IEICE TRANS. INFE. & SYST., VOL.E104-D, NO.10 OCTOBER 2021

1533

| PAPER Special Section on Formal Approaches

Verification of Group Key Management of IEEE 802.21 Using

ProVerif*

Ryoga NOGUCHI'Y, Nonmember, Yoshikazu HANATANI ™, and Kazuki YONEYAMA ', Members

SUMMARY Home Energy Management Systems (HEMS) contain de-
vices of multiple manufacturers. Also, a large number of groups of devices
must be managed according to several clustering situations. Hence, since
it is necessary to establish a common secret group key among group mem-
bers, the group key management scheme of IEEE 802.21 is used. However,
no security verification result by formal methods is known. In this pa-
per, we give the first formal verification result of secrecy and authenticity
of the group key management scheme of IEEE 802.21 against insider and
outsider attacks using ProVerif, which is an automatic verification tool for
cryptographic protocols. As a result, we clarify that a spoofing attack by an
insider and a replay attack by an outsider are found for the basic scheme,
but these attacks can be prevented by using the scheme with the digital
signature option.

key words: ProVerif, IEEE 802.21, HEMS, group key management

1. Introduction

In recent years, Home Energy Management Systems
(HEMS) have been popularized, and various devices that
compose HEMS are connected to the HEMS network. For
example, in Japan, ECHONET Lite [5] standardized by IEC
62394 [6] and ISO/IEC 14543-4-3[7] is recommended as a
standard interface for HEMS. Also, various application pro-
tocols for HEMS are developed. HEMS consists of devices
of multiple manufacturers and it is necessary to manage a
large number of groups efficiently. Therefore, the group key
management (GKM) scheme of IEEE 802.21 [2] is used to
establish a common group key for each group. Although
some existing works [3], [27] gave security analysis of the
scheme, hand-written security proofs are error-prone. In ad-
dition, these security proofs are the verifications in all op-
tions are valid, and the security of each option is not con-
sidered. Hence, security verification by formal methods is
important in order to guarantee rigorous security. However,
no verification result of the GKM scheme of IEEE 802.21
by using formal methods is known. In this paper, we give
the first formal verification result of secrecy and authenticity

Manuscript received November 9, 2020.
Manuscript revised March 15, 2021.
Manuscript publicized July 14, 2021.
"The authors are with Ibaraki University, Hitachi-shi, 316—
8511 Japan.
""The author is with Toshiba Corporation, Kawasaki-shi, 212—
8581 Japan.
*This paper is the full version of the extended abstract appeared
in[1].
a) E-mail: 19nm725f@vc.ibaraki.ac.jp
b) E-mail: yoshikazu.hanatani @toshiba.co.jp
¢) E-mail: kazuki.yoneyama.sec @vc.ibaraki.ac.jp
DOI: 10.1587/transinf.2020FOP0003

of the GKM scheme of IEEE 802.21 against insider and out-
sider attacks using ProVerif [4] which is an automatic veri-
fication tool for cryptographic protocols. Since the GKM
scheme of IEEE 802.21 has two modes (one is the basic
mode without the digital signature option, and the other is
the mode with the digital signature option.), we examine se-
curity of both modes.

ProVerif guarantees security in the Dolev-Yao
model [24] if no attack is found by assuming underlying
cryptographic primitives are ideally secure. ProVerif can
verify various security requirements such as secrecy and au-
thenticity. We note that ProVerif does not support verifica-
tion of general multi-party protocols in which the number of
parties is not fixed. Therefore, we formalize a representative
setting of the GKM scheme of IEEE 802.21 (i.e., including a
group manager (GM), two group members and a non-group
member). Naor et al. [25] proposed the Complete Subtree
(CS) method, and proved that ciphertexts of all qualified sets
of group members in the CS are secure against non-group
members, and the GKM scheme of IEEE 802.21 are fully
managed by the CS method. Hence, if our representative
setting is secure, then it is expected that other settings for
qualified sets of group members are also secure.

We verify several levels of secrecy and authenticity of
the GKM scheme in IEEE 802.21, and Table 1 summarizes
our verification result. First, even a device such that insider
but non-group member cannot obtain any information of the
group key (i.e., strong secrecy is guaranteed). On the other
hand, without the digital signature option, insiders can per-
form a spoofing attack that impersonates the GM who dis-
tributes the group key, and outsiders can perform a replay
attack. Also, if the digital signature option is adopted, these
attacks are not found. From these results, it is clarified that
the digital signature option actually improves the security.

There is a technical subtlety with the verification of the
GKM scheme with the digital signature option against re-
play attacks because GM and devices must manage incre-
mented sequence numbers. It means that each party must
keep the current sequence number as a state. However,
ProVerif itself has no functionality to keep states. We firstly
examine an idea to formalize this situation by using the Ta-
ble functionality of ProVerif. The table in ProVerif keeps
contents over sessions. However, the output of ProVerif ver-
ifying injective correspondence is “cannot be proved” be-
cause ProVerif cannot judge whether the same event will be
executed again after a content of the table is updated. Hence,
we show a verification against replay attacks by formalizing

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers

1534

a concrete situation of replay attacks and verifying reacha-
bility of such an event.

1.1 Comparison to Previous Work

Our verification result differs from security analyses in
[3], [27] as follows: First, the security analysis in [3] is for
a device authentication protocol based on the GKM scheme
in IEEE 802.21. However, the security proof of the part
of the GKM scheme is omitted. Next, in [27], indistin-
guishability of the group key of the GKM scheme (with
the digital signature option) is proved. However, security
of the GKM scheme without the digital signature option
is not analysed. Indistinguishability capture strong secrecy
(i.e., the adversary cannot obtain any information about the
group key of the target session) and authenticity in a com-
bined way. The adversary is allowed to reveal several se-
cret information such as long-term device keys, randomness
in a session, and established group keys of sessions other
than the target session. Also, the adversary can observe a
polynomial-size number of sessions. On the other hand, we
verify strong secrecy and authenticity of two modes (with-
/without the digital signature option) of the GKM scheme
for insider and outsider attacks. In particular, we show at-
tacks to the GKM scheme without the digital signature op-
tion, that is not analysed in [27]. Also, a merit of using
ProVerif is that verified security properties are easy to un-
derstand (for non-cryptographer) because each property can
be verified in a separated way while the cryptographic secu-
rity model in [27] is the combination of multiple properties
and complicated. Outsider attacks correspond to leakage of
long-term device keys. However, leakage of randomness
and past group keys is not covered in our verification. Since
unfixed number of processes cannot be handled due to the
restriction of ProVerif, our verification explicitly fixes the
number of sessions observed by the adversary.

1.2 Related Work

There have been several studies about security verification
of standardized cryptographic protocols with formal meth-
ods. ProVerif and CryptoVerif [18] have been used to ver-
ify other standardized protocols such as ZRTP[19], SN-
MPv3 [20], mutual authentication protocol for GSM [21],
LTE [22], OpenID Connect protocol [23], and others. Cre-
mers and Horvat[8] verified 30 key exchange protocols
standardized in ISO/IEC 11770-2[9] and ISO/IEC 11770-
3 [10] with automated security verification tool Scyther [11],
and found some spoofing attacks. Scyther and Tamarin
Prover [12] have been also used to verify other standardized
protocols such as IKEv1/v2 in IPsec[13], entity authenti-
cation protocols in ISO/IEC 9798 [14], TLS 1.3[15], 5G-
AKA[16] and smart grid authentication protocol SAvS in
IEEE 1815-2012[17] and others. Dreier et al. [26] showed
verification results of industrial protocols OPC-UA and
MODBUS with Tamarin Prover, and gave a modeling of se-
quence numbers and counters. While their analysis focuses

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.10 OCTOBER 2021

on flow integrity, our analysis focuses on confidentiality (se-
crecy and strong secrecy) and authenticity that imply flow
integrity.

2. ProVerif

ProVerif idealizes messages, communication channel, bit-
strings, and others to symbols. Thus, security of cryp-
tographic protocols can be verified in the Dolev-Yao
model [24]. The verification method is based on the applied
pi-calculus and Horn clauses. ProVerif can prove that an
attack process (trace) violating a security requirement exists
or not. If no trace can be derived, no attack against the target
protocol exists. If a trace can be derived, an attack against
the target protocol exists and ProVerif outputs a concrete at-
tack procedure.

2.1 Secrecy

ProVerif can verify the following two levels of secrecy.

e Secrecy
It can be verified whether an attacker can obtain the
whole secret. It corresponds to one-way security in
cryptography.

e Strong secrecy
It can be verified whether an attacker can distinguish a
process that the secret is replaced with a different sym-
bol from the original process. It corresponds to indis-
tinguishability in cryptography.

2.2 Authenticity

ProVerif can verify the following two kinds of authenticity.

e Non-injective correspondence

It can be verified whether the communicating peer is
actually the intended party or not. When an event
is executed, ProVerif verifies that the corresponding
event was executed in advance for any process. If non-
injective correspondence is false, a spoofing attack ex-
ists.

Injective correspondence

Similar to non-injective correspondence, when an
event is executed, ProVerif verifies that the correspond-
ing event was executed only once in advance for any
process. If non-injective correspondence is true but in-
jective correspondence is false, a replay attack exists.

3. Group Key Management of IEEE 802.21
3.1 Overview
In the GKM scheme of IEEE 802.21, group keys are man-

aged by using a method called the Group Key Block method
by applying the Complete Subtree (CS) method [25].

NOGUCHI et al.: VERIFICATION OF GROUP KEY MANAGEMENT OF IEEE 802.21 USING PROVERIF

1535
Table1 Verification result
outsider attack insider attack
w/o signature option secrecy | strong secrecy | authenticity | secrecy | strong secrecy authenticity
secure secure replay attack | secure secure spoofing attack
outsider attack insider attack
w/ signature option secrecy | strong secrecy | authenticity | secrecy | strong secrecy authenticity
secure secure secure secure secure secure

“secure” means that no attack is found. “X attack” means that an attack is found, which corresponds to attack category X.

Group Member

Fig.1 Management Tree of Device Keys

Table 2

GM || kO, k00, k00O
Ml k0, k00, k001
M2 k0, k01, k010
M3 k0, k01, k011

Device Keys

Specifically, the devices participating in the group share de-
vice keys in advance and manage them with the complete bi-
nary tree structure (called the management tree) as shown in
Fig. 1. Each device key is assigned to nodes in the manage-
ment tree and is indexed, GM and each device correspond
to leaf nodes, and have device keys of nodes in the route to
the root node as shown in Table 2.

When GM distributes a new group key to a group, GM
randomly generates a group key, finds a subtree contain-
ing only leaf nodes corresponding to the devices belong-
ing to the group (called CS), and encrypts the group key
with the device keys corresponding to the root node of the
subtree (in the case of Fig. 1, due to select a CS contain-
ing only GM, M1 and M2, k0O and k010 are used because
GM and M1 can decrypt the ciphertext encrypted with k00,
and M2 can decrypt the ciphertext encrypted with k010, but
M3 cannot decyrpt any ciphertext with M3’s device keys
(k0,k01,k011)) and distribute ciphertexts by multicast. The
devices contained in the group can obtain the group key by
decrypting the received ciphertext with one of the device
keys. When revoking a device from the group, GM exe-
cutes a new session of the distribution protocol with the CS
consisting of only members excluding the revoked device.
(i.e., IEEE 802.21 specifies no dedicated protocol for revok-
ing.) For example, if M1 is revoked from the CS containing
(GM,M1,M2), GM randomly generates a new group key,
and sends ciphertexts of the group key encrypted with k000
and k010. Hence, the revoked device (M1) cannot know the
new group key because M1 does not have any device key to

decrypt ciphertexts.

By this method, it is possible to reduce the computa-
tional and communication costs at the key distribution, as
compared with the case of encrypting the group key by in-
dividual device keys and distributing by unicast. The disad-
vantage of this method is that devices must keep device keys
in addition to the group key.

IEEE 802.21 has the digital signature option. In the
basic mode (i.e., without the option), GM sends ciphertexts
with other session information (including header informa-
tion, the source ID, the destination IDs, the group ID, the
transport address, and CS). In the mode with the digital sig-
nature option, GM also manages a sequence number and the
number is incremented when the session is complete. The
message from GM contains the sequence number and the
signature of the message is also sent. Then, it is expected
that spoofing attacks and replay attacks are prevented. How-
ever, there is no formal verification result.

3.2 Protocol

We recall the protocol of the GKM scheme. KDF is a key
derivation function which is publicly shared. Wrap is a key
wrapping algorithm and Unwrap is a key unwrapping al-
gorithm using an authenticated encryption scheme. ‘(DS
option)’ in the beginning of a step means that the step is
only contained in the mode with the digital signature option
where Gen is a key generation, Sign is a signature gener-
ation and Verify is a signature verification algorithm. Al-
though IEEE 802.21 internally divides GM and each user
into MISUser and MISF, it is omitted here for simplicity
because communications between MISUser and MISF are
done inside a machine; and thus, messages between them
are not revealed nor interrupted. Also, we consider the case
that communications among GM and users are public (i.e.,
corresponding to using broadcast group BG as all destina-
tion groups DG in IEEE 802.21).

(1) Setup(n, M):

1. Let 2" be the number of (potential) users managed by
the group manager GM, and let devices M be a set of
all users. GM generates a key tree T with depth n, and
assigns (I;, k;) to each node in T where [; is a node in-
dex represented as a binary string of length between 1
to n and k; is a randomly generated node key where i
corresponding to the node index I;.

2. (DS option) For digital signature, GM generates pub-
lic/secret key (pk,sk) with Gen.

1536

3. For each user Mi in M, GM assigns Mi to a leaf node
in T. Let Pathy; be a set of node indices of nodes from
the leaf node which is assigned to Mi along the path to
the root node. GM assigns DK; = (I}, kj),jepth’ , to Mi

as the long-term keys.

4. GM sends DK; to each of Mi via a secure channel.

5. (DS option) Additionally GM sends pk to each of M;
via a secure channel.

6. GM maintains list GroupMasterInfo containing
(group ID, group members, sequence number, security
association identifier, master group key) for each ses-
sion, and stores the initial value (BG, M, 0, Null, Null).

7. Mi maintains list GroupMembershiplnfo; containing
(group ID, sequence number, security association iden-
tifier, master group key) for each session, and stores the
initial value (BG, 0, Null, Null).

2

1. Let S be a set of group members which is a target for
group key distribution.

2. Randomly generate a group identifier G/ which identi-
fies a group using the distributed group key for S.

3. Pick a sequence number SN for GI.

4. Randomly generate a master group key mgk € {0, 1}/
and select a security association identifier SAID which
is an identifier of a group session key gsk = KDF(mgk).

5. Compute a list of indices CS from M\S and T by the
CS method.

6. For all I; € CS, compute c; = Wrap(k;, mgk) where
(1;,k;) is a node of T, and adds ¢; to a group key data
GKD = GKDJlc;.

7. (DS option) Pick a sequence number sq for the destina-
tion group.

8. (DS option) Compute sig = S ign(sk,GI||SN||CS||GKD||
SAID||sq).

9. Send (GI||SN||CS||GKD||SAID) to users.

10. (DS option) Additionally send (sg]|sig) to users.
11. Store (GI,S,S N, SAID, mgk) to GroupMasterInfo.

GM(T,{DK;}, GroupMasterInfo,S):

(3) Receiver Mi(DK;, GroupMembershipInfo;):

. Receive (GI||SN||CS||GKD||SAID).

. (DS option) Additionally receive (sql|sig).

. (DS option) Check sq whether the received message is
not a replay attack. If the message with sq was already
accepted, Mi halts.

4. (DS option) If the verification of sig with Verify is

false, Mi halts.

5. If Mi has (I;,k;) € DK; such that I; € CS, compute
mgk = Unwrap(k;, cx) where ¢, € GKD is the cipher-
text corresponding with /;.

6. Store (GI, S N, SAID, mgk) to

GroupMembershiplnfo;.

W N =

3.3 Security Requirements

The GKM scheme requires several security properties. First,

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.10 OCTOBER 2021

the shared group key mgk must be hidden for entities ex-
cept devices participating the session. It corresponds to se-
crecy and strong secrecy in ProVerif. Strong secrecy is the
stronger notion than secrecy. Next, it must be prevented to
impersonate GM to devices. It corresponds to authentic-
ity in ProVerif. In this paper, we consider two situations
about authenticity. One is spoofing attacks that the adver-
sary corrupting devices not participating the session tries to
impersonate GM to devices in the session. The other is re-
play attacks that devices accept multiple sessions between
GM even if GM executes a session with devices only once.
Spoofing attacks are captured by non-injective correspon-
dence, and replay attacks are captures by injective corre-
spondence.

4. Formalization of Protocol without Digital Signature
Option

In this section, we formalize the basic mode (without the
digital signature option) of the GKM scheme executed
among GM, M1 and M2 in Fig. 1 (i.e., S =(M1,M2)). We
examine the insider attack by M3 and the outsider attack be-
cause we must fix the number of parties for verification by
ProVerif.

We verify secrecy, strong secrecy, and authenticity for
non-injective correspondence and injective correspondence.
Authenticity for non-injective correspondence captures se-
curity against spoofing attacks (i.e., the adversary tries to
impersonate a device in the target group.). Authenticity for
injective correspondence captures security against replay at-
tacks (i.e., the adversary tries to make GM accept two mes-
sages if just one of these has already been sent by the de-
vice.). The formalization of these properties is shown in
Sect. 4.5.

4.1 Declaration and Function Definition

free c:channel. (* public channel for BG *)

free cgm:channel [private]. (* private
channel for GM *)

free mgk:bitstring [private]. (* master

group key *)

type DeviceKey.

type Groupldentifier.

type SequenceNumber.

type CompleteSubtree.

type SecurityAssociationIdentifier.

type node.

free n®, n®®, ndl, ndOO, nd®O1, n®l®, nOll:
node.

(* key (un)wrapping algorithm using
authenticated encryption ¥*)

fun Enc(bitstring, DeviceKey): bitstring.

reduc forall m:bitstring, k:DeviceKey; Ver(
Enc(m,k),k) = true.

reduc forall m:bitstring, k:DeviceKey; Dec(
Enc(m, k), k) = m.

20

21

22

23

24
25
26
27
28

NOGUCHI et al.: VERIFICATION OF GROUP KEY MANAGEMENT OF IEEE 802.21 USING PROVERIF

(* GroupMasterInfo and GroupMembershipInfo

table GroupMasterInfo(GroupIdentifier,
bitstring, SequenceNumber,
SecurityAssociationIdentifier,bitstring)

table GroupMembershipInfol (GroupIdentifier,
SequenceNumber ,
SecurityAssociationIdentifier,bitstring)

table GroupMembershipInfo2 (GroupIdentifier,
SequenceNumber,
SecurityAssociationIdentifier,bitstring)

(*event™)

event event_GM(bitstring).
event event_M1(bitstring).
event event_M2(bitstring).

Line 1 describes a public communication channel among
GM and devices, line 2 describes a private communication
channel in GM. In the protocol, GM is divided into a mecha-
nism called MISUser and a mechanism called MISF, but the
communication between them is internal, so the communi-
cation channel is expressed using a private communication
channel. Line 4 declares the secret master group key, and
line 6 declares the type of the device key. Lines 7 to 10
declare the types of elements of message. Lines 12 and 13
describe a declaration for identifying the node number of
the device key management tree. Lines 15 to 18 define the
encryption, the verification and the decryption functions of
the authenticated encryption scheme. These functions corre-
spond to the key (un)wrapping algorithm (Wrap, Unwrap).
Lines 20 to 23 define GM’s list GroupMasterInfo and de-
vice’s list GroupMembershiplnfo for M1 and M2 by using
the table functionality of ProVerif. Line 26 is GM’s send
event, and Lines 27 and 28 are receivers’ accept event of
group keys.

4.2 Formalization of Group Manager

let GM_MISUser(k®:DeviceKey, kOO0:DeviceKey,

k®1l:DeviceKey, kOO00:DeviceKey, kOO1:
DeviceKey, k0®10:DeviceKey, k011:
DeviceKey) =
let CS1 = n0®0® in
let CS2 = n0®l1l® in
let GKD1 = Enc(mgk, kO00) in
let GKD2 = Enc(mgk, k010) in
event event_GM(mgk);
out(cgm, (CS1, CS2, GKD1, GKD2)).
let GM_MISF(Q) =
in(cgm, (CS1_:node, CS2_:node, GKD1_:
bitstring, GKD2_:bitstring));

new GI:Groupldentifier;

new SN:SequenceNumber;

new SAID:SecurityAssociationIdentifier;

out(c, (GI, SN, CS1 CS2_, GKD1_, GKD2_,
SAID));

insert GroupMasterInfo(GI,(CS1_,CS2_),SN,
SAID,mgk).

R I S

1537

Since S and T are fixed in the formalization, these in-
puts are omitted. Also, though GroupMasterinfo is in-
putted in the protocol in Sect.3.2, it is omitted because
GroupMasterInfo is managed by the table functionality of
ProVerif. GM sets CS for S (lines 3 and 4), calculates the
encrypted group key (lines 5 and 6), and sends a message
(line 15). Lines 8 to 11 are the exchange of data between
two mechanisms of GM. Line 16 is to store session informa-
tion to GM’s list GroupMasterInfo. On the first attempt,
we try to use a table of ProVerif for formalizing CS. How-
ever, since the table operation of ProVerif is made private
against attackers, and attacks that can be realized in practice
(for example, attack which includes procedures for falsify-
ing the contents of CS) cannot be detected, each element of
CS is described as a variable.

4.3 Formalization of Devices Participating in the Group

let M1(kO:DeviceKey, kO0OO0:DeviceKey, kOOL:
DeviceKey) =
in(c, (GI’:GroupIdentifier, SN’:
SequenceNumber, CS1’:node, CS2’:node,

GKD1’:bitstring, GKD2’:bitstring, SAID

’:SecurityAssociationIdentifier));

if CS1’ = no
then (
if Ver(GKD1’, kO) = true then
let mgk’ = Dec(GKD1’, kO) in

event event_M1(mgk’);
insert GroupMembershipInfol(GI’,SN’,

SAID’ ,mgk’)
)
else if CS1’ = n00®
then (
if Ver(GKD1’, kO0O®) = true then
let mgk’ = Dec(GKD1’, kO0O) in

event event_M1(mgk’);
insert GroupMembershipInfol(GI’,SN’,

SAID’ ,mgk’)
)
else if CS1’ = n001
then (
if Ver(GKD1’, k0O01) = true then
let mgk’ = Dec(GKD1’, kO001) in

event event_M1(mgk’);
insert GroupMembershipInfol(GI’,SN

’,SAID’ ,mgk’)
)
else if CS2’ = n®
then (
if Ver(GKD2’, kO) = true then
let mgk’ = Dec(GKD2’, kO) in

event event_M1(mgk’);
insert GroupMembershipInfol(GI’,
SN’,SAID’ ,mgk’)

)
else if CS2’ = n0o®
then (
if Ver(GKD2’, kO0O®) = true then
let mgk’ = Dec(GKD2’, k00) in

event event_M1(mgk’);
insert GroupMembershipInfol (GI
’,SN’,SAID’ ,mgk’)

)
else if CS2’
then (

= n001

40

41

42
43

44

S

© ® 9 o v

1538

if Ver(GKD2’, kO001) = true
then

let mgk’ = Dec(GKD2’, k001)
in

event event_M1(mgk’);
insert GroupMembershipInfol(
GI’,SN’,SAID’,mgk’)
).

GroupMembershipInfo is omitted because it is managed
by the table functionality of ProVerif. The devices joining
the group (M1 and M?2) firstly receive a message from GM
(line 2). After that, devices check whether CS contains the
node corresponding its own by brute force (lines 3, 10, 17,
24,31, 38), and if it is contained, decrypt the group key with
the device key corresponding the node, and accept it (lines
7, 14, 21, 28, 35, 42). If it is not contained, the message
is discarded. When the group key is obtained, M1 stores
session information to M1’s list GroupMembershipInfol.
This code is a formalization of the operation of M1, but
other devices’ formalizations are similar to M1 by adjust-
ing the assigned device keys and CS.

4.4 Formalization of Main Process

process
new kO:DeviceKey;
new kOO:DeviceKey; new k®l:DeviceKey;
new kO000:DeviceKey; new k0O01l:DeviceKey;
new k01l0:DeviceKey; new kO1ll:DeviceKey

(*devicekeys of M3%)

out(c, kO®);out(c, kO1);out(c, kO0O11);
(C(!'GM_MISUser (k0®, k00O, k01, k60O, kOO1,
k010, k011)) | (!GM_MISF(Q) | (!'M1(k®,
k00, k0OO1)) | (!M2(kO, k01, k010)) |
('M3(k®, k01, k011)))

In the main process, device keys are generated and assigned
according to the management tree.

4.5 Security Definition

query attacker (mgk).
noninterf mgk.

query x:bitstring; event(event_MI1(x)) ==>
event (event_GM(x)).
query x:bitstring; event(event_M2(x)) ==>

event (event_GM(x)).

query x:bitstring; inj-event(event_M1(x))
==> inj-event(event_GM(x)).

query x:bitstring; inj-event(event_M2(x))
==> inj-event(event_GM(x)).

We verify secrecy (line 1) and strong secrecy (line 2) of
the group key, and authenticity (whether the group key de-
crypted by the device is actually generated by GM or not).
For secrecy, it is verified if there exists an event that the ad-
versary can obtain the group key mgk. For strong secrecy,
it is verified if the adversary can distinguish a process us-
ing the correct group key mgk from a process using a ran-
dom group key. For authenticity, it is verified if GM always

[T

S

6

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.10 OCTOBER 2021

sends the message before the termination of M1 and M2.
X is a bitstring and event M1(x)) ==; event(event_GM(x))
means correspondence of two events with the same x. In our
verification, x is mgk or mgk’. Hence, only if sent mgk and
received mgk’ are the same, correspondence is satisfied. If
the non-injective correspondence (lines 3 and 4) is true, we
also verify the injective correspondence (lines 5 and 6). In
addition, when verifying insider attacks, in order to repre-
sent insider attacks by M3, the device keys assigned to M3
are sent to the public communication channel (Sect. 4.4 line
7), and the attacker can use the device keys of M3.

5. Formalization of Protocol with Digital Signature
Option

In this section, we formalize the mode with the digital sig-
nature option, and examine the same insider and outsider
attacks. In this mode, GM sends the sequence number and
the digital signature of the message. Devices verify them.

5.1 Formalization of Digital Signature Option

The definition of digital signatures is the same as the known
formalization.

type sskey.

type spkey.

fun spk(sskey): spkey.

fun sign(bitstring, sskey): bitstring.

reduc forall m:bitstring, k:sskey; checksign
(sign(m, k), spk(k), m) = true.

type SEQUENCENUMBER.

5.2 Formalization of Group Manager and Devices

We firstly show the code changes and additions of GM and
devices from the formalization of the basic mode. GM make
and send the signature (lines 4 and 5), devices receive and
examine it (lines 2 and 3).

let GM_MISF (sskey_GM:sskey) =

[Section 4.2 Lines 11 to 14]
new sq:SEQUENCENUMBER;

let sig = sign((GI, SN, CS1_, CS2_, GKD1_,
GKD2_, SAID, sq), sskey_GM) in

out(c, (GI, SN, CS1_, CS2_, GKD1_, GKD2_,
SAID, sq, sig));

insert GroupMasterInfo(GI,(CS1_,CS2_),SN,
SAID,mgk).

let M1(kO®:DK, kOO:DK, k0OO01:DK, spkey_GM:
spkey) =

in(c, (GI’:GroupIdentifier, SN’:
SequenceNumber, CS1’:node, CS2’:node,
GKD1’:bitstring, GKD2’:bitstring, SAID

":SecurityAssociationIdentifier, sq’
SEQUENCENUMBER, sig’:bitstring));
if checksign(sig’, spkey_GM, (GI’, SN’,
CS1’, CS2’, GKD1’, GKD2’, SAID’, sq’))
= true
then (
[Section 4.3
)

Lines 4 to 43]

NOGUCHI et al.: VERIFICATION OF GROUP KEY MANAGEMENT OF IEEE 802.21 USING PROVERIF

5.3 Formalization of the Sequence Number

Next, we formalize incrementation of the sequence num-
ber. In order to verify the sequence number, GM and de-
vices have to keep the former session’s sequence number
over sessions (i.e., stateful protocol). However, the variable
of ProVerif is restricted to local one, and cannot be carried
over to the next session. Therefore, the sequence number
cannot be formalized by an obvious approach.

5.3.1 Approach with StatVerif

StatVerif [28] is a verification tool that is an extension of
ProVerif to handle stateful protocols. In StatVerif, global
state over multiple processes can be used, and it is possible
to share the sequence number to next process by formaliz-
ing it as state. However, it is known that StatVerif does not
fully support authenticity by injective correspondence. If we
formalize the sequence number as state, the verification re-
sult of injective correspondence is “‘cannot be proved” even
if we verify a simple protocol obviously satisfying injective
correspondence. Hence, the mode with the digital signature
option is hard to be verified with StatVerif.

5.3.2 Approach with Table Functionality

We firstly try to use the table functionality of ProVerif in
order to formalize a stateful treatment of the sequence num-
ber. The table of ProVerif can transfer data between sub-
process (written as process macros in ProVerif). Hence, it is
expected to formalize incrementation of the sequence num-
ber. We show the code using a table to keep the sequence
number.

free s0:SEQUENCENUMBER.

fun inc(SEQUENCENUMBER): SEQUENCENUMBER.

table SN_GM(SEQUENCENUMBER).
table SN_M1(SEQUENCENUMBER).

let GM_MISF(...) =
[Section 4.2 Lines 11 to 14]
get SN_GM(=inc(inc(inc(s0)))) in 0
else get SN_GM(=inc(inc(s®))) in (
let sq = inc(inc(inc(s0))) in
insert SN_GM(sq);

let SIGNATURE_DATA = sign(...) in
out(...)

)

else get SN_GM(=inc(s®)) in (
let sq =inc(inc(s®)) in
insert SN_GM(sq);
let SIGNATURE_DATA = sign(...) in
out(...)

)

else get SN_GM(=s0) in (
let sq = inc(s®) in
insert SN_GM(sq);
let SIGNATURE_DATA = sign(...) in
out(...)

).

let M1(C...) =

30
31
32
33
34
35
36

37
38
39
40
41
)
43

44
45
46
47
48

49
50
51
52
53
54
55

56
57
58
59
60

61
62
63
64

66
67

1539
[Section 5.2 Lines 2 and 3]
get SN_M1(=inc(inc(inc(s0)))) in
0
else get SN_M1(=inc(inc(s®))) in (
if sq’ = inc(inc(inc(s0)))
then (
insert SN_M1(sq’);
[Section 4.3 Lines
4 to 43]
)
)
else get SN_M1(=inc(s®)) in (
if sq’ = inc(inc(s0))
then (
insert SN_M1(sq’);
[Section 4.3 Lines
4 to 43]
)
else if sq’ = inc(inc(inc(s0)))
then (
insert SN_M1(sq’);
[Section 4.3
Lines 4 to
43]
)
)
else get SN_M1(=s0) in (
if sq’ = inc(s0)
then (
insert SN_M1(sq’);
[Section 4.3 Lines
4 to 43]
)
else if sq’ = inc(inc(s0))
then (
insert SN_M1(sq’);
[Section 4.3
Lines 4 to
43]
)
else if sq’ = inc(inc(inc(s0®)))
then (
insert SN_M1(sq’);
[Section 4.3
Lines 4 to
43]
)
).

However, ProVerif outputs “cannot be proved”. This
means that no concrete attack procedure is found, but
ProVerif cannot prove that no attack exists. The reason
seems to be contained in the branching operation by the
state of tables. In ProVerif’s output, an event is executed at
the branch of line 57 only once. We consider that ProVerif
cannot judge whether the same event will be executed again
after the state of table is updated.

5.3.3 Formalization by Direct Description

As in Sect.5.3.2, increment of the sequence number can-
not be verified using authenticity of injective correspon-
dence of ProVerif. However, by describing repeat of ses-
sions directly and examining reachability, increment of the
sequence number can be examined in order to verify replay
attacks. Specifically, we formalize a situation that GM sends

R Y T

1540

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.10 OCTOBER 2021

A trace has been found.

Honest Process Attacker

{l}new kO 2188
{2}new k00 2191
{3}new k01 2192
{4}new k000_2193
{5}new k001 2194
{6}new k010_2195
{7}new k011 2196

010/

~M 2198 =k0 2188

~M_2200=k01 2192

~M_2202=k011 2196

Beginning of process M1(k0

2188,k00_2191, k001_2194)]

(a_2183,4 2184,n0,a 2185,Enc(a_2182,~M 2198

a_2187)=(a_2183,a 2184,n0,a 2185,Enc(a 2182,

k0_2188),a_2186,a_2187)

{28} event event_M1(a_2182)|

Fig.2

the message only once (the sequence number is 1), and de-
vices accept the group key if the received sequence number
is greater than the own sequence number. So, after the first
session, devices run the session again. Thus, in the second
session, devices accept if the received sequence number is
not O or 1.

We examine whether devices accept the group key
twice (it means that a replay attack exists) under this situ-
ation by verifying reachability to such an event. We show
the code below.

free s0:SEQUENCENUMBER.

fun inc(SEQUENCENUMBER): SEQUENCENUMBER.

let GM_MISF(sskey_GM:sskey) =
[Section 4.2 Lines 11 to 14]

let sq = inc(s®) in

let sig = sign((GI, SN, CS1_, CS2_, GKD1_,
GKD2_, SAID, sq), sskey_GM) in

out(c, (GI, SN, CS1_, CS2_, GKDl1_, GKD2_,

Procedure of spoofing attack

SAID, sq, sig));
9 insert GroupMasterInfo(GI,(CS1_,CS2_),SN,
SAID,mgk).

let M1_1(C...) =

[Section 5.2]

->if checksign holds then M1_2(...).
let M1_2(...) =

L e I S I

in(C...);
if sq’ = sO then 0
else if sq’ = inc(s0®) then 0
else if checksign(sig’, spkey_GM, (GI’, SN
’, CS1’, CS2’, GKD1’, GKD2’, SAID’, sq
")) = true
9 then (
10 [Section 4.3 Lines 4 to 43 (event_ml
-> event_M1_2)]
1).

13| query event(event_M1_2(mgk)).

NOGUCHI et al.: VERIFICATION OF GROUP KEY MANAGEMENT OF IEEE 802.21 USING PROVERIF

1541

([Sw) [N IU9Ad JU2AD {]7}

- (88€T ¥'L8€T B B
(16€L 00X BUOUF9YET B00USRET EHYEY ©) = ({5 [10080 UoAd {37}
(88ET P°LYET ¥'E9ST ~98ET B'O0USET B'HBET)

B (88€C E'L8cT B B
(16£T 00XMBW)OUT9YET BOOUSSET BHYET ©) =
(8867 ¥°L8ET BEYST N~'98ET BO0WSSET PHRET ©)

B B (95T W~ B
P9ST IN~€9ST IN~TIST N~ T9ST IN~09ST IN~655¢

N~)

S6£T AIVS Mauf6l}

?SN\SOV_ T6£T 007 FOFT 0 [N $59001d Jo w__iswoﬂ :SQN\SS T6£T 007 FOFT 0 [N 559001 Jo FuruuiSog

P6E€T_NS mou{gy}

£6£C 1D Mou{/ [}

ASTN A ssdoo1d Jo w:EEon

80¥T 110% Mou{L}
T6ET 0107 Mou{9
LOYT 100% Mou{g
90+ 0003 Mou
SOYT_10% Mau{¢
16€T 00 Mdu{z
$OPT 03 mou{(}

1
s
v
s
1
s

}

Jyoeny $S3001 1SaUOH

S6€T AIVS = §9ST W~

(T6£7_ 010 BUUY = 95T N~

(16£T 00X Bw)oug = €957 W~

010U =795 N~ ‘punoj usaq

00U = 195 W~ sey] ooel}

P6£T NS = 095T W~

€6£T 1D = 655T N~

SUONBIARIQQY

ASIN_ D ssdd01d jo mc_sﬁmuﬂ

((z6£T 010X BW)UF (16£C 00 MHFW)OUT O 10UO0U)

(OISW) D U242 JUA{ T}

(80T 110X “T6£T_010% LOYT 1004 “90¥T 000 ‘SOPT_ 10
“16£T 00Y “POPT 0MSNSINAD $sd00xd jo Sujuuidog

Procedure of replay attack

Fig. 3

1542

6. Verification Result
6.1 Insider Attack
6.1.1 Without Digital Signature Option

Secrecy and strong secrecy of the group key are “true”, but
the authenticity is “false”. The found attack is an attack that
the attacker impersonates GM by using the device keys of
M3. Figure 2 shows the output of ProVerif’s attack proce-
dure against M1.

We explain the found spoofing attack by using Fig. 2.
First, the attacker generates a ciphertext Enc(a_2182,
k0_2188) by encrypting an arbitrary value a_2182 using the
device key k0_2188 shared with M 1. Next, the attacker gen-
erates and sends a message containing this ciphertext. Since
M1 who received it decrypts the ciphertext using k0_2188,
accepts a_2182 as a group key. This corresponds to a spoof-
ing attack by impersonating GM. In addition, a similar at-
tack against M2 is possible with the same procedure.

6.1.2 With Digital Signature Option

All secrecy, strong secrecy and authenticity are “true”.
Therefore, it is clarified that the spoofing attack found for
the basic mode is prevented.

6.2 Outsider Attack
6.2.1 Without Digital Signature Option

Secrecy and strong secrecy of the group key are “true”, and
the non-injective correspondence for authenticity is “true”,
but the injective correspondence is “false”. The found attack
is a replay attack. Figure 3 shows the output of ProVerif’s
attack procedure against M 1.

We explain the found replay attack by using Fig. 3.
First, the attacker receives a message from GM that con-
tains the ciphertext ~M_2563 = Enc(mgk, k0_2391). When
the attacker sends ~M_2563 with n00, M1 accepts the group
key. Next, when the attacker sends ~M_2563 with n00
again, M1 also accepts the group key again but GM sends
the message only once. This corresponds to a replay attack.
In addition, a similar attack against M2 is possible with the
same procedure.

6.2.2 With Digital Signature Option

Secrecy and strong secrecy of the group key are “true”, and
the non-injective correspondence for authenticity is “true”
as well as the mode without digital signature option. As
described in Sect.5.3.3, we verify security against replay
attacks by using reachability. GM sends the message only
once as in Sect. 5.3.3. It formalizes the situation of a replay
attack and verify if it can occur by reachability. As a re-
sult, the verification of reachability is “true”. It means that

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.10 OCTOBER 2021

event_M1_2 is not occurred, in other words, devices accept
the group key only once (not twice). Thus, no replay attack
exists.

7. Conclusion

For the GKM scheme in IEEE 802.21, which is specified in
a HEMS specification, we verified secrecy and authenticity
against insider and outsider attackers using a formal security
verification tool ProVerif. It is the first verification result of
IEEE 802.21 by formal methods. As a result, two attacks
are found for the basic model (without the digital signature
option), but these attacks are not found for the mode with the
digital signature option. It means that the digital signature
option correctly works to enhance security.

We formalize increment of the sequence number by us-
ing function inc. The current version of ProVerif supports
the natural number type “nat”. It is a remaining problem to
formalize the sequence number by “nat”.

References

[1] R. Noguchi, Y. Hanatani, and K. Yoneyama, “Verification of Group
Key Management of IEEE 802.21 using ProVerif,” Proc. 7th ACM
Workshop on ASIA Public-Key Cryptography, pp.19-27, 2020.

[2] “IEEE 802.21-2017 - IEEE Standard for Local and metropolitan
area networks—Part 21: Media Independent Services Framework,”
https://standards.ieee.org/standard/802_21-2017.html

[3] J. Shikata, T. Uchikoshi, M. Ebina, S. Sato, Y. Masuda, Y. Unagami,
and T. Takazoe, “Security Proof of a Device Authentication Protocol
for HEMS,” SCIS 2018 (in Japanese).

[4] B.Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, ‘“ProVerif 2.00.”
http://prosecco.gforge.inria.fr/personal/bblanche/proverif

[5] “Open Specs — ECHONET,” https://echonet.jp/spec_v113_lite_en/

[6] “IEC 62394:2017 - Service diagnostic interface for consumer elec-
tronics products and networks - Implementation for ECHONET,”
https://webstore.iec.ch/publication/32738

[7] “ISO/IEC 14543-4-3:2015 - Information technology — Home Elec-
tronic Systems (HES) architecture — Part 4-3: Application layer in-
terface to lower communications layers for network enhanced con-
trol devices of HES Class 1,” https://www.iso.org/standard/63216
html

[8] C.Cremers and M. Horvat, “Improving the ISO/IEC 11770 standard
for key management techniques,” Int. J. Inf. Secur., vol.15, no.6,
pp-659-673, 2016.

[9] “ISO/IEC 11770-2:2018 - IT Security techniques — Key manage-
ment — Part 2: Mechanisms using symmetric techniques,” https://
www.iso.org/standard/73207.html

[10] “ISO/IEC 11770-3:2015 - Information technology — Security tech-
niques — Key management — Part 3: Mechanisms using asymmetric
techniques,” https://www.iso.org/standard/60237.html

[11] C. Cremers, “The Scyther Tool.” https://people.cispa.io/cas.cremers/
scyther/

[12] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Tamarin Prover.”
http://tamarin-prover.github.io/

[13] C. Cremers, “Key exchange in IPsec revisited: formal analysis of
IKEv1 and IKEv2,” Computer Security — ESORICS 2011, Lecture
Notes in Computer Science, vol.6879, pp.315-334, 2011.

[14] D. Basin, C. Cremers, S. Meier, P. Degano, and J.D. Guttman, “Prov-
ably Repairing the ISO/IEC 9798 Standard for Entity Authentica-
tion,” Journal of Computer Security, vol.21, no.6, pp.817-846, 2013.

[15] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,
“A Comprehensive Symbolic Analysis of TLS 1.3,” Proc. 2017

http://dx.doi.org/10.1145/3384940.3388960
http://dx.doi.org/10.1007/s10207-015-0306-9
http://dx.doi.org/10.1007/978-3-642-23822-2_18
http://dx.doi.org/10.3233/jcs-130472
http://dx.doi.org/10.1145/3133956.3134063

NOGUCHI et al.: VERIFICATION OF GROUP KEY MANAGEMENT OF IEEE 802.21 USING PROVERIF

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

ACM SIGSAC Conference on Computer and Communications Se-
curity, pp.1773-1788, 2017.

C. Cremers and M. Dehnel-Wild, “Component-Based Formal Anal-
ysis of 5G-AKA:Channel Assumptions and Session Confusion,”
Proceedings 2019 Network and Distributed System Security Sym-
posium, 2019.

C. Cremers, M. Dehnel-Wild, and K. Milner, “Secure Authentica-
tion in the Grid:A formal analysis of DNP3: SAv5,” Journal of Com-
puter Security, vol.27, no.2, pp.203-232, 2019.

B. Blanchet,, “CryptoVerif: Cryptographic protocol verifier in
the computational model.” https://prosecco.gforge.inria.fr/personal/
bblanche/cryptoverif/

R. Bresciani and A. Butterfield, “ProVerif Analysis of the ZRTP
Protocol,” International Journal for Infonomics, vol.3, no.3,
pp-306-313, 2010.

S. Asadi and H.S. Shahhoseini, “Formal Security Analysis of Au-
thentication in SNMPv3 Protocol by An Automated Tool,” 6th Inter-
national Symposium on Telecommunications (IST), pp.1060-1064,
2012.

K. Ammayappan, “Seamless interoperation of LTE-UMTS-GSM
requires flawless UMTS and GSM,” 2013 2nd International
Conference on Advanced Computing, Networking and Security,
pp.169-174, 2013.

N.B. Henda and K. Norrman, “Formal Analysis of Security Pro-
cedures in LTE - A Feasibility Study,” Research in Attacks, Intru-
sions and Defenses, Lecture Notes in Computer Science, vol.8688,
pp.341-361, 2014.

J. Lu, J. Zhang, J. Li, Z. Wan, and B. Meng, “Automatic Verifica-
tion of Security of OpenID Connect Protocol with ProVerif,” Par-
allel, Grid, Cloud and Internet Computing, Lecture Notes on Data
Engineering and Communications Technologies, vol.1, pp.209-220,
2017.

D. Dolev and A.C.-C. Yao, “On the Security of Public Key Proto-
cols,” 22nd Annual Symposium on Foundations of Computer Sci-
ence (sfcs 1981), pp.350-357, 1981.

D. Naor, M. Naor, and J. Lotspiech, “Revocation and Tracing
Schemes for Stateless Receivers,” Advances in Cryptology —
CRYPTO 2001, Lecture Notes in Computer Science, vol.2139,
pp.41-62, 2001.

J. Dreier, M. Puys, M.-L. Potet, P. Lafourcade, and J.-L. Roch,
“Formally and practically verifying flow properties in industrial sys-
tems,” Comput. Secur., vol.86, pp.453—470, 2019.

Y. Hanatani, N. Ogura, Y. Ohba, L. Chen, and S. Das, “Secure Mul-
ticast Group Management and Key Distribution in IEEE 802.21,”
Security Standardisation Research, Lecture Notes in Computer Sci-
ence, vol.10074, pp.227-243, 2016.

M. Ryan, M. Arapinis, and E. Ritter, “StatVerif: Verification of state-
ful processes.” https://markryan.eu/research/statverif/

Ryoga Noguchi received the B.E. degree
from Ibaraki University, Ibaraki, Japan, in 2019.
He is a master’s student at Ibaraki University
since 2019.

1543

Yoshikazu Hanatani received the B.E.,
M.E. and Ph.D. degrees from the University
of Electro-Communications, Tokyo, Japan, in
2004, 2006 and 2012, respectively. He is a
researcher of Toshiba Corporation Corporate
R&D Center since 2006. He is presently en-
gaged in research on data security technolo-
gies for personal data and industrial data. He
is a member of the International Association
for Cryptologic Research (IACR), IEICE and
JSIAM.

Kazuki Yoneyama received the B.E.,
M.E. and Ph.D. degrees from the University
of Electro-Communications, Tokyo, Japan, in
2004, 2006 and 2008, respectively. He was a re-
searcher of NTT Secure Platform Laboratories
from 2009 to 2015. He is presently engaged in
research on cryptography at the Ibaraki Univer-
sity, since 2015. He is a member of the Inter-
national Association for Cryptologic Research
(IACR), IPSJ and JSIAM.

http://dx.doi.org/10.1145/3133956.3134063
http://dx.doi.org/10.14722/ndss.2019.23394
http://dx.doi.org/10.3233/jcs-181139
http://dx.doi.org/10.20533/iji.1742.4712.2010.0033
http://dx.doi.org/10.1109/istel.2012.6483143
http://dx.doi.org/10.1109/adcons.2013.53
http://dx.doi.org/10.1007/978-3-319-11379-1_17
http://dx.doi.org/10.1007/978-3-319-49109-7_20
http://dx.doi.org/10.1109/sfcs.1981.32
http://dx.doi.org/10.1007/3-540-44647-8_3
http://dx.doi.org/10.1016/j.cose.2018.09.018
http://dx.doi.org/10.1007/978-3-319-49100-4_10

