
nificantly reducing computational cost.

6.4 Comparison of Online and Offline VC

To evaluate online conversion, we compared the converted-
speech quality of our online VC system described in
Sect. 5.1 with that of offline VC described in Sect. 4. As
a subjective evaluation, we conducted AB tests on speech
quality and XAB tests on speaker similarity. We did not
apply pre-emphasis and enhancing techniques described in
Sect. 5.2 to the online conversion to compare under fair con-
ditions. Furthermore, we did not truncate the filter in both
online and offline conversions because the effect of filter
truncation is expected to be the same with both VC methods.
Table 3 shows that there is no significant difference between
online and offline conversions in terms of both speaker sim-
ilarity and speech quality. Therefore, we can confirm that
online conversion shows the same converted-speech quality
as offline conversion.

Table 3 Preference scores with our online VC system described in
Sect. 5.1 and offline VC described in Sect. 4.

(a) Speaker similarity

Spkr Score p-value
m2m online 0.493 vs. 0.506 7.4 × 10−1 offline
f2f online 0.486 vs. 0.513 5.1 × 10−1 offline

(b) Speech quality

Spkr Score p-value
m2m online 0.517 vs. 0.483 4.2 × 10−1 offline
f2f online 0.490 vs. 0.510 6.2 × 10−1 offline

6.5 Computational Complexity and Processing Time of
our Online VC System

6.5.1 Computational Complexity

In this section, we estimated the complexity of our online
VC systems as an evaluation of computational efficiency.
Our online full-band VC system consists of sub-band pro-
cessing (“Sub-band”), cepstrum analysis (“Cepstrum”), in-
ference with the DNN (“Inference”), the Hilbert transform
(“Hilbert trans.”), and filtering (“Filtering”). The complex-
ity of each process can be calculated from the parame-
ters in Sect. 6.1. We converted the complexity to floating
point operations per second, i.e., FLOPS and considered
0.300 GFLOPS complexity for other neglected calculations
(“Other”), e.g., pre-emphasis and F0 transformation. In the
same manner, we calculated the complexity of our online
narrow-band VC system considering 0.100 GFLOPS for ne-
glected operations.

Table 4 (a) lists the results when the filter was full-tap
(512 taps), truncated to 1/4 tap length and truncated to 1/16
tap length in the narrow-band and full-band cases. In the
narrow-band case, the total complexity was 0.86 GFLOPS
with the 1/4-tap filter and 0.60 GFLOPS with the 1/16-tap
filter, whereas the complexity with the full-tap filter was
1.91 GFLOPS. These results indicate that we can signifi-
cantly reduce complexity by using our lifter-training method
with filter truncation and our online narrow-band VC system
achieves real-time conversion with a CPU of a single board
computer (e.g., Raspberry Pi). In the full-band case, our on-
line VC system attained 2.50 GFLOPS with 1/4-tap filter
and can convert full-band speech with lower computational
cost than LPCNet [37] for narrow-band (16 kHz) wave-
form synthesis. Note that the total complexity was around
20 GFLOPS with the benchmark, and the key difference is
the filtering operation, which requires around 16.8 GFLOPS
with benchmark and can be reduced to around 0.1 GFLOPS
with the proposed system. Therefore, we can confirm that
filter truncation and sub-band processing can efficiently re-
duce computational cost. The complexity of sub-band pro-
cessing is more dominant than complexity reduction with
our lifter-training method, but we can further reduce the
computational cost of the whole system by incorporating our
lifter-training method.
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Table 4 Estimated complexity and measured RTF of our online VC system in narrow-band (16 kHz)
and full-band (48 kH) cases.

(a) Complexity (GFLOPS)

Frequency Tap length Sub-band Cepstrum Inference Hilbert trans. Filtering Other Total

Narrow-band
Full-tap

- 0.043 0.330 0.041
1.399

0.100
1.91

1/4-tap 0.350 0.86
1/16-tap 0.088 0.60

Full-band
Full-tap

1.430 0.043 0.330 0.041
1.399

0.300
3.54

1/4-tap 0.350 2.50
1/16-tap 0.088 2.23

(b) RTF

Frequency Tap length Sub-band Cepstrum Inference Hilbert trans. Filtering Other Total

Narrow-band
Full-tap

- 0.005 0.133 0.008
0.190

0.012
0.35

1/4-tap 0.052 0.21
1/16-tap 0.015 0.17

Full-band
Full-tap

0.308 0.005 0.133 0.008
0.264

0.052
0.77

1/4-tap 0.070 0.58
1/16-tap 0.020 0.53

6.5.2 Processing Time

To evaluate the computational performance of our online
VC systems, we measured the processing time with a single
CPU then calculated the real-time factor (RTF) by dividing
the average processing time of frames within an utterance
by the length of the input waveform (i.e., 5 ms). Table 4 (b)
lists the results. In the full-band case, the RTF of our on-
line VC system was 0.77 with the full-tap filter, 0.58 with
the 1/4-tap filter, and 0.53 with the 1/16-tap filter, demon-
strating that our online full-band VC system can operate in
real time. Note that the RTF was around 3.0 with the bench-
mark method, and we can see that our proposed methods,
on which our online full-band VC system is based, can en-
hance computational efficiency to achieve real-time opera-
tion. In this experimental evaluation, our system processed
each 25 ms frame within 5 ms. If we need to use a very low-
power CPU or change other parameters, it would be neces-
sary to further reduce the RTF by using a larger frame shift
(e.g., 10 ms) [38].

6.6 Evaluation of Methods for Enhancing our Online VC
System

We investigated the effectiveness of the methods presented
in Sect. 5.2 through subjective evaluations. Tables 5 and 6
list the evaluation results. In these tables, the columns la-
beled “EQ”, “GV” and “Voc” denote whether we applied F0
equalization (Sect. 5.2.1), GV compensation (Sect. 5.2.3), or
vocoder-guided training (Sect. 5.2.2), respectively.

6.6.1 F0 Equalization in Pre-Processing

We first evaluated the F0 equalization method described in
Sect. 5.2.1. Table 5 shows the results of subjective eval-
uations. In “EQ” column, “src” indicates F0 equalization
that changes the F0 of source speech (Fig. 11 (b)), “tar” de-
notes F0 equalization that changes the F0 of target speech

Table 5 Preference scores when comparing F0 equalization that changed
F0 of source speech (“src” in column “EQ”) and F0 equalization that
changed F0 of target speech (“tar” in column “EQ”) with method without
F0 equalization (blank in column “EQ”).

(a) Speaker similarity

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m
tar 0.381 vs. 0.619 1.8 × 10−9

tar 0.410 vs. 0.590 1.4 × 10−5 src

f2f
tar 0.433 vs. 0.567 1.1 × 10−3

tar 0.547 vs. 0.453 2.2 × 10−2 src

f2m
tar 0.570 vs. 0.430 5.8 × 10−4

tar 0.606 vs. 0.394 8.7 × 10−8 src

m2f
tar 0.577 vs. 0.423 1.6 × 10−4

tar 0.616 vs. 0.384 3.2 × 10−9 src

(b) Speech quality

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m
tar 0.260 vs. 0.740 < 10−10

tar 0.273 vs. 0.727 < 10−10 src

f2f
tar 0.506 vs. 0.494 7.5 × 10−1

tar 0.594 vs. 0.406 2.7 × 10−6 src

f2m
tar 0.603 vs. 0.397 3.3 × 10−7

tar 0.679 vs. 0.321 < 10−10 src

m2f
tar 0.655 vs. 0.345 < 10−10

tar 0.670 vs. 0.330 < 10−10 src

(Fig. 11 (c)), and blank is correspond to the method with-
out F0 equalization. We compared “src” and “tar” with the
method without F0 equalization. In the f2f and m2m cases,
i.e., intra-gender conversion, the method without F0 equal-
ization outperformed “tar” in both speaker similarity and
speech quality, and F0 equalization reduced the converted-
speech quality. On the other hand, in the case of f2m and
m2f, i.e., cross-gender conversion, we can see that “tar”
outperformed the method without F0 equalization under
all conditions. In cross-gender conversion, F0 transforma-
tion with PICOLA significantly modifies the spectrum of
source speech, and there are larger differences between the
source spectrum and target spectrum than in intra-gender
cases. Therefore, F0 equalization makes it easier to capture
the difference of spectral envelopes for cross-gender VC.
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Table 6 Preference scores with vocoder-guided training and GV com-
pensation.

(a) Speaker similarity

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m
� 0.484 vs. 0.516 4.2 × 10−1

� 0.520 vs. 0.480 3.3 × 10−1

f2f
� 0.457 vs. 0.543 3.4 × 10−2

� 0.587 vs. 0.413 2.0 × 10−5

f2m
tar � 0.577 vs. 0.423 1.1 × 10−4 tar
tar � 0.547 vs. 0.453 2.2 × 10−2 tar

m2f
tar � 0.590 vs. 0.410 9.2 × 10−6 tar
tar � 0.617 vs. 0.383 7.3 × 10−9 tar

(b) Speech quality

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m
� 0.572 vs. 0.428 2.6 × 10−4

� 0.603 vs. 0.397 3.3 × 10−7

f2f
� 0.565 vs. 0.435 1.3 × 10−3

� 0.617 vs. 0.383 1.1 × 10−8

f2m
tar � 0.513 vs. 0.487 5.2 × 10−1 tar
tar � 0.593 vs. 0.407 4.2 × 10−6 tar

m2f
tar � 0.652 vs. 0.348 1.2 × 10−14 tar
tar � 0.752 vs. 0.248 < 10−10 tar

However, in intra-gender cases, the degradation of train-
ing data by DTW and WORLD synthesis is more dominant
on converted-speech quality than F0 equalization. Further-
more, the converted-speech quality of “tar” was higher than
that of “src” in all the cross-gender cases. This is seem-
ingly because “tar” does not modify source speech in the
training data, whereas “src” changes the properties of the
source speech used for training and conversion steps. In the
following evaluations, we did not apply F0 equalization to
the intra-gender conversion and applied “tar” to the cross-
gender conversion.

6.6.2 Vocoder-Guided Training and GV Compensation

We investigated the effectiveness of vocoder-guided train-
ing described in Sect. 5.2.2 and GV compensation described
in Sect. 5.2.3. As described at the end of Sect. 6.6.1, we
used F0 equalization only in the cross-gender cases. Table 6
lists the results of the subjective evaluations of intra- and
cross-gender cases with and without vocoder-guided train-
ing and with and without GV compensation. In the intra-
gender conversion cases, vocoder-guided training and GV
compensation did not improve speaker similarity except for
one case. However, in the cross-gender conversion cases,
they improved speaker similarity under all conditions. For
speech quality, we can see that conversion with vocoder-
guided training and GV compensation outperformed that
without them. We also conducted an objective evaluation
of GV compensation, as shown in Appendix A. The results
suggest that GV values tend to move closer to the target GV
values by using the compensation method for cross-gender
conversion. From the above results, we used only vocoder-
guided training in the intra-gender conversion cases and ap-
plied both methods to the cross-gender conversion cases in
the following evaluations.

Table 7 Preference scores when comparing speaker similarity of three
methods: our online narrow-band VC system incorporating improvements
(“Narrow-band+”), benchmark method (“Benchmark”), and our online
full-band VC system incorporating improvements (“Full-band+”).

Spkr Score p-value

m2m
Full-band+ 0.470 vs. 0.530 1.4 × 10−1 Benchmark
Full-band+ 0.513 vs. 0.487 5.1 × 10−1 Narrow-band+

f2f
Full-band+ 0.752 vs. 0.248 < 10−10 Benchmark
Full-band+ 0.693 vs. 0.306 < 10−10 Narrow-band+

f2m
Full-band+ 0.507 vs. 0.493 7.4 × 10−1 Benchmark
Full-band+ 0.647 vs. 0.353 < 10−10 Narrow-band+

m2f
Full-band+ 0.388 vs. 0.612 5.7 × 10−9 Benchmark
Full-band+ 0.450 vs. 0.550 1.4 × 10−2 Narrow-band+

6.7 Comprehensive Evaluation of Our Online VC Systems

In this section, we comprehensively evaluated the
converted-speech quality with our online VC systems. We
first define each method to be evaluated. “Full-band+” and
“Full-band” are versions of our online full-band VC system
with and without the improvements mentioned in Sect. 6.6,
respectively. “Narrow-band+” is our online narrow-band
VC incorporating the methods described in Sect. 5.2 in the
same manner as “Full-band+”. “Benchmark” is the con-
ventional method implemented in the form of online con-
version and simply extended to full-band VC without our
sub-band modeling method. We discuss the evaluation of
speaker similarity with each method in Sect. 6.7.1 and the
MOS evaluation tests for naturalness in Sect. 6.7.2. Audio
samples generated with these methods are publicly available
for f2f conversion†.

6.7.1 Subjective Evaluation for Speaker Similarity

In Sect. 6.3, we compared our sub-band modeling method
with the benchmark, and there were no significant difference
between them in terms of speaker similarity in the intra-
gender cases. In this section, we first discuss investigat-
ing the effectiveness of the methods evaluated in Sect. 6.6
by comparing “Full-band+” with “Benchmark”. Further-
more, we explored the effect of the frequency-band exten-
sion by comparing “Full-band+” and “Narrow-band+”. Ta-
ble 7 lists the results. In the f2f case, “Full-band+” attained
higher speaker similarity than “Benchmark” by introduc-
ing the improvements. Furthermore, “Full-band+” showed
a higher score than “Narrow-band+”, demonstrating the ef-
fectiveness of the bandwidth extension. In the m2m and f2m
cases, there were no differences between “Full-band+” and
“Benchmark”, and “Full-band+” significantly outperformed
“Narrow-band+”. However, in the m2f case, the scores of
“Benchmark” and “Narrow-band+” were higher than that
with “Full-band+”. Future research is needed to investigate
the reasons for equal or better performance in the f2f, m2m
and f2m cases and lower performance in the m2f case.

†https://takaaki-saeki.github.io/rtvc filter demo/
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Fig. 13 MOS scores with our online narrow-band VC system incorpo-
rating several methods evaluated in Sect. 6.6 (“Narrow-band+”), the bench-
mark method defined in Sect. 6.3 (“Benchmark”), our online full-band VC
system with basic structures described in Sect. 5.1 (“Full-band”) and our
online full-band VC system incorporating several improvements (“Full-
band+”).

6.7.2 MOS Evaluation Test for Naturalness

To evaluate converted-speech quality, we conducted a MOS
evaluation test for naturalness of converted-speech. Forty
listeners participated in each evaluation through our crowd-
sourced evaluation systems, and each listener evaluated 20
speech samples. Figure 13 shows the results, where the error
bar means the 95% confidence interval. “Narrow-band+”
showed higher naturalness than “Benchmark” despite hav-
ing a lower sampling frequency than “Benchmark”. “Full-
band” outperformed “Benchmark” and “Narrow-band+”,
demonstrating the effectiveness of our sub-band modeling
method for the online full-band VC system. Furthermore,
the average MOS of “Full-band+” was higher than that of
“Full-band” in intra- and cross-gender cases. Our online
full-band VC system attained a MOS score of 3.6 of natural-
ness, whereas it was around 2.8 with the benchmark method
and 3.2 with our online narrow-band VC system.

7. Conclusion

We proposed two high-fidelity and computationally efficient
neural voice conversion (VC) methods based on a direct
waveform modification using spectral differentials. First,
we proposed a lifter-training method with filter truncation
for short-tap filtering. It performed data-driven phase re-
construction by training a lifter for the Hilbert transform
considering filter truncation. We then proposed a sub-band
modeling for real-time full-band VC. It enhanced computa-
tional efficiency by reducing sampling points of signals con-
verted with filtering and improved converted-speech quality
by modeling only the low-frequency band that contributes
to speaker identity and avoiding high-frequency modeling.
Furthermore, we presented the implementation methods of
our real-time, online, full-band VC system using only a sin-
gle CPU for practical applications. Experimental results

indicated that our proposed methods significantly improve
converted-speech quality and computational efficiency in
both narrow-band and full-band cases, and our VC system
based on our proposed methods can synthesize full-band
converted speech in real time using a low-power CPU and
can attain a mean opinion score of 3.6 / 5.0 regarding natu-
ralness.

Even though our current system achieves high speech
quality and real-time operation, the speaker similarity is lim-
ited due to the simple DFT-based feature analysis. When our
current system is applied to a real-world situation, it can per-
form a rough speaker conversion (e.g., speaker effects) with
high speech quality. In future work, we will mainly work on
improving the feature analysis part to enhance the speaker
similarity. Furthermore, we focused on a real-time VC sys-
tem that can be applied to relatively limited use cases (e.g.,
parallel data and one-to-one speaker mapping) in this work.
Our additional task would be extending our system to other
VC frameworks, including non-parallel training [39], [40]
and multi-speaker conversion with speaker adaptation tech-
niques [41].
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Appendix A: Objective Evaluation of Statistical Com-
pensation

In this section, we show results of objective evaluations on
statistical compensation described in Sect. 5.2.3. We calcu-
lated the average GV values of converted cepstrum features
within test utterances for the case with and without the com-
pensation. Figure A· 1 shows the results. As a result, we did
not confirm significant improvement in GV values with the
statistical compensation method for all the cases.

The subjective evaluations in Sect. 6.6.2 showed that
the compensation did not improve the speaker similarity for
intra-gender conversion. The results in Fig. A· 1 also shows
that some GV values of converted spectra move away from
the target GV values by using the compensation method. For
cross-gender conversion, low-order (e.g., 0–20 th) GV val-
ues of converted cepstrum tend to move closer to that of
target cepstrum by using the compensation method, similar
to the results of the subjective evaluation in Sect. 6.6.2.

To summarize the results of the objective and subjec-
tive evaluations, we can infer the effect of GV compensation
in our system is limited. Unlike cepstrum features obtained
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Fig. A· 1 Average GV values of converted cepstrum within test utter-
ances.

from STRAIGHT/WORLD spectrum, which is used in pre-
vious works focusing on GV compensation, DFT-based cep-
strum used in this paper more depends on F0. We assume
that this caused the limited compensation effect of GV train-
ing.
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