
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021
1083

PAPER Special Section on Multiple-Valued Logic and VLSI Computing

An Algebraic Approach to Verifying Galois-Field Arithmetic
Circuits with Multiple-Valued Characteristics∗

Akira ITO†a), Nonmember, Rei UENO†, and Naofumi HOMMA†, Members

SUMMARY This study presents a formal verification method for
Galois-field (GF) arithmetic circuits with the characteristics of more than
two values. The proposed method formally verifies the correctness of cir-
cuit functionality (i.e., the input-output relations given as GF-polynomials)
by checking the equivalence between a specification and a gate-level netlist.
We represent a netlist using simultaneous algebraic equations and solve
them based on a novel polynomial reduction method that can be efficiently
applied to arithmetic over extension fields Fpm , where the characteristic p
is larger than two. By using the reverse topological term order to derive
the Gröbner basis, our method can complete the verification, even when a
target circuit includes bugs. In addition, we introduce an extension of the
Galois-Field binary moment diagrams to perform the polynomial reduc-
tions faster. Our experimental results show that the proposed method can
efficiently verify practical Fpm arithmetic circuits, including those used in
modern cryptography. Moreover, we demonstrate that the extended polyno-
mial reduction technique can enable verification that is up to approximately
five times faster than the original one.
key words: decision diagrams, formal verification, Galois-field arithmetic
circuits, multiple-valued logic

1. Introduction

Cryptography based on Galois-field (GF) arithmetic has
been widely utilized in many secure information sys-
tems that require secret communication, authentication,
and digital signatures. Cryptographic algorithms are fre-
quently implemented in hardware to achieve lower latency
and power/energy consumption, particularly in the case
of resource-constrained embedded devices, such as smart-
cards.

Some cryptographic algorithms can be more efficiently
implemented with multiple-valued logic than with binary
logic. For example, some practical elliptic curve cryptogra-
phies (ECCs) and pairing-based cryptographies (PBCs) are
defined over the GFs with characteristics greater than two
(i.e., Fpm , where p is a characteristic and m is the extension
degree). In [1]–[4], PBC over a GF with p = 3 exhibits a
high level of security with a shorter key and less computa-
tional complexity than those defined over binary fields. In
addition, it was reported that a hyperelliptic curve cryptogra-

Manuscript received August 26, 2020.
Manuscript revised February 18, 2021.
Manuscript publicized April 28, 2021.
†The authors are with Tohoku University, Sendai-shi, 980–

8579 Japan.
∗This work was supported in part by the JSPS Research Felow

under Grant 20J12887, in part by the JSPS KAKENHI under Grant
20K19765, and in part by the Secom Science and Technology
Foundation.

a) E-mail: ito@riec.tohoku.ac.jp
DOI: 10.1587/transinf.2020LOP0004

phy over a GF with p = 5 or 7 was useful for the efficient im-
plementation of PBC [5], [6]. Thus, arithmetic circuits over
GFs with multiple-valued characteristics play a key role in
the efficient implementation of ECCs and PBCs.

However, existing tools and methods encounter prac-
tical difficulties in the design and functional verification of
such GF arithmetic circuits. For example, most standard
cell libraries do not have a good design for GF arithmetic
circuits. The difficulties in verifying GF arithmetic circuits
are more serious and critical than designing them. GF mul-
tipliers that are used in ECCs and PBCs typically have input
word lengths greater than 64-bits; therefore, the generation
of exhaustive test patterns and complete simulation-based
verification are practically impossible. Conventional formal
verification methods based on satisfiability solvers, satisfia-
bility modulo theories solvers, and binary decision diagrams
(BDDs) cannot be efficiently applied to GF arithmetic cir-
cuits. In [7], it was shown that these conventional meth-
ods could only handle up to 16-bit GF arithmetic circuits.
There are extended BDDs, such as binary moment diagrams
(BMDs), index BDDs (IBDDs), and multiple-output deci-
sion diagrams (MODD), that are specifically for verifying
arithmetic circuits. However, BMDs are suitable for integer
arithmetic circuits [8] and cannot be directly applied to rep-
resent the polynomials that appear during the verification
of GF arithmetic circuits. IBDD is an extension of BDD
which has a layer structure to represent integer multipliers
compactly [9]. Although IBDDs were firstly introduced for
equivalence checking [10], [11] showed that the equivalence
test in IBDDs is coNP-complete due to the lack of canonical
representation. MODD is an extension of BDD which rep-
resents multiple-valued functions using the multiple-valued
Shannon expansion. However, the result of [12] implies that
the sizes of BDD and MODD would explode if they repre-
sent circuits that include many XORs, such as GF arithmetic
circuits. This indicates that it is difficult to apply BDDs and
MODDs to verification of GF arithmetic circuits.

Recently, some formal verification methods based on
computer algebra have been reported for GF arithmetic cir-
cuits [7], [13]–[15]. Assuming that the specification (i.e.,
functionality) of a GF arithmetic circuit can be given as GF
polynomials, these methods examine whether the GF poly-
nomials of the specification can be derived by simultaneous
algebraic equations, which are derived from a target netlist.
Computer algebra techniques make it possible to completely
and soundly verify practical GF multipliers, such as 571-
bit Mastrovito multipliers. However, the applicability of

Copyright c⃝ 2021 The Institute of Electronics, Information and Communication Engineers

1084
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

such methods to GF arithmetic circuits with multiple-valued
characteristics is currently unknown. In fact, many con-
ventional methods were optimized for extension fields of
F2, and would not be efficiently applied to circuits over
Fpm (p ≥ 3).

To address the aforementioned problem, we present a
formal verification method for GF arithmetic circuits with
multiple-valued characteristics. The proposed method ver-
ifies the equivalence between a specification and a target
netlist. In the proposed method, we represent the netlist as
simultaneous algebraic equations and solve them based on
a new polynomial reduction method that can be efficiently
applied to arithmetic over extension fields Fpm , where the
characteristic p is larger than two. The use of the reverse
topological term order (RTTO) to derive the Gröbner basis
makes the verification feasible, even when a target netlist
includes bugs.

Compared with the preliminary version [16], we
present a faster and scalable polynomial reduction method
for the above verification that is based on an extension of
zero-suppressed binary decision diagrams (ZDDs). These
are well known for their effectiveness in the verification of
GF arithmetic circuits over the F2 extension field. In this
study, we validate the extended method through a series
of experimental verifications for GF multipliers with some
multiple-valued characteristics. The results show that the
proposed method can perform a complete verification of the
GF multiplier with 256-digit inputs within approximately
two minutes.

2. Related Work

2.1 Gröbner Basis-Based Equivalence Checking

An algebraic method based on the Gröbner basis and poly-
nomial reduction is considered as one of the most promising
methods to verify GF arithmetic circuits. The method ex-
amines the equivalence between the input–output relation
of a target circuit (i.e., specification) and a given netlist,
both of which are described by a set of GF polynomials.
The verification consists of the following two steps: (i) the
Gröbner basis is derived corresponding to the simultaneous
equations that represent the netlist; and (ii) a polynomial re-
duction is performed by the Gröbner basis. Here, the com-
putation of the Gröbner basis in step (i) is typically time-
consuming. The reduction in step (ii) also requires con-
siderable time and memory for the verification of practi-
cal circuits. Thus far, we have two approaches to compute
the time-consuming steps efficiently: hierarchical and non-
hierarchical approaches. In this section, we briefly introduce
these two approaches.

The major hierarchical method is based on the GF
arithmetic circuit graph (GF-ACG), which is a hierarchal
and mathematical graph that represents a GF arithmetic cir-
cuit with a functional assertion given by GF equations and
an internal structure. Given an arithmetic circuit descrip-
tion in the GF-ACG, we can verify its function using equiv-

alence checking between the functional assertion and its
internal structure. In [17], [18], polynomial reduction us-
ing the Gröbner basis is adopted for a complete and effi-
cient verification. Here, if a target circuit is described in
a good hierarchical manner, the computational cost of the
Gröbner basis and polynomial reduction becomes trivial be-
cause the number of variables and polynomials per Gröbner
basis computation is reduced. It was shown that the GF-
ACG-based methods can verify the correctness of practical
GF arithmetic circuits, such as 128-bit GF multipliers and
advanced encryption standard round data paths [18]. In ad-
dition, GF-ACGs were extended to GF arithmetic circuits
with multiple-valued characteristics [19]. However, one ma-
jor limitation of GF-ACGs is that it cannot be efficiently
applied to flattened descriptions. Although a target circuit
is frequently given by a (flattened) gate-level netlist, the
effectiveness and practicality of GF-ACGs are unclear in
such cases. In addition, GF-ACG-based methods experi-
ence difficulties in handling circuits with bugs, owing to the
Büchberger algorithm used to derive the Gröbner basis.

In contrast, the non-hierarchical approach can verify
a wider range of descriptions, including the flattened gate-
level netlist. However, the computational costs of steps (i)
and (ii) would be significantly more critical if a straightfor-
ward computation using the Büchberger’s or F4 algorithms
is employed.

In 2013, Lv et al. presented the RTTO to mitigate the
computational cost of the Gröbner basis in step (i). The
RTTO is the term order that is determined in accordance
with the circuit topology, where a variable (i.e., wires) closer
to the primary outputs (POs) of a target circuit always has
a higher term order. Formally, if a wire wk is closer to the
POs than another wire wi, the order of wk and wi is given by
wk > wi in the RTTO. It was proven that a set of F2 poly-
nomials that represent the specification and logic gates (i.e.,
combinational circuit) should always be a Gröbner basis if
the RTTO is applied to the expressions of polynomials. As
a result, we can skip the derivation of the Gröbner basis and
reduce most of the computational cost in step (i).

Accordingly, the reduction of PO variables in step (ii)
becomes the most time-consuming part of the verification.
Several studies that aim to decrease the computational cost
of step (ii) have also been reported. For example, Gupta et
al. used the ZDD to represent polynomials over a Boolean
ring to perform the reduction of PO variables in a shorter
time and with a smaller memory size compared with the cor-
responding AND-XOR representation [13]. In [20], the re-
duction of PO variables was performed in parallel to reduce
the total computational time at the expense of computational
resources.

Owing to the RTTO and the above-mentioned tech-
nique of step (ii), the recent non-hierarchical method suc-
ceeded in verifying the correctness of netlists for large GF
multipliers, such as 571-bit Mastrovito multipliers. How-
ever, it is unknown whether such conventional methods can
be applied to the netlists of GF arithmetic circuits with
multiple-valued characteristics. The representation of poly-

ITO et al.: AN ALGEBRAIC APPROACH TO VERIFYING GALOIS-FIELD ARITHMETIC CIRCUITS WITH MULTIPLE-VALUED CHARACTERISTICS
1085

nomials in the above-mentioned methods is highly opti-
mized for arithmetic over F2, which implies that it would
not be efficiently applicable to GF arithmetic circuits with
characteristics greater than two.

2.2 Decision Diagrams

As mentioned above, Gupta et al. reported a ZDD-based
polynomial reduction for efficient verification. The reason
why ZDDs are effective for verifying GF arithmetic circuits
is that ZDDs can compactly represent Boolean polynomials
using the following positive Davio expansion†

f (x) = f1 + x f2, (1)

where f (x) is a logical function (Boolean polynomial) of
a Boolean variable x, and f1 and f2 denote Boolean poly-
nomials independent of x. ZDDs are graph representations
based on recursive applications of the positive Davio expan-
sion with respect to all variables. That is, a ZDD indicates
whether the corresponding polynomial contains a particu-
lar product term. BDDs are different from ZDDs in that
they represent satisfaction conditions. The signal value of a
GF arithmetic circuit frequently changes with its input sig-
nal because additions over the prime field F2 correspond to
XOR gates. Therefore, the satisfaction conditions of a GF
arithmetic circuit become a complicated polynomial, and
ZDDs are more suitable for the verification than BDDs.

For the extension of DDs to multiple-valued functions,
there are some multiple-valued DDs, such as multi-valued
DDs (MDDs), multiple-output DDs (MODDs), and Galois-
field functional DDs (GFDDs) [23]–[25]. However, it is dif-
ficult to apply such conventional multiple-valued DDs to the
verification of GF arithmetic circuits with multiple charac-
teristics. MDDs and MODDs are multiple-valued exten-
sions of BDDs; thus, they represent the satisfaction condi-
tions. That is, it seems unlikely that they are able to com-
pactly represent the polynomials that appear during the pro-
posed verification process for the same reason as BDDs.
GFDD is a multiple-valued extension of a ZDD that can
compactly represent polynomials over Fp [25]. However, its
construction method, which is shown in [25], is very compli-
cated, and the APPLY algorithms of GFDDs are unknown.
Thus, it would also be difficult to use GFDDs for the poly-
nomial reductions mentioned in this study. Therefore, in
Sect. 3, we introduce an extension of ZDDs to verify GF
arithmetic circuits with multiple-valued characteristics.

3. Proposed Method

The proposed verification procedure follows an algebraic
non-hierarchical approach, which is shown in [13]. More
precisely, the proposed method can be considered as an ex-
tension for p > 2 of [13], which uses RTTO and ZDDs.

†ZDDs are typically explained from the viewpoint of combina-
tional sets [21]. However, in this study, we explain them using the
positive Davio expansion to clarify the difference between ZDDs
and BDDs [22]

First, we describe the basic idea and procedure of our
method. Then, we introduce a diagram to represent poly-
nomials over Fp to perform verification in an efficient and
scalable manner.

3.1 Equivalence Checking

In this subsection, we describe our equivalence checking
(i.e., verification) method for arithmetic circuits over an ex-
tension field of Fp. In contrast to the conventional meth-
ods, the proposed method examines the equivalence check-
ing over Fp by using a new reduction algorithm. To per-
form equivalence checking with a shorter time and a smaller
memory size, we extract Fp polynomials from a target cir-
cuit. The proposed method can be considered to be a gen-
eralization of the non-hierarchical verification of multiple-
valued characteristics because the conventional methods as-
sume that F2 polynomials are extracted from a target netlist.
Note that the target circuit is described as a netlist of Fp

adders and multipliers (which correspond to combinational
circuits consisting of XOR and AND over F2, respectively),
which are used to verify arithmetic circuits over Fpm . Thus,
the lowest-level component of the netlist should be given
by p-valued logics in the verification (and if necessary, the
correctness and validity of the lowest-level components, in-
cluding the conversion between binary and p-valued signals,
should be separately verified). Note that we assume that
the building blocks for addition and multiplication are the
smallest units of design in HDL and that they are imple-
mented hypothetically with (non-binary) technology.

The proposed method consists of the following four
steps:
Step 1: The GF equations of a specification are converted
to a polynomial over Fp,
Step 2: A set of polynomials over Fp representing the given
netlist is extracted and its Gröbner basis is derived,
Step 3: The PO variables are reduced using the Gröbner ba-
sis derived from step 2,
Step 4: The equivalence between the polynomials of step 1
and step 3 are checked through a comparison.
These steps generally follow the conventional method in
[13], and the proposed method can be seen as an extension
of the method for p > 2.

Step 1 obtains the GF equations of the specification
over Fp. For a concrete explanation of step 1, we describe
the case in which the specification of a GF multiplier is
given as Z = A×B, where A, B ∈ Fpm are the inputs, and Z is
the output. Let a1, a2, . . . , am, b1, b2, . . . , bm, z1, z2, . . . , zm ∈
Fp be the variables representing the coefficients of A, B, and
Z, respectively. The inputs A, and B and the output Z are
given by

A = a1 + a2α + · · · + amα
m−1 =

m∑
i=1

aiα
i−1, (2)

B = b1 + b2α + · · · + bmα
m−1 =

m∑
i=1

biα
i−1, (3)

1086
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

Z = z1 + z2α + · · · + zmα
m−1 =

m∑
i=1

ziα
i−1, (4)

respectively. Here, α is an indeterminate of an irreducible
polynomial P(x) (i.e., P(α) = 0). Substituting (2)–(4) into
Z = AB, we derive

m∑
i=1

ziα
i−1 =

 m∑
i=1

aiα
i−1

 m∑
i=1

biα
i−1

=

m∑
i=1

m∑
j=1

aib jα
i+ j−2

=

m∑
i=1

fi(a1, a2, . . . , am, b1, b2, . . . , bm)αi−1,

(5)
where fi(a1, a2, . . . , am, b1, b2, . . . , bm) is an element of Fp,
i.e., a polynomial of the input variables a1, a2, . . . , am, b1, b2,
. . . , bm. We can obtain the specification of a GF multiplier
by explicitly solving fi(a1, a2, . . . , am, b1, b2, . . . , bm).

Step 2 extracts simultaneous algebraic equations over
the prime field Fp from the given netlist. As mentioned
above, the smallest component of the netlist for the proposed
method is an arithmetic module (i.e., adder and multiplier)
over Fp. For the case in which the characteristic p is 2, all
logical operations, such as AND, XOR, and OR, have a one-
to-one correspondence with the operations over F2.

To formally explain step 2, we define the notation.
First, the smallest component that appears in a given circuit
description (i.e., an operation over a prime field Fp) is called
a node, and the connection between them is called an edge.
Note that the PIs and POs of the circuit can also be handled
as nodes. If the characteristic is 2, the edge is the same as a
wire. Let l be the total number of edges in the circuit, and let
w1, w2, . . . , wi, . . . , w j, . . . , wl be the variables of all edges,
where j > i holds if an edge w j is closer to the POs than
an edge wi. In addition, let u and v be the numbers of edges
connected to the PIs and the POs, respectively. Therefore,
w1, w2, . . . , wu and wl−v+1, wl−v+2, . . . , wl are connected to the
PIs and POs, respectively. All edges, except those connected
to the PIs, must be connected to the output of an intermedi-
ate node. That is, there exists a polynomial pi that represents
the relation between the output wi and its input variables.
Formally, the relation pi = wi − tail(pi) holds, where tail(pi)
is the remaining part of pi−wi. Note that we consider a poly-
nomial set G = J∪J0, where J = {pi | u+1 ≤ i ≤ l} is the set
of all input–output relations, and J0 = {wq

i −wi | 1 ≤ i ≤ l} is
the set of vanishing polynomials. For the case of p ≥ 2, we
can extend [7, Theorem 6.1], such that the polynomial set
G can be regarded as a Gröbner basis with RTTO (i.e., the
leading term of each polynomial lt(pi) is the output edge wi).
Therefore, in step 2, the simultaneous algebraic equations
over the prime field Fp that are extracted from the netlist in
the HDL format become the Gröbner basis G.

Step 3 reduces the variables that represent POs
wl−v+1, . . . , wl by the Gröbner basis, which are denoted by
G. Algorithm 1 shows the algorithmic description of the
proposed reduction, which is considered to be a generaliza-

Algorithm 1 Algorithm of the polynomial reduction
Require: w1, . . . , wl: All edges, pu+1, . . . , pl: All the polynomials

of input–output relations
Ensure: p′l−v+1, . . . , p

′
l : Canonical representations of all edges

connected to the POs
1: for k ← 1 to l do
2: z← wl−v+k

3: while z is not a canonical representation do
4: pi ← GetPoly(z) ▷ Get pi ∈ G such that lt(pi) | lt(z).
5: z← Reduce(z, pi) ▷ Reduce z by pi.
6: end while
7: p′l−v+k ← z
8: end for

Fig. 1 GF multiplier over F32 .

tion of the conventional method [26] for the polynomial ring
over F2. First, one of the edges connected to the POs is as-
signed to the variable z in line 2, and it is then reduced by G
in lines 3–6.

More precisely, in line 4, we obtain the polynomial pi

using “GetPoly,” such that the leading term lt(z) is divisible
by lt(pi), where i is an integer among {u+ 1, u+ 2, . . . , l}. In
line 5, we perform a reduction of z by pi, where the leading
term lt(pi) = wi is replaced with tail(pi) = −(pi − wi). We
repeat the procedure of lines 4–5 until z cannot be reduced.
Finally, we assign z to p′l−v+k in line 7. We can easily confirm
that Algorithm 1 eventually halts, owing to the definition of
the Gröbner basis. In addition, the computational cost of
Algorithm 1 increases in proportion to the number of nodes
because it depends on the number of polynomial reductions.

Step 4 checks the equivalence between the polynomials
obtained in step 3 p′l−v+1, . . . , p

′
l with those given in step 1.

Finally, we verify the correctness of the circuit functionality
by checking whether they are equal.

Example 3.1. Figure 1 shows an example of a multiplier
over F32 (i.e., p = 3 and m = 2.) In Fig. 1, blocks with + and
× indicate the modules for addition and multiplication over
F3, respectively. Note that the following procedure is almost
the same as the conventional (p = 2) one.
Step 1: We first convert the specification Z = AB to the
polynomials over F3, where A and B are the input variables,
and Z is the output variable defined in F32 . According to the
PI and PO edges in Fig. 1, A, B, and Z are given as follows

A = αw2 + w1, (6)

B = αw4 + w3, (7)

Z = αw12 + w11, (8)

where α is an indeterminate that is determined by an irre-
ducible polynomial P(x) = x2+2x+1 (i.e., α2+2α+1 = 0).

ITO et al.: AN ALGEBRAIC APPROACH TO VERIFYING GALOIS-FIELD ARITHMETIC CIRCUITS WITH MULTIPLE-VALUED CHARACTERISTICS
1087

From (6)–(8), the specification Z = AB is converted to

αw12 + w11 = α(w4w2 + w4w1 + w3w2) + 2w4w2 + w3w1.

(9)

Because α is the indeterminate, we have

w12 = w4w2 + w4w1 + w3w2, (10)

w11 = 2w4w2 + w3w1. (11)

Step 2: According to Fig. 1, we obtain the polynomials over
F3 as follows:

p5 = w5 − w3w1, p6 = w6 − w3w2, p7 = w7 − w4w1,

p8 = w8 − w4w2, p9 = w9 − 2w8,

p10 = w10 − (w7 + w6), p11 = w11 − (w9 + w5),

p12 = w12 − (w10 + w8).

Step 3: Using Algorithm 1, we reduce the output variables
w11 and w12 by G. The output variable w11 is reduced to

w11
p11−−→ w9 + w5

p9−−→ 2w8 + w5

p8−−→ w5 + 2w4w2
p5−−→ 2w4w2 + w3w1. (12)

Similarly, the other variable w12 is reduced to

w12
p12−−→ w10 + w8

p10−−→ w8 + w6 + w7, (13)
p8−−→ w7 + w6 + w4w2

p7−−→ w6 + w4w2 + w4w1

p6−−→ w4w2 + w4w1 + w3w2. (14)

Step 4: Finally, we compare the canonical forms derived in
step 3 with the specification polynomials obtained in step 1.
In this case, we finally confirm the correctness of the circuit
shown in Fig. 1.

3.2 Extension of ZDD to GF Arithmetic Circuits with
Multiple-Valued Characteristics

In this subsection, we introduce an extension of ZDD to
the GF arithmetic circuits with multiple-valued characteris-
tics called Galois-field binary moment diagrams (GFBMDs)
to make the abovementioned method (particularly step 3)
faster.

The generation of GFBMDs is similar to that of binary
moment diagrams (*BMDs), which are used to verify inte-
ger arithmetic circuits. *BMDs are given by the following
expansion:

f (x) = c1 f1 + xc2 f2, (15)

where c1 and c2 are integer coefficients, and the other vari-
ables are the same as those in Eq. (1). Using the expan-
sion recursively, we can represent an arbitrary integer coef-
ficient polynomial, where the order of each variable is one
or lower. In contrast, the introduced GFBMD is given by
Eq. (15), where the coefficients c1 and c2 are defined as the

Fig. 2 GFBMDs of 2w4w2 +w3w1 (left) and w4w2 +w4w1 +w3w2 (right)
shown in Example 3.1.

elements over the prime field Fp. Note that a GFBMD can
be considered as an extension of a ZDD because Eq. (1) is
a special case of Eq. (15). GFBMDs have various applica-
tions; however, they cannot represent all polynomials with a
degree of more than one.

Like *BMDs, GFBMDs are not unique in the case of
representing polynomials that consist of two or more vari-
ables. In general, for the uniqueness of *BMDs, we normal-
ize the coefficients in Eq. (15) by factoring out their great-
est common divisor. However, this does not guarantee the
uniqueness of GFBMDs because their coefficients are the
elements of the prime field Fp, not those of the ring of inte-
gers. Therefore, we employ the coefficient of the expanded
variable (i.e., c2) as the normalization factor†. To represent
the polynomials over Fp using GFBMDs, the addition and
multiplication of polynomials must be carried out on GFB-
MDs. This can be implemented using the APPLY algorithm
corresponding to the *BMDs.

In conclusion, the difference between *BMDs and
GFBMDs originates from the normalization factor for the
weights; thus, the construction algorithm of GFBMDs is
similar to that of *BMDs. More precisely, GFBMDs can be
implemented by changing only the “NormWeight” function,
as shown in [27]

Figure 2 shows examples of GFBMDs that correspond
to the outputs of the circuit shown in Example 3.1. The GF-
BMDs consist of some nodes that represent the variables,
two types of edges, which are denoted as solid and dotted
lines, and 0 and 1-terminal nodes. The solid and dotted lines
from a node wi indicate that the variable wi and “1” are mul-
tiplied respectively. In addition, the numbers next to the
edges indicate the multiplier values. These edges and num-
bers correspond to the decomposition denoted in Eq. (15).
For example, in the left of Fig. 2, the path through the root
node, the dotted line of a node w4, the solid line of a node
w3, the solid line of a node w1, and the 1-terminal node rep-
resent a polynomial 2×2×w3×w1 = w3w1. In this way, each
path from the root node to a terminal node corresponds to a
polynomial that is defined as the product term of all vari-
ables/labels denoted by the nodes, edges, and the terminal

†GFBMD normalized by c2 is well-defined because all ele-
ments over the prime field have their inverse elements, and the
uniqueness of GFBMDs defined in the above manner can easily be
confirmed by mathematical induction on the depth of GFBMDs.

1088
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

Fig. 3 *BMDs of 2w4w2 + w3w1 (left) and w4w2 + w4w1 + w3w2 (right)
shown in Example 3.1.

node on the path. The polynomial denoted by GFBMD is
defined as the sum of the product terms that correspond to
all the paths.

For comparison, Fig. 3 shows two examples of *BMDs
that correspond to the same equations as the GFBMDs. The
*BMD of 2w4w2 + w3w1 is different from the correspond-
ing GFBMDs, owing to the difference in the normalization
method. In the examples, we can observe that the multiplier
value of the solid line of a node w2 on the left of Fig. 3 is
two; however, this weight is unacceptable in GFBMDs be-
cause the normalization factor of this node is given by the
weight of the solid line (i.e., two). However, the GFBMD
and *BMD of w4w2 + w4w1 + w3w2 are the same because
their normalization factors are equal in this case.

4. Experimental Evaluation

In this section, we demonstrate the effectiveness of the pro-
posed method using verification experiments of 2-input GF
multipliers over Fpm . We first show the experimental results
using the list representation of the polynomials (i.e., without
GFBMDs)†. Then, we compare the performance of the pro-
posed method with the lists (i.e., without GFBMDs) to that
with GFBMDs.

4.1 Experimental Verification without GFBMDs

In this subsection, we present the results of the verifica-
tion experiments using straightforward list representations.
We evaluate the verification times for GF multipliers with a
characteristic p of 2, 3, 5, and 7 for various extension de-
grees m, from 8–256. Table 1 shows the verification time
of the GF multipliers by using the proposed method and the
number of addition and multiplication modules. We con-
firm here that the verification time depends on m, but not
on the characteristic. In GF multipliers, the structure/size of
arithmetic modules over the prime field is determined by the
characteristic, and the number of arithmetic modules over
Fpm is primarily determined by the degree of extension. Ac-
cording to Table 1, an increase in the characteristic has min-
imal impact on the computational cost. This is because the

†List representation means that the polynomials are repre-
sented by a list that contains each term of the polynomial as an
element.

number of reductions (i.e., the number of adders and mul-
tipliers over Fp in the circuit) does not depend on the char-
acteristics. Note that the verification time strongly depends
on the number of reductions in Algorithm 1. Thus, the ver-
ification time basically depends on the degree of extension;
however, the verification time differs slightly in p, owing to
the difference in irreducible polynomials.

Table 1 also shows the number of terms in the irre-
ducible polynomials for each multiplier and the verification
time divided (i.e., normalized) by it. In this evaluation, the
number of terms in the irreducible polynomials are smallest
and largest when the characteristics are 5 and 2, respectively.
The verification times for a characteristic of 2 are larger than
those for 5; however, the difference between the normalized
verification times shown in the third row is trivial, which in-
dicates that the difference in the verification time primarily
arises from the number of terms in irreducible polynomials.

In addition, we evaluate the performance of the pro-
posed method when a target GF multiplier includes a bug.
Here, we insert a bug by connecting an input edge of a node
in a GF multiplier to an incorrect node output. Note that
we do not deal with logical bugs and/or bugs that cannot be
represented by addition and multiplication modules because
we assume that the verified circuit is given as a combination
of addition and multiplication modules. There is a possi-
bility that other types of bugs can be inserted in logic op-
timization, synthesis, etc., and further evaluation with such
bugs should be considered in future work. Note that the con-
ventional hierarchical methods, such as GF-ACG, require an
unrealistic time to verify a circuit even with such a simple
bug because they use the Büchberger algorithm to derive a
Gröbner basis. Table 2 shows the verification time of the
GF multipliers with the abovementioned bug and the ratio
of the verification times of the multipliers with and without
the bug. In addition, Fig. 4 shows the verification time of the
GF multipliers with and without the bug. The table shows
that the verification times of buggy multipliers are smaller
than those of bug-free ones. This is because our method
compares the polynomials of the specification and canonical
form every time each PO variable is reduced, and it immedi-
ately ends when the difference is found. From the table, we
can infer that the proposed method efficiently verifies buggy
multipliers.

From the above results, we also confirm that the formal
verification can be performed in approximately eight min-
utes using the proposed method, even for a practical multi-
plier with a degree of extension of 256. Although the GF-
ACG-based method can also verify GF multipliers with mul-
tiple characteristics, it is necessary to describe the circuit in
a finely hierarchical manner. Note again the limitation that
verification cannot be performed unless the circuit is given
in GF-ACG. However, the proposed method can accept any
circuit description for which the smallest components are
given by arithmetic modules over the prime field. Thus, the
proposed method can be applied to a wider range of circuit
descriptions.

ITO et al.: AN ALGEBRAIC APPROACH TO VERIFYING GALOIS-FIELD ARITHMETIC CIRCUITS WITH MULTIPLE-VALUED CHARACTERISTICS
1089

Table 1 Verification time of GF multiplier

m = 8 m = 16 m = 32
p = 2 p = 3 p = 5 p = 7 p = 2 p = 3 p = 5 p = 7 p = 2 p = 3 p = 5 p = 7

Num. of
additions

143 85 56 84 627 487 240 360 2,545 2,488 992 1,488

Num. of
multiplications

64 92 92 120 256 376 376 496 1,024 1,520 1,520 2,016

Num. of
terms of IP

5 3 2 3 5 4 2 3 5 5 2 3

Verification
time [ms]

6.39 4.83 4.23 5.46 18.9 18.3 9.89 15.2 88.5 140 39.3 69.8

Time /
Num. of terms

1.28 1.61 2.12 1.82 3.78 4.58 4.95 5.07 17.7 28.0 19.7 23.3

m=64 m=128 m=256
p = 2 p = 3 p = 5 p = 7 p = 2 p = 3 p = 5 p = 7 p = 2 p = 3 p = 5 p = 7

Num. of
additions

10,095 6,051 4,032 6,048 40,704 40,673 16,256 24,385 163,324 195,875 65,280 163,209

Num. of
multiplications

4,096 6,112 6,112 8,128 16,394 24,512 24,512 32,640 65,536 98,176 98,176 130,819

Num. of
terms of IP

5 3 2 3 5 5 2 3 5 6 2 5

Verification
time [ms]

1030 599 424 706 21, 100 26, 700 6, 290 15, 300 315, 000 554, 000 105, 000 480, 000

Time /
Num. of terms

206 200 212 235 4, 220 5, 340 3, 150 5, 100 63, 000 92, 300 52, 500 96, 000

Table 2 Verification time of GF multiplier with and without bugs.

m = 8 m = 16 m = 32
p = 2 p = 3 p = 5 p = 7 p = 2 p = 3 p = 5 p = 7 p = 2 p = 3 p = 5 p = 7

Verification
time of

bug-free one [ms]
6.39 4.83 4.23 5.46 18.9 18.3 9.89 15.2 88.5 140 39.3 69.8

Verification
time of

buggy one [ms]
4.54 5.17 3.03 4.91 15.9 16.2 12.2 15.5 70.5 111 42.3 70.5

Ratio 0.710 1.07 0.716 0.899 0.841 0.885 1.23 1.02 0.797 0.793 1.08 1.01

m = 64 m = 128 m = 256
p = 2 p = 3 p = 5 p = 7 p = 2 p = 3 p = 5 p = 7 p = 2 p = 3 p = 5 p = 7

Verification
time of

bug-free one [ms]
1, 030 599 424 706 21, 100 26, 700 6, 290 15, 300 315, 000 554, 000 105, 000 480, 000

Verification
time of

buggy one [ms]
776 492 357 677 18, 500 25, 200 5, 870 14, 300 239, 000 506, 000 90, 800 449, 000

Ratio 0.753 0.821 0.842 0.959 0.877 0.944 0.933 0.935 0.759 0.913 0.865 0.935

Fig. 4 Verification time of GF multipliers with and without bugs.

4.2 Experimental Verification Using GFBMDs

In this subsection, we demonstrate the effectiveness of GF-
BMD through verification experiments that are compatible

with those above. We evaluate the verification times for GF
multipliers with a characteristic p of 2, 3, 5, and 7 for ex-
tension degrees m from 64–256 because such large multi-
pliers cannot be verified completely using computer simu-

1090
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

Table 3 Verification time of GF multiplier with and without GFBMDs
m = 64 m = 128 m = 256
p = 2 p = 3 p = 5 p = 7 p = 2 p = 3 p = 5 p = 7 p = 2 p = 3 p = 5 p = 7

W/ GFBMDs [s] 2.05 9.77 × 10−1 6.16 × 10−1 1.01 1.54 × 10 1.28 × 10 4.53 6.70 1.20 × 102 1.35 × 102 3.42 × 10 9.58 × 10
W/o GFBMDs [s] 1.03 5.99 × 10−1 4.24 × 10−1 7.06 × 10−1 2.11 × 101 2.67 × 101 6.29 1.53 × 101 3.15 × 102 5.54 × 102 1.05 × 102 4.80 × 102

Ratio 5.03 × 10−1 6.13 × 10−1 6.88 × 10−1 6.99 × 10−1 1.37 2.09 1.40 2.28 2.63 4.10 3.07 5.01

Table 4 Number of terms in the largest polynomial over F2 in each mul-
tiplier

Characteristic [p] m = 2 m = 3 m = 4

2 3 5 7
3 56 1290 17848
5 1130 94662 2028364

lations with exhaustive test patterns. Note that we can use
GFBMDs to verify such GF multipliers because polynomi-
als with degrees of two or higher do not appear during the
verification process. Table 3 shows the verification times
with and without GFBMDs and their ratios. From the table,
we can confirm that the verification time with GFBMDs be-
comes relatively shorter than that without GFBMDs as the
degree of extension increases. In particular, the verification
with GFBMD is approximately 5 times faster than that with-
out GFBMD in the case of p = 7 and m = 256. This is
related to the complexity of additions and multiplications of
polynomials on GFBMDs. Generally, the addition and mul-
tiplication of polynomials represented by the list have com-
plexity O(NM), where N and M are the numbers of terms
in the given two polynomials, respectively. However, the
conventional *BMDs have worst-case complexities of ad-
dition and multiplication, which increase linearly and ex-
ponentially with the number of variables, respectively, and
GFBMDs would have the same complexities. However, as
demonstrated by Bryant [8], these exponential cases do not
always appear in practical applications. Furthermore, most
polynomials that may appear during verification have reg-
ularities; thus, they can be factorized according to the de-
composition shown in Eq. (15). As a result, the complex-
ity of addition and multiplication using GFBMDs is smaller
than that of the straightforward list representation. In fact,
Table 3 also supports the above considerations.

We also describe the results for the case where the
characteristic p is two. At p = 2, the proposed method
is the same as the conventional method for GF arithmetic
circuits [13]. Therefore, for the characteristic of 2, the per-
formance of our method should be comparable to that of
the conventional method. However, our method is 10 times
slower than the conventional best method [13]. One of the
reasons is that a very fast open-source library, the Colorado
University Decision Diagram (CUDD), cannot be used to
implement GFBMDs because the data structure provided
by CUDD to represent DDs cannot handle the weighted
edges of GFBMDs. Therefore, in these experiments, we
implemented GFBMDs with C++ from scratch without op-
timizing our library to the same level as CUDD. Therefore,
the GFBMD-based verification can potentially be 10 times
faster than the results shown in Table 3, if it receives suffi-
cient optimization.

Finally, we discuss the applicability of the conventional

non-hierarchical method, such as in [13], to the verification
problem addressed in this study. The conventional method
uses a polynomial ring over F2 to represent the netlist func-
tionality. Thus, if the polynomial that represents a circuit
specification over F2 has a considerable number of terms,
it is not applicable to the circuit. As an example, Table 4
shows the maximum number of terms of the specification of
GF multipliers with multiple-valued characteristics. From
the table, we can confirm that the number of terms increases
exponentially when the characteristic is larger than two.
This indicates that the application of the conventional non-
hierarchical method to GF arithmetic circuits with multiple-
valued characteristics is difficult in practice, even with op-
timization techniques such as ZDD manipulation, as shown
in [13].

5. Conclusions

In this study, we presented a novel formal method to verify
GF arithmetic circuits with multiple-valued characteristics
on the basis of computer algebra. In the proposed method,
the polynomial ring over Fp is used instead of F2, which was
used in previous methods, to perform equivalence checking
with less computational time and a smaller memory size.
The new algorithm proposed in this study efficiently per-
formed the polynomial reduction using the Gröbner basis,
even for GFs with multiple-valued characteristics. In ad-
dition, we introduce an extension of ZDDs to efficiently
perform polynomial reductions. We experimentally demon-
strated that our method can verify large GF arithmetic cir-
cuits, such as a GF multiplier with a characteristic of seven
and extension degree of 256.

The investigation of a new type of decision diagram
that can efficiently represent a polynomial with a high de-
gree should be considered in future work because some
practical circuits may have redundant representations, which
may generate high-degree polynomials during verification.

References

[1] E. Savas and C.K. Koc, “Finite field arithmetic for cryptography,”
IEEE Circuits and Systems Magazine, vol.10, no.2, pp.40–56, Sec-
ondquarter 2010.

[2] I. Duursma and H.S. Lee, “Tate pairing implementation for hyper-
elliptic curves y2 = xp − x + d,” Advances in Cryptology - ASI-
ACRYPT 2003, ed. C.S. Laih, Lect. Notes Comput. Sci., vol.2894,
pp.111–123, Springer, Berlin, Heidelberg, 2003.

[3] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.Y. Yang,
“High-speed high-security signatures,” J. Cryptographic Engineer-
ing, vol.2, no.2, pp.77–89, Sept. 2012.

[4] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the
Weil Pairing,” J. Cryptology, vol.17, no.4, pp.297–319, Sept. 2004.

[5] I. Duursma and K. Sakurai, “Efficient algorithms for the jacobian

http://dx.doi.org/10.1109/MCAS.2010.936785
http://dx.doi.org/10.1109/MCAS.2010.936785
http://dx.doi.org/10.1109/MCAS.2010.936785
http://dx.doi.org/10.1007/978-3-540-40061-5_7
http://dx.doi.org/10.1007/978-3-540-40061-5_7
http://dx.doi.org/10.1007/978-3-540-40061-5_7
http://dx.doi.org/10.1007/978-3-540-40061-5_7
http://dx.doi.org/10.1007/s13389-012-0027-1
http://dx.doi.org/10.1007/s13389-012-0027-1
http://dx.doi.org/10.1007/s13389-012-0027-1
http://dx.doi.org/10.1007/s00145-004-0314-9
http://dx.doi.org/10.1007/s00145-004-0314-9
http://dx.doi.org/10.1007/978-3-642-57189-3_6

ITO et al.: AN ALGEBRAIC APPROACH TO VERIFYING GALOIS-FIELD ARITHMETIC CIRCUITS WITH MULTIPLE-VALUED CHARACTERISTICS
1091

variety of hyperelliptic curves y2 = xp − x + 1 over a finite field
of odd characteristic p,” Coding Theory, Cryptography and Related
Areas, ed. J. Buchmann, T. Høholdt, H. Stichtenoth, and H. Tapia-
Recillas, Berlin, Heidelberg, pp.73–89, Springer, 2000.

[6] E. Lee, H.S. Lee, and Y. Lee, “Eta pairing computation on general
divisors over hyperelliptic curves y2 = xp − x + d,” J. Symbolic
Computation, vol.43, no.6, pp.452–474, June 2008.

[7] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner Basis Reduc-
tions for Formal Verification of Galois Field Arithmetic Circuits,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.32, no.9,
pp.1409–1420, Sept. 2013.

[8] R.E. Bryant and Y.A. Chen, “Verification of Arithmetic Circuits
with Binary Moment Diagrams,” Design Automation Conference,
pp.535–541, Jan. 1995.

[9] R. Drechsler and D. Sieling, “Binary decision diagrams in theory
and practice,” International J. Software Tools for Technology Trans-
fer, vol.3, no.2, pp.112–136, May 2001.

[10] J. Jain, J. Bitner, M.S. Abadir, J.A. Abraham, and D.S. Fussell,
“Indexed BDDs: Algorithmic advances in techniques to represent
and verify Boolean functions,” IEEE Trans. Comput., vol.46, no.11,
pp.1230–1245, Nov. 1997.

[11] B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener, “Hierarchy the-
orems for kOBDDs and kIBDDs,” Theoretical Computer Science,
vol.205, no.1, pp.45–60, Sept. 1998.

[12] B. Becker, R. Drechsler, and R. Werchner, “On the relation be-
tween BDDs and FDDs,” LATIN ’95: Theoretical Informatics, ed.
R. Baeza-Yates, E. Goles, and P.V. Poblete, Lect. Notes Comput.
Sci., vol.911, pp.72–83, Springer, Berlin, Heidelberg, 1995.

[13] U. Gupta, P. Kalla, and V. Rao, “Boolean Gröbner Basis Reductions
on Finite Field Datapath Circuits Using the Unate Cube Set Alge-
bra,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.38,
no.3, pp.576–588, March 2019.

[14] A. Ito, R. Ueno, and N. Homma, “Efficient Formal Verification
of Galois-Field Arithmetic Circuits Using ZDD Representation of
Boolean Polynomials,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., in press.

[15] N. Homma, K. Saito, and T. Aoki, “A formal approach to designing
cryptographic processors based on g f (2m) arithmetic circuits,” IEEE
Trans. Inf. Forensics Security, vol.7, no.1, pp.3–13, Feb. 2012.

[16] A. Ito, R. Ueno, and N. Homma, “Effective Formal Verification for
Galois-field Arithmetic Circuits with Multiple-Valued Characteris-
tics,” 2020 IEEE 50th Int. Symp. Multiple-Valued Logic (ISMVL),
pp.46–51, Nov. 2020.

[17] N. Homma, K. Saito, and T. Aoki, “Toward Formal Design of Prac-
tical Cryptographic Hardware Based on Galois Field Arithmetic,”
IEEE Trans. Comput., vol.63, no.10, pp.2604–2613, Oct. 2014.

[18] R. Ueno, N. Homma, Y. Sugawara, and T. Aoki, “Formal Approach
for Verifying Galois Field Arithmetic Circuits of Higher Degrees,”
IEEE Trans. Comput., vol.66, no.3, pp.431–442, March 2017.

[19] R. Ueno, N. Homma, and T. Aoki, “Automatic Generation System
for Multiple-Valued Galois-Field Parallel Multipliers,” IEICE Trans.
Inf. & Syst., vol.E100-D, no.8, pp.1603–1610, Aug. 2017.

[20] C. Yu and M. Ciesielski, “Formal Analysis of Galois Field Arith-
metic Circuits-Parallel Verification and Reverse Engineering,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.38, no.2,
pp.354–365, Feb. 2019.

[21] S.i. Minato, “Zero-suppressed BDDs for set manipulation in com-
binatorial problems,” Proc. 30th International Design Automation
Conference, pp.272–277, July 1993.

[22] S.i. Minato, “Zero-suppressed BDDs and their applications,” In-
ternational J. Software Tools for Technology Transfer, vol.3, no.2,
pp.156–170, May 2001.

[23] D. Miller and R. Drechsler, “On the construction of multiple-valued
decision diagrams,” Proceedings 32nd IEEE Int. Symp. Multiple-
Valued Logic, pp.245–253, May 2002.

[24] A. Jabir and D. Pradhan, “MODD: A new decision diagram and
representation for multiple output binary functions,” Automation

and Test in Europe Conference and Exhibition Proceedings Design,
pp.1388–1389 vol.2, Feb. 2004.

[25] R. Stankovic, “Functional decision diagrams for multiple-valued
functions,” Proceedings 25th Int. Symp. Multiple-Valued Logic,
pp.284–289, May 1995.

[26] T. Pruss, P. Kalla, and F. Enescu, “Efficient Symbolic Computation
for Word-Level Abstraction From Combinational Circuits for Verifi-
cation Over Finite Fields,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol.35, no.7, pp.1206–1218, July 2016.

[27] R. Bryant and Y.a. Chen, “Verification of Arithmetic Functions with
Binary Moment Diagrams,” Technical Report CMUCS, May 1994.

Akira Ito received the B.E. degree in infor-
mation engineering and the M.S. degree in infor-
mation sciences from Tohoku University, Japan,
in 2017, and 2019, respectively. He is currently
enrolled in a doctoral course at Tohoku Univer-
sity. His research interests include arithmetic
circuits, formal verification, and hardware secu-
rity.

Rei Ueno received the B.E. degree in in-
formation engineering and the M.S. and Ph.D.
degrees in information sciences from Tohoku
University, Japan, in 2013, 2015, and 2018, re-
spectively. He is an Assistant Professor at the
Research Institute of Electrical Communication,
Tohoku University, and is also joining the JST
as a researcher for a PRESTO project. His re-
search interests include arithmetic circuits, cryp-
tographic implementations, formal verification,
and hardware security. Dr. Ueno received the

Kenneth C. Smith Early Career Award in Microelectronics at ISMVL 2017.

Naofumi Homma received the B.E. de-
gree in information engineering, and the M.S.
and Ph.D. degrees in information sciences from
Tohoku University, Sendai, Japan, in 1997,
1999, and 2001, respectively. From 2001 to
2009, he was an Assistant Professor at the Grad-
uate School of Information Sciences at Tohoku
University, and he became an Associate Profes-
sor at the same department in 2009. Since 2016,
he has been a Professor at the Research Insti-
tute of Electrical Communication, Tohoku Uni-

versity. During 2009–2010 and 2016–2017, he was a Visiting Professor at
Telecom ParisTech in Paris, France. His research interests include com-
puter arithmetic, electronic design automation methodology, and hardware
security. He received an IP Award at the LSI IP Design Award in 2005,
the Best Paper Award at the Workshop on Synthesis and System Integra-
tion of Mixed Information Technologies in 2007, the RIEC Award in 2012,
the Best Symposium Paper Award at the 2013 IEEE International Sympo-
sium on Electromagnetic Compatibility, the Best Paper Award at the 2014
IACR Conference on Cryptographic Hardware and Embedded Systems, the
Japan Society for the Promotion of Society Prize in 2018, and the German
Innovation Award in 2018.

http://dx.doi.org/10.1007/978-3-642-57189-3_6
http://dx.doi.org/10.1007/978-3-642-57189-3_6
http://dx.doi.org/10.1016/j.jsc.2007.07.010
http://dx.doi.org/10.1016/j.jsc.2007.07.010
http://dx.doi.org/10.1016/j.jsc.2007.07.010
http://dx.doi.org/10.1109/TCAD.2013.2259540
http://dx.doi.org/10.1109/TCAD.2013.2259540
http://dx.doi.org/10.1109/TCAD.2013.2259540
http://dx.doi.org/10.1109/TCAD.2013.2259540
http://dx.doi.org/10.1145/217474.217583
http://dx.doi.org/10.1145/217474.217583
http://dx.doi.org/10.1145/217474.217583
http://dx.doi.org/10.1007/s100090100056
http://dx.doi.org/10.1007/s100090100056
http://dx.doi.org/10.1007/s100090100056
http://dx.doi.org/10.1109/12.644298
http://dx.doi.org/10.1109/12.644298
http://dx.doi.org/10.1109/12.644298
http://dx.doi.org/10.1109/12.644298
http://dx.doi.org/10.1016/S0304-3975(97)00034-0
http://dx.doi.org/10.1016/S0304-3975(97)00034-0
http://dx.doi.org/10.1016/S0304-3975(97)00034-0
http://dx.doi.org/10.1007/3-540-59175-3_82
http://dx.doi.org/10.1007/3-540-59175-3_82
http://dx.doi.org/10.1007/3-540-59175-3_82
http://dx.doi.org/10.1007/3-540-59175-3_82
http://dx.doi.org/10.1109/TCAD.2018.2818726
http://dx.doi.org/10.1109/TCAD.2018.2818726
http://dx.doi.org/10.1109/TCAD.2018.2818726
http://dx.doi.org/10.1109/TCAD.2018.2818726
http://dx.doi.org/10.1109/TCAD.2021.3059924
http://dx.doi.org/10.1109/TCAD.2021.3059924
http://dx.doi.org/10.1109/TCAD.2021.3059924
http://dx.doi.org/10.1109/TCAD.2021.3059924
http://dx.doi.org/10.1109/TIFS.2011.2157687
http://dx.doi.org/10.1109/TIFS.2011.2157687
http://dx.doi.org/10.1109/TIFS.2011.2157687
http://dx.doi.org/10.1109/ISMVL49045.2020.00-31
http://dx.doi.org/10.1109/ISMVL49045.2020.00-31
http://dx.doi.org/10.1109/ISMVL49045.2020.00-31
http://dx.doi.org/10.1109/ISMVL49045.2020.00-31
http://dx.doi.org/10.1109/TC.2013.131
http://dx.doi.org/10.1109/TC.2013.131
http://dx.doi.org/10.1109/TC.2013.131
http://dx.doi.org/10.1109/TC.2016.2603979
http://dx.doi.org/10.1109/TC.2016.2603979
http://dx.doi.org/10.1109/TC.2016.2603979
http://dx.doi.org/10.1587/transinf.2016LOP0010
http://dx.doi.org/10.1587/transinf.2016LOP0010
http://dx.doi.org/10.1587/transinf.2016LOP0010
http://dx.doi.org/10.1109/TCAD.2018.2808457
http://dx.doi.org/10.1109/TCAD.2018.2808457
http://dx.doi.org/10.1109/TCAD.2018.2808457
http://dx.doi.org/10.1109/TCAD.2018.2808457
http://dx.doi.org/10.1145/157485.164890
http://dx.doi.org/10.1145/157485.164890
http://dx.doi.org/10.1145/157485.164890
http://dx.doi.org/10.1007/s100090100038
http://dx.doi.org/10.1007/s100090100038
http://dx.doi.org/10.1007/s100090100038
http://dx.doi.org/10.1109/ISMVL.2002.1011095
http://dx.doi.org/10.1109/ISMVL.2002.1011095
http://dx.doi.org/10.1109/ISMVL.2002.1011095
http://dx.doi.org/10.1109/DATE.2004.1269101
http://dx.doi.org/10.1109/DATE.2004.1269101
http://dx.doi.org/10.1109/DATE.2004.1269101
http://dx.doi.org/10.1109/DATE.2004.1269101
http://dx.doi.org/10.1109/ISMVL.1995.513544
http://dx.doi.org/10.1109/ISMVL.1995.513544
http://dx.doi.org/10.1109/ISMVL.1995.513544
http://dx.doi.org/10.1109/TCAD.2015.2501301
http://dx.doi.org/10.1109/TCAD.2015.2501301
http://dx.doi.org/10.1109/TCAD.2015.2501301
http://dx.doi.org/10.1109/TCAD.2015.2501301

