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Construction of Ternary Bent Functions by FFT-Like Permutation
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SUMMARY Binary bent functions have a strictly specified number of
non-zero values. In the same way, ternary bent functions satisfy certain re-
quirements on the elements of their value vectors. These requirements can
be used to specify six classes of ternary bent functions. Classes are mu-
tually related by encoding of function values. Given a basic ternary bent
function, other functions in the same class can be constructed by permu-
tation matrices having a block structure similar to that of the factor matri-
ces appearing in the Good-Thomas decomposition of Cooley-Tukey Fast
Fourier transform and related algorithms.
key words: ternary functions, bent functions, Vilenkin-Chrestenson trans-
form, fast Fourier transform, permutation matrices

Various approaches to the generalization of the con-
cept of bentness from binary to p-valued functions are a
subject of research by many authors, see, for example,
[1], [4], [6], [7], [13], [14], [16], [17]. The reason for study
generalized bent functions is twofold. First, they are in-
teresting mathematical objects offering many challenging
problems some of them analogous to these in the case of
binary bent functions, as generation, characterization, clas-
sification, and counting bent functions. Although initial def-
initions of generalized bent functions are rather straightfor-
ward generalizations of the concepts from the theory of bi-
nary bent functions, a further study of them immediately
leads to drastically different properties, which raises new
challenges, as will be pointed out in the following discus-
sions of ternary bent functions. Then, there are some practi-
cal applications of ternary bent functions [6], [18]. Further,
there are interesting relationships to certain important con-
cepts in mathematics and engineering [2], [3], [14], [19].

Research reported in this paper is based upon the two
following properties of bent functions and related obser-
vations. First, in the binary case, there is a precisely de-
termined number of non-zero values a bent function can
take [1], [17]. It is similar for ternary bent functions, but a
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particular distribution of function values in the value vector
is required.

Second, in the binary case, given a bent function f , the
function f1 obtained by adding any affine function to f is
also bent. Recall that the affine functions are defined as lin-
ear functions and their complements. Thus, adding a linear
combination of variables and the constant 1 to a binary bent
function preserves the bentness [17]. It is similar for ternary
functions, however, in this case, certain linear combinations
of variables as well as their squares and products of vari-
ables can be added to a bent function while preserving the
bentness [6]. Moreover, these linear combinations have co-
efficients in the set {0, 1, 2}. Thus, the multiplication by 2 of
variables and their squares as well as products of variables
is allowed under certain restrictions pointed out below and
further, any of the constants 1 and 2 can be added. This
includes multiplication of the given bent function by 2.

We use the property that functions in a set of functions
with the same distribution of function values are mutually
related by permutations of elements of their value vectors
to construct new bent functions from a given bent func-
tion viewed as a representative of the considered set of bent
functions. We show that permutation matrices relating these
functions can be derived by an analogy to the matrices de-
termining steps in the Cooley-Tukey Fast Fourier transform
(FFT) and related algorithms. In this way, given a bent func-
tion f with a specified distribution of its values, new bent
functions with the same distribution can be constructed by
the multiplication of the value vector F of f with these FFT-
like permutation matrices.

1. Ternary Bent Functions

Ternary bent functions are a subset of ternary functions
f : {0, 1, 2}n → {0, 1, 2}, where n is the number of vari-
ables, having flat Vilenkin-Chrestenson spectra [6]. In this
context, flat spectrum means the spectrum whose elements
have equal absolute values 3n/2 [8]. This can be viewed as
the minimal maximum value a Vilenkin-Chrestenson coef-
ficient can take. The largest absolute value of a Vilenkin-
Chrestenson coefficient is 3n and it is for the linear ternary
functions, since they are isomorphic with the Vilenkin-
Chrestenson functions, and then this property follows from
the orthogonality. In this case, all other coefficients are 0.
The minimal maximum value is obtained when it is equally
distributed over all the coefficients and the spectrum is flat.

Copyright c⃝ 2021 The Institute of Electronics, Information and Communication Engineers
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To achieve the flatness, some restrictions on the values
a function can take are necessary imposed. This leads to the
concepts of composition and distribution of function values
in the function vectors of bent functions.

In the case of binary bent functions, the number of non-
zero values is either 2n−1 − 2n/2−1 or 2n−1 + 2n/2−1, where n
is the number of variables. Due to this, all bent functions
for a given n can be split into two sets σ1 and σ2 of equal
cardinalities consisting of bent functions with equal number
of non-zero values. Given a set of bent functions, either σ1

or σ2, the other set consists of bent functions that are their
complements. Thus, if we generate a set, the other is ob-
tained by complementing its elements, which can be viewed
as different encoding of function values (0, 1) → (1, 0).
These considerations can be extended to ternary bent func-
tions.

In the value vector of a ternary bent function, except
for n = 1, all three values, conveniently denoted as {0, 1, 2},
should be present. In this case, certain requirements on the
number of different values a bent function can take from the
set {0, 1, 2} must be satisfied.

For a ternary bent function, the composition is defined
as a triple C = (c0, c1, c2) where ci, i = {0, 1, 2}, represents
how many times the value i appears in its value vector. Thus,
two bent functions with the same composition differ mutu-
ally up to the permutation of elements in their value vectors.
The distribution of values in the value vector of a bent func-
tion D = (d1, d2, d3) is defined as composition with permu-
tation of its elements allowed. Therefore, two bent functions
with the same distribution differ up to the encoding of their
values.

Compositions specify how many time each value (of
the ordered value set) appear in a value vector. Distributions
specify how many times different values (of the value set)
appear in a value vector, but do not specify which values are
repeated. This is why distributions, in a way, represent all
possible permutations of compositions. They represent the
”structure” of the value vectors in a rather ”abstract” general
way.

For instance, a single variable ternary bent function
must have two identical values, while the third value is dif-
ferent. This is expressed as the distribution D = (0, 1, 2)
for n = 1. This means, a value appears twice, another a
single time, and the third value is absent. Unlike the com-
position, the distribution does not specify how many times a
particular value appears. Therefore, functions with different
compositions can have the same distribution.

For the case n = 2, a possible distribution of values
is (5, 2, 2) meaning that all three values must be present in
the value vector, two of them repeating two times, while the
third value repeats 5 times. Adding a constant to a ternary
bent function, preserves its bentness, but, changes the com-
position it has. For instance, given a function with compo-
sition (5, 2, 2), adding the constant 1 changes its composi-
tion into (2, 5, 2), while adding the constant 2 results into a
function with the composition (2, 2, 5). These three func-
tions with different compositions have the same distribution

of function values. Another possible distribution for ternary
bent functions in two variables is (1, 4, 4).

For n = 3, bent functions have the distribution
(12, 9, 6). By experiments we could not find a ternary bent
function in three variables with other distribution and, there-
fore, we conjecture that for odd n, there is a single dis-
tribution of function values in the value vectors of bent
functions. The functions f (x1, x2, x3) = x1x2 ⊕ x2

3 and
f (x1, x2, x3) = x2

1 ⊕ x2
2 ⊕ x2

3 have this distribution of func-
tion values.

For n = 4, there are again two distributions (33, 24, 24)
and (21, 30, 30). Examples of functions with these distribu-
tions are f (x1, x2, x3, x4) = x1x2⊕x3x4 and f (x1, x2, x3, x4) =
x2

1 ⊕ x2
2 ⊕ x2

3 ⊕ x2
4, respectively.

For n = 5, the distribution is (72, 81, 90) for both basic
bent functions, the sum of disjoint products of variables with
the square of a variable, and the sum of squares of variables.
Thus, representative functions are f (x1, x2, x3, x4, x5) =
x1x2⊕x3x4⊕x2

5 and f (x1, x2, x3, x4, x5) = x2
1⊕x2

2⊕x3
3⊕x2

4⊕x2
5.

For n = 6, there are two distributions (225, 252, 252),
and (261, 234, 234). The example for the first distribution is
the function f (x1, x2, x3, x4, x5, x6) = x1x2⊕ x3x4⊕ x5x6. For
the other distribution an example is f (x1, x2, x3, x4, x5, x6) =
x2

1 ⊕ x2
2 ⊕ x2

3 ⊕ x2
4 ⊕ x2

5 ⊕ x2
6.

For n = 7, there is a single distribution (702, 729, 756).
This is the same distribution for both basic bent functions,
the sum of disjoint products of variables with the square of
a variable, and the sum of squares of variables.

We conjecture that for ternary bent functions there are a
single and two distributions for n odd and even, respectively.
The reason for the existence of two distributions for n even
is to have 6 possible encodings in the cases when two values
appear an equal number of times.

In [12], it is shown that for n even and p prime, the
value distribution of a bent function f : Zn

p → Zp is
(b0, b1, . . . , bp−1), where

b0 = pn−1 ± (p − 1)p
n
2−1,

bk = pn−1 ∓ p
n
2−1,

for k = 1, 2, . . . , p − 1, or its cyclic shift. Here the ± signs
are taken correspondingly. The above examples satisfy this
formula for p = 3. In [12], the case for n odd is not consid-
ered.

For n odd, from the above examples follows that the
general formula for distribution of function values in the
function vectors of ternary bent functions, i.e., for p = 3,
is

b0 = 3n−1,

bk = 3n−1 ± 3
(n−1)

2 .

It can be observed that for a given n ternary bent func-
tions with the same distribution of ternary values mutually
differ in the position of particular values in the value vector.
Therefore, relationships between functions with equal distri-
butions can be expressed by permutation matrices. Ternary
bent functions for any n can be split into six classes with
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respect to the encoding. Functions in different classes differ
up to the encoding of their values. If we construct ternary
bent functions in a class, the corresponding functions in the
other five classes can be derived by encoding. For each dis-
tribution a representative function can be selected. For a dis-
tribution, and n even, the function with the quadratic form
as a generalized Reed-Muller expression is selected as the
representative. Thus, this functional expression is the sum
of disjoint products of pairs of variables. For n odd, we se-
lect this function with the square of a variable added, and
the function that is represented by the sum of squares of all
variables for two possible distributions.

2. Fast Fourier Transform and Bent Functions

As noticed above, bent functions are alternatively defined
as functions with flat spectra. For functions defined on fi-
nite domains, the spectra can be computed by using the fast
computing algorithms. For completeness of the presentation
and also for clarifying the analogy between the permutation
matrices relating bent functions possessing equal distribu-
tions with the Fast Fourier transform (FFT), in this section
we present the essential ideas behind these algorithms.

The spectral transforms for p-valued functions in n-
variables are defined by (pn × pn) matrices. If for a trans-
form, the transform matrix can be factorized into the product
of n sparse (pn × pn) matrices, then a fast algorithm can be
formulated. In particular, if the transform matrix has the
Kronecker product structure, then we speak of the Good-
Thomas factorization and the corresponding algorithm is
called the Cooley-Tukey FFT [5], [11], [15]. The algorithm
consists of n steps, in each of them performing the partial
spectral transform with respect to the corresponding vari-
able [5]. Thus, in each step computations to be performed
are determined by the basic (p× p) transform matrix. In this
factorization, the matrix defining the i-th step of the algo-
rithm is the Kronecker product of the basic transform ma-
trix at the i-th position and the (p × p) identity matrices in
all other positions.

The Vilenkin-Chrestenson transform that is used to
check bentness of ternary functions in n variables is defined
by a (3n × 3n) transform matrix with the Kronecker product
structure

V(n) =
n⊗

i=1

(V(1)), V(1) =

 1 1 1
1 e2 e1

1 e1 e2

 ,
where e1 = − 1

2 (1 − i
√

3), e2 = − 1
2 (1 + i

√
3), and ⊗ denotes

the Kronecker product.
In Good-Thomas factorization,

V(n) =
n∏

i=1

Ci, Ci =

n⊗
j=1

A j, A j =

{
V(1), j = i,
I(1), j , i.

and I(1) is the (3 × 3) identity matrix.

Example 1: In Good-Thomas factorization, the Vilenkin-
Chrestenson transform for functions in two variables can be

factorized as V(2) = C1C2 where

C1 = V(1) ⊗ I(1), C2 = I(1) ⊗ V(1).

The flow-graph of the corresponding fast computing algo-
rithm is shown by black lines in the figures below.

3. Classes of Ternary Bent Functions

For n = 1 there are 18 bent functions. Their value vectors
have two identical values, while the third value is different.
Thus, the distribution of values is (0, 1, 2). The composi-
tions of their value vectors are different, but the distribution
is the same for all these functions. We arrange these func-
tions into 6 classes as in Table 1. A class consists of func-
tions with the same composition, and classes are related by
encoding as in Table 2.

It follows, that there is a single function f (x) =
x2 where the square is modulo 3, which produces F =

[0, 1, 1]T , as the first function in the class c1. The other two
functions are obtained by the cyclic shift for 1-place. The
other 5 classes are obtained from the class c1 as explained
in Table 1.

Classes c2, c3, c4, c5, and c6 can be derived from c1 by
encoding of function values as shown in Table 2.

Functions within a class are mutually related by permu-
tations since they have the same compositions. The possible
(3 × 3) permutation matrices converting these functions to
each other are

Q1 =

 0 1 0
1 0 0
0 0 1

 , Q2 =

 1 0 0
0 0 1
0 1 0

 ,

X1 =

 0 0 1
1 0 0
0 1 0

 , N1 =

 0 0 1
0 1 0
1 0 0

 .
If elements of the class c1 are denoted as f1, f2, and f3,

then the conversion among them is as specified in Table 3.
Transposed matrices give the transition in the opposite di-
rections.

Table 1 Classes of ternary bent functions for n = 1.

Class Functions Composition Relationship
c1 [0,1,1], [1,0,1], [1,1,0] (1,2,0) c1 = x2, cyclic shift
c2 [0,2,2], [2,0,2], [2,2,0] (1,0,2) c2 = 2c1

c3 [1,0,0], [0,1,0], [0,0,1] (2,1,0) c3 = 2c1 ⊕ 1
c4 [2,0,0], [0,2,0], [0,0,2] (2,0,1) c4 = c1 ⊕ 2
c5 [2,1,1], [1,2,1], [1,1,2] (0,2,1) c5 = 2c1 ⊕ 2
c6 [1,2,2], [2,1,2], [2,2,1] (0,1,2) c6 = c1 ⊕ 1

Table 2 Encoding of function values for ternary bent functions.

Classes Encoding
c1 and c2 1↔ 2
c1 and c3 0↔ 1
c1 and c4 0→ 2 and 1→ 0 and 2→ 1
c1 and c5 0↔ 2
c1 and c6 0→ 1 and 1→ 2 and 2→ 0
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Table 3 Conversion between the elements of a class.

Matrix Functions
Q1 f1 → f2
Q2 f2 → f3
X1 f1 → f2, f2 → f3
XT

1 f1 → f3
N1 f1 → f3

Functional expressions for these functions are

f1 = x2, f2 = 1 ⊕ x ⊕ x2, f3 = 1 ⊕ 2x ⊕ x2.

Comparing the functional expressions for the initial func-
tions and functions that are produced by the multiplication
with the considered basic permutation matrices it follows
that they perform the following substitutions.

The matrix Q1 performs the substitution x → 2x ⊕
1. When applied to the function with the function vector
[0, 1, 1] of f1, it produces the function vector of f2 which is
[1, 0, 1]. Comparing the functional expressions for f1 = x2

and f2 = 1⊕ x⊕ x2, we see the substitution that is performed
by Q1. The matrix Q2 performs the substitution x → 2x.
The matrix X1 performs the addition of the constant 2 mod-
ulo 3, i.e., the substitution x → x ⊕ 2. The transpose of
this matrix XT

1 performs addition of the constant 1 modulo
3, i.e., the substitution x → x ⊕ 1. The complement for
p-valued variables is defined as (p − 1 − xi) mod 3, which
for ternary variables is (2 − xi) mod 3. In matrix notation,
the complement is performed by the matrix N1. Notice that
N1Q1 = Q2N1 = X1. This is the substitution x→ 2x ⊕ 2.

It should be noticed that these (3 × 3) permutation ma-
trices perform spectral invariant operations for n = 1 and,
therefore, preserve bentness. In other words, for a given
bent function f , 5 other bent functions can be derived, f ⊕1,
2 f , f ⊕ 2, 2 f ⊕ 1, and 2 f ⊕ 2. These functions are related by
encoding.

4. Ternary Bent Functions in Two Variables

There are 486 ternary bent function in two variables as de-
termined by a computer search. Two thirds of these func-
tions, i.e., 324 functions, have composition of values either
(5, 2, 2), (2, 5, 2), or (2, 2, 5), while the remaining 162 func-
tions have the compositions (1, 4, 4), (4, 1, 4), or (4, 4, 1).
Therefore, ternary bent functions in two variables can be
split into two sets with respect to their distributions, since
compositions with permuted values belong to the same dis-
tribution D. These are sets of functions with distributions
(5, 2, 2) and (1, 4, 4), respectively.

Example 2: The functions f1 = x1x2 and f2 = x2
1 ⊕ x2

2
have compositions (5, 2, 2) and (1, 4, 4), respectively, since
their value vectors are Fx1 x2 = [0, 0, 0, 0, 1, 2, 0, 2, 1]T , and
Fx2

1⊕x2
2
= [0, 1, 1, 1, 2, 2, 1, 2, 2]T .

We use functions f1 and f2 in Example 2 as basic bent
functions representing sets of bent functions with composi-
tions (5, 2, 2) and (1, 4, 4) and related distributions. As in
the case of ternary bent functions for n = 1, we split the

set of all 486 ternary bent functions in two variables into
6 classes. Each class consists of 81 functions such that
2/3 of functions, i.e., 54 functions, share the distribution
(5, 2, 2), while 1/3 of functions, 27 of them, have the distri-
bution (1, 4, 4). We further deal with the class of 81 func-
tions derived from the representatives of both distributions
f1 = x1x2 and f2 = x1 ⊕ x2. The other 5 classes, each with
81 functions, are obtained by encoding shown in Table 2.
In this way we can construct all 81 + 5 · 81 = 486 ternary
bent functions in two variables. In order to construct these
functions from f1 and f2, we recall the following. In the
binary case, adding affine functions to a bent function pro-
duces functions that are also bent. In the ternary case, it is
possible to add variables, squares of variables, and their lin-
ear combinations. It is important to notice that we should
stay within the sets of functions with the same distribution,
and due to this, adding x2

1 ⊕ x2
2 and 2x2

1 ⊕ 2x2
2 to f1 is not al-

lowed, unlike adding 2x2
1⊕x2

2 and x2
1⊕2x2

2. The reason is that
these terms viewed as particular ternary functions belong to
the distribution corresponding to f2. Similarly, adding the
terms that will convert f2 into a function with the distribu-
tion for f1 is not allowed.

Table 4 and Table 5 show the 54 functions derived from
the basic function f1 = x1x2, and 27 functions derived from
f2 = x2

1 ⊕ x2
2, respectively. The meaning of matrices in the

rightmost column is explained below.

5. Permutation Matrices

For a given bent function with a particular distribution of
values, the addition of terms as specified in Tables 4 and 5,
produces another bent function with the same distribution of
function values. Therefore, these two functions differ in per-
mutation of elements of their value vectors. In other words,
the addition of terms to f1 and f2, respectively, which can
be seen in the left part of these tables, can be expressed by
permutation matrices shown in the right part.

We consider three types of permutation matrices, all of
them related to the factor matrices describing steps of FFT
algorithms. These matrices are naturally related to spectral
invariant operations, since permute but do not change val-
ues of spectral coefficients. At the same time, as in the case
of application of spectral invariant operations to bent func-
tions, multiplication of function vectors by these permuta-
tion matrices results in adding particular terms to functional
expressions of processed functions. These are terms which
are allowed to be added to a bent function and preserve its
bentness.

5.1 Kronecker Product Representable Matrices

The addition of x1 to the function in two variables f1 = x1x2

can be expressed as multiplication of the value vector F1 by
the permutation matrix

P1 = I(1) ⊗ XT
1 ,

where I(1) is the (3× 3) identity matrix and XT
1 is as defined
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Table 4 Bent functions with distribution (5, 2, 2).

F = x1 x2 (5, 2, 2)

F = x1 x2 ⊕ x1 P1

F = x1 x2 ⊕ x2 P2

F = x1 x2 ⊕ 2x1 P1P1

F = x1 x2 ⊕ 2x2 P2P2

F = x1 x2 ⊕ x1 ⊕ x2 ⊕ 1 P1P2

F = x1 x2 ⊕ 2x1 ⊕ x2 ⊕ 2 P1P1P2

F = x1 x2 ⊕ x1 ⊕ 2x2 ⊕ 2 P1P2P2

F = x1 x2 ⊕ 2x1 ⊕ 2x2 ⊕ 1 P1P1P2P2

F = x1 x2 ⊕ (x1)2 P1,2

F = x1 x2 ⊕ x1 ⊕ (x1)2 P1P1,2

F = x1 x2 ⊕ x2 ⊕ (x1)2 ⊕ 2 P1P2P1,2

F = x1 x2 ⊕ 2x1 ⊕ (x1)2 P1P1P1,2

F = x1 x2 ⊕ 2x2 ⊕ (x1)2 ⊕ 2 P1P1P2P2P1,2

F = x1 x2 ⊕ x1 ⊕ x2 ⊕ (x1)2 P1P1P2P2P1,2

F = x1 x2 ⊕ 2x1 ⊕ x2 ⊕ (x1)2 ⊕ 1 P2P1,2

F = x1 x2 ⊕ x1 ⊕ 2x2 ⊕ (x1)2 ⊕ 1 P2P2P1,2

F = x1 x2 ⊕ 2x1 ⊕ 2x2 ⊕ (x1)2 P1P2P2P1,2

F = x1 x2 ⊕ (x2)2 P2,2

F = x1 x2 ⊕ x1 ⊕ (x2)2 ⊕ 2 P1P2P2,2

F = x1 x2 ⊕ x2 ⊕ (x2)2 P2P2,2

F = x1 x2 ⊕ 2x1 ⊕ (x2)2 ⊕ 2 P1P1P2P2P2,2

F = x1 x2 ⊕ 2x2 ⊕ (x2)2 P2P2P2,2

F = x1 x2 ⊕ x1 ⊕ x2 ⊕ (x2)2 P1P2P2P2,2

F = x1 x2 ⊕ 2x1 ⊕ x2 ⊕ (x2)2 ⊕ 1 P1P1P2,2

F = x1 x2 ⊕ x1 ⊕ 2x2 ⊕ (x2)2 ⊕ 1 P1 · P2,2

F = x1 x2 ⊕ 2x1 ⊕ 2x2 ⊕ (x2)2 P1 · P1 · P2 · P2,2

F = x1 x2 ⊕ 2(x1)2 P1,2P1,2

F = x1 x2 ⊕ x1 ⊕ 2(x1)2 P1P1,2P1,2

F = x1 x2 ⊕ x2 ⊕ 2(x1)2 ⊕ 1 P1P1P2P1,2P1,2

F = x1 x2 ⊕ 2x1 ⊕ 2(x1)2 P1P1P1,2P1,2

F = x1 x2 ⊕ 2x2 ⊕ 2(x1)2 ⊕ 1 P1P2P2P1,2P1,2

F = x1 x2 ⊕ x1 ⊕ x2 ⊕ 2(x1)2 ⊕ 2 P2P1,2P1,2

F = x1 x2 ⊕ 2x1 ⊕ x2 ⊕ 2(x1)2 P1P2P1,2P1,2

F = x1 x2 ⊕ x1 ⊕ 2x2 ⊕ 2(x1)2 P1P1P2P2P1,2P1,2

F = x1 x2 ⊕ 2x1 ⊕ 2x2 ⊕ 2(x1)2 ⊕ 2 P2P2P1,2P1,2

F = x1 x2 ⊕ 2(x2)2 P2,2P2,2

F = x1 x2 ⊕ x1 ⊕ 2(x2)2 ⊕ 1 P1P2P2P2,2P2,2

F = x1 x2 ⊕ x2 ⊕ 2(x2)2 P2P2,2P2,2

F = x1 x2 ⊕ 2x1 ⊕ 2(x2)2 ⊕ 1 P1P1P2P2,2P2,2

F = x1 x2 ⊕ 2x2 ⊕ 2(x2)2 P2P2P2,2P2,2

F = x1 x2 ⊕ x1 ⊕ x2 ⊕ 2(x2)2 ⊕ 2 P1P2,2P2,2

F = x1 x2 ⊕ 2x1 ⊕ x2 ⊕ 2(x2)2 P1P1P2P2P2,2P2,2

F = x1 x2 ⊕ x1 ⊕ 2x2 ⊕ 2(x2)2 P1P2P2,2P2,2

F = x1 x2 ⊕ 2x1 ⊕ 2x2 ⊕ 2(x2)2 ⊕ 2 P1P1P2,2P2,2

F = 2(x1)2 ⊕ (x2)2 P1,2P2,2

F = x1 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 2 P2P1,2P2,2

F = x2 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 1 P1P1P1,2P2,2

F = x1 ⊕ x2 ⊕ 2(x1)2 ⊕ (x2)2 P1P1P2P1,2P2,2

F = 2x1 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 2 P2P2P1,2P2,2

F = 2x2 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 1 P1P1,2P2,2

F = 2x1 ⊕ x2 ⊕ 2(x1)2 ⊕ (x2)2 P1P1P2P2P1,2P2,2

F = x1 ⊕ 2x2 ⊕ 2(x1)2 ⊕ (x2)2 P1P2P1,2P2,2

F = 2x1 ⊕ 2x2 ⊕ 2(x1)2 ⊕ (x2)2 P1P2P2P1,2P2,2

Table 5 Bent functions with distribution (1, 4, 4).

(x1)2 ⊕ (x2)2 (1, 4, 4)

x1 ⊕ (x1)2 ⊕ (x2)2 ⊕ 1 P2P2

x2 ⊕ (x1)2 ⊕ (x2)2 ⊕ 1 P1P1

x1 ⊕ x2 ⊕ (x1)2 ⊕ (x2)2 ⊕ 2 P1P1P2P2

2x1 ⊕ (x1)2 ⊕ (x2)2 ⊕ 1 P2

2x2 ⊕ (x1)2 ⊕ (x2)2 ⊕ 1 P1

2x1 ⊕ x2 ⊕ (x1)2 ⊕ (x2)2 ⊕ 2 P1P1P2

x1 ⊕ 2x2 ⊕ (x1)2 ⊕ (x2)2 ⊕ 2 P1P2P2

2x1 ⊕ 2x2 ⊕ (x1)2 ⊕ (x2)2 ⊕ 2 P1P2

2x1 x2 ⊕ (x1)2 ⊕ 2(x2)2 P2,2

2x1 x2 ⊕ x1 ⊕ (x1)2 ⊕ 2(x2)2 ⊕ 2 P1P2P2,2

2x1 x2 ⊕ x2 ⊕ (x1)2 ⊕ 2(x2)2 ⊕ 1 P1P1P2P2,2

2x1 x2 ⊕ 2x1 ⊕ (x1)2 ⊕ 2(x2)2 ⊕ 2 P1P1P2P2,2

2x1 x2 ⊕ 2x2 ⊕ (x1)2 ⊕ 2(x2)2 ⊕ 1 P1P2P2P2,2

2x1 x2 ⊕ x1 ⊕ x2 ⊕ (x1)2 ⊕ 2(x2)2 ⊕ 1 P2P2P2,2

2x1 x2 ⊕ 2x1 ⊕ x2 ⊕ (x1)2 ⊕ 2(x2)2 ⊕ 2 P1P2,2

2x1 x2 ⊕ x1 ⊕ 2x2 ⊕ (x1)2 ⊕ 2(x2)2 ⊕ 2 P1P1P2,2

2x1 x2 ⊕ 2x1 ⊕ 2x2 ⊕ (x1)2 ⊕ 2(x2)2 ⊕ 1 P2P2,2

2x1 x2 ⊕ 2(x1)2 ⊕ (x2)2 P1,2

2x1 x2 ⊕ x1 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 1 P1P2P2P1,2

2x1 x2 ⊕ x2 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 2 P1P2P1,2

2x1 x2 ⊕ 2x1 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 1 P1P1P2P1,2

2x1 x2 ⊕ 2x2 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 2 P1P1P2P2P1,2

2x1 x2 ⊕ x1 ⊕ x2 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 1 P1P1P1,2

2x1 x2 ⊕ 2x1 ⊕ x2 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 2 P2P2P1,2

2x1 x2 ⊕ x1 ⊕ 2x2 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 2 P2P1,2

2x1 x2 ⊕ 2x1 ⊕ 2x2 ⊕ 2(x1)2 ⊕ (x2)2 ⊕ 1 P1P1,2

above for functions in n = 1.
In the case of function f2 = x2

1⊕ x2
2, multiplication with

P1 corresponds to adding of the term 2x2 ⊕ 1 as it can be
seen in the row 6 of Table 5.

Example 3: The function f = x2x2 has the value vector
Fx1 x2 = [0, 0, 0, 0, 1, 2, 0, 2, 1]T , while the variable x1 is rep-
resented by the value vector x1 = [0, 0, 0, 1, 1, 1, 2, 2, 2]T .
Therefore, the function vector for f = x2x2 ⊕ x1 is F =
F ⊕ x1 = [0, 0, 0, 1, 2, 0, 2, 1, 0]T . The same vector can be
obtained as

F = P1Fx1 x2 = (I(1) ⊗ XT
1 )Fx1 x2

=



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0





0
0
0
0
1
2
0
2
1


=
[

0, 0, 0, 1, 2, 0, 2, 1, 0
]T
.

Addition of x2 to f1 is expressed in matrix notation as

P2 = XT
1 ⊗ I(1).

Figures 1, 2, 3, 4, and 5 show flow-graphs of algo-
rithms for performing permutations defined by the matrices
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Fig. 1 Flow-graphs for Q1 ⊗ I(1) and I(1) ⊗Q1.

Fig. 2 Flow-graphs for Q2 ⊗ I(1) and I(1) ⊗Q2.

Fig. 3 Flow-graphs for X1 ⊗ I(1) and I(1) ⊗ X1.

Q1 ⊗ I(1), I(1)⊗Q1, Q2 ⊗ I(1), I(1)⊗Q2, X⊗ I(1), I(1)⊗X,
XT ⊗ I(1), I(1) ⊗ XT , N ⊗ I(1), I(1) ⊗ N. In order to jus-
tify the term FFT-like permutation matrices, the flow-graph
for permutations is shown by the ticker green lines over the
black lines in the flow-graph for the transform. Recall that
in the flow-graph of the FFT for the Vilenkin-Chrestenson
transform of ternary functions, the weights at the edges are
1, e1, and e2. When the basic transform matrix is replaced
by the basic permutation matrices, the weights at the edges
are either 0 or 1. Therefore, in the flow-graph, the edges
with the weight 0 do no appear.

Example 4: The function f = x1x2 ⊕ x2 has the value vec-
tor F = [0, 1, 2, 0, 2, 1, 0, 0, 0]T . The same vector can be
obtained from the value vector of the function f = x1x2 by

Fig. 4 Flow-graphs for XT
1 ⊗ I(1) and I(1) ⊗ XT

1 .

Fig. 5 Flow-graphs for N1 ⊗ I(1) and I(1) ⊗ N1.

multiplying it with the permutation matrix

P2 = XT
1 ⊗ I(1)

=



0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0





0
0
0
0
1
2
0
2
1


=
[

0, 1, 2, 0, 2, 1, 0, 0, 0
]T
.

5.2 Block Diagonal Matrices

In this section, we consider matrices of the block diagonal
structure that are typical for the n-th step, in this case the
second step, in the Cooley-Tukey FFT algorithms.

Addition of the term x2
1 to f1 can be expressed as

P1,2 = diag(I(1),XT
1 ,X1).

Example 5: The value vector of the term x2
1 is Fx2

1
=

[0, 0, 0, 1, 1, 1, 1, 1, 1]T , and the value vector of f = x1x2⊕x2
1

is Fx1 x2⊕x2
1
= [0, 0, 0, 1, 2, 0, 1, 0, 2]T . The same vector can be

obtained by multiplying the value vector of F = x1x2 with
the permutation matrix
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Fig. 6 Flow-graphs for the permutation matrices P1,2 and P2,2.

P1,2 = Diag(I(1),XT
1 ,X1)

=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0





0
0
0
0
1
2
0
2
1


=
[

0, 0, 0, 1, 2, 0, 1, 0, 2
]T
.

Figure 6 shows the flow-graph of the fast algorithm for
permutations by the matrices P1,2, and P2,2 which is defined
in Example 6.

5.3 Shift-Based Matrices

It should be noticed that the matrix X1 performs the cyclic
shift. This observation is important since the next permuta-
tion matrix P2,2 describing the addition of x2

2 is determined
in terms of the cyclic shift.

Example 6: The function f = x2
2 has the value vector

F2
x2
= [0, 1, 1, 0, 1, 1, 0, 1, 1]T . When added to the value vec-

tor of f = x1x2, which is Fx1 x2 = [0, 0, 0, 0, 1, 2, 0, 2, 1]T ,
the value vector of the bent function x1x2 ⊕ x2

2 is obtained
as Fx1 x2⊕x2

2
= [0, 1, 1, 0, 2, 0, 0, 0, 2]T . The same value vector

can be obtained by the multiplication of Fx1 x2 by the permu-
tation matrix P2,2 as

Fx1 x2⊕x2
2
= P2,2 · Fx1 x2

=



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0


·



0
0
0
0
1
2
0
2
1


=
[

0, 1, 1, 0, 2, 0, 0, 0, 2
]T
.

It is easy to observe that the matrix P2,2 performs the spectral
invariant operation x1 → x1 ⊕ x2.

Matrix P2,2 describing the addition of x2
2 to x1x2 can be

split into (3×3) submatrices. They are arranged as blocks of
three submatrices in three rows. In the first row of submatri-
ces, the first submatrix has 1 as the first elements in the first
row. Then, the next submatrix has 1 as the second element
in the second row. The third submatrix has 1 as the third
element in the third row.

In the second row of submatrices, the same pattern re-
peats but shifted cyclically for a single place to the right. In
the third row of submatrices, the pattern repeats but with a
shift for two places. If we define the (3 × 3) auxiliary matri-
ces with a single non-zero element as

R =

 1 0 0
0 0 0
0 0 0

 ,V =
 0 0 0

0 1 0
0 0 0

 ,E =
 0 0 0

0 0 0
0 0 1

 ,
then, the matrix P2,2 can be written as

P2,2 =

 R V E
E R V
V E R

 ,
and if the matrix P2,2 is split into (3×3) blocks, it can be ob-
served that the same shift based structure repeats over blocks
R, V, and E.

In a formal way, this matrix can be determined as fol-
lows.

Consider the sequence of symbols S = {a, b, c}, and
define (3 × 3) matrices A = diag(a, b, c) and B as

A =

 a 0 0
0 b 0
0 0 c

 , B =

 a b c
c a b
b c a

 .
The Kronecker products of these symbolic matrices

(A ⊗ B) and (B ⊗ A) followed by the replacement of the
squared terms by 1 and all other product terms with mixed
symbols by 0 results in the matrices P1,2 and P2,2.

Resemblance to matrices describing steps of the
Cooley-Tukey FFT-like algorithms illustrated by the Exam-
ple 1 is easy to notice, especially in the case of permutation
matrices describing addition of variables. The difference is
that instead of using the basic transform matrices for n = 1,
here we use the (3 × 3) permutation matrices.

The matrices determining addition of squares of vari-
ables resemble reordering matrices appearing between steps
of certain other FFT algorithms, as for example, the Wino-
grad FFT (WFTA), Prime Factors Algorithms, and related.
For more information, we refer to [5], [11], [15].

As in the case of previously considered Kronecker rep-
resentable permutation matrices, these block diagonal matri-
ces perform particular permutations of spectral coefficients
without changing their values. It follows that they perform
spectral invariant operations. We can conclude which op-
erations are representable by the shift based matrices by
comparing functional expressions of functions derived by
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Table 6 Substitution rules corresponding to the shift-based FFT-like per-
mutation matrices.

d k c Substitution rule
a, b, c 2 0 xi → 2x j

a, c, b 1 0 xi → x j

b, a, c 1 2 xi → x j ⊕ 2
b, c, a 2 2 xi → 2x j ⊕ 2
c, a, b 1 1 xi → x j ⊕ 1
c, b, a 2 1 xi → 2x j ⊕ 1

permutations with these matrices and functions obtained
by spectral invariant operations. Considering operations
performed by Kronecker product representable permutation
matrices is certainly avoided. In this way, it is easy to ob-
serve that shift based matrices under consideration perform
the spectral invariant operation of substitution of a variable
xi → xi⊕kx j⊕c, where k ∈ {1, 2}, and c ∈ {0, 1, 2}, assuming
that the matrices A and B are at the j-th and the i-th position
in the Kronecker product, while the identity matrix I(1) is at
all other positions. The values of k and c are determined by
the permutation of elements a, b, c at the main diagonal d of
the matrix A as summarized in Table 6.

6. Construction of Bent Functions for n = 2

As shown in Tables 4 and 5, all 81 bent functions in two
variables can be constructed from the basic bent functions
f1 and f2 by permutation matrices. The other ternary bent
functions in two variables are obtained by encoding as spec-
ified in Table 2.

An algorithm to generate ternary bent functions in two
variables by permutation matrices can be formulated as fol-
lows.

1. Select the distribution D1 or D2.
2. Select the basis function f1 or f2.
3. Apply to the value vector of the selected function the

permutation matrices corresponding to terms that are
allowed to be added.

4. Perform an encoding of the function values.

With respect to Step 3 of the above algorithm, notice
that for all included permutation matrices P3 = I(2), where
I(2) is a (9 × 9) identity matrix, which preserves that the
same matrix can be applied no more than two times. That is
the maximal number of applications of a matrix in the above
tables.

Recall that in the case of binary bent functions, studied
are permutations with the property P2 = I due to which they
are called involutions [10].

In the generalization of the method to functions with
more than two variables, basic bent functions to which per-
mutation matrices are applied should be selected such that
their degree is equal to the degree of functions to be pro-
duced.

Example 7: Consider the bent function f = x1x2 ⊕ x1 ⊕
(x1)2, whose value vector is F = [0, 0, 0, 2, 0, 1, 0, 2, 1]T .
This vector can be obtained by multiplying the value vec-
tor for f = x1x2 with the permutation matrix obtained as the

product of the permutation matrices for adding x1 and (x1)2

P = P1 · P1,2 = Diag(XT
1 ,X1, I(1))

=



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


.

In the same way, various permutation matrices can be de-
fined.

7. Generalizations

The above method for constructing bent functions can be
generalized straightforwardly to functions with a number of
variables larger than n = 2. The corresponding permutation
matrices can be derived by referring to the structure of the
matrices in the steps of Cooley-Tukey FFT in the case of
P1 and P2, and the symbolic computations for P1,2 and P2,2.
For simplicity, the way towards the generalizations will be
explained and illustrated by the following examples for n =
3. In this case, the basic bent functions are q1 = x1x2 ⊕ (x3)2

and q2 = x2
1⊕ x2

2⊕ x2
3. These both functions are of the degree

3. Therefore, an example of constructing new bent functions
by permutation matrices from a bent function of the degree
4, f = x1x2 ⊕ (x3)2 ⊕ (x1)2(x3)2 is also presented.

It is important to notice that for n = 3, these basic bent
functions, as well as all other bent functions, have the same
distribution of function values D3 = (6, 9, 12). As in the
previous cases for n = 1 and n = 2, all bent functions for
n = 3 are split into 6 classes mutually related by encoding
of function values. The first class consists of functions with
the composition (9, 12, 6) and the representant is the func-
tion q1 = x1x2⊕ (x3)2. The other classes consist of functions
with permuted values of the composition elements. For ex-
ample, functions with the composition (9, 6, 12) are a differ-
ent class, whose representant is q3 = (x1)2⊕(x2)2⊕(x3)2. We
define several permutation matrices by referring to matrices
describing steps in Cooley-Tukey FFT

R1 = I(1) ⊗ XT
1 ⊗ I(1) = P1 ⊗ I(1),

R2 = XT
1 ⊗ I(1) ⊗ I(1),

R3 = I(1) ⊗ I(1) ⊗ XT
1 .

Table 7 shows that these matrices add the linear terms
x1, x2, 2x3⊕1, respectively, to the function q1 = x1x2⊕(x3)2.

The function f = x1x2⊕(x3)2⊕x3 is also bent, however,
its value vector is F = [020020020020101212020212101]T .
We see that this is a different composition (12, 6, 9), there-
fore, it belongs to a different class and cannot be obtained
by a permutation of function values in f1 = x1x2 ⊕ (x3)2, but
by encoding.
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Table 7 Functions obtained by permutation matrices R1, R2, R3.

Function Matrix

x1 x2 ⊕ (x3)2 ⊕ x1 R1

x1 x2 ⊕ (x3)2 ⊕ x2 R2

x1 x2 ⊕ (x3)2 ⊕ 2x3 ⊕ 1 R3

Table 8 Construction of ternary bent functions by permutation matrices
from q1 with the composition (9, 12, 6).

Function Permutation matrices

x1 x2 ⊕ (x3)2 ⊕ (x1)2 P1,2 ⊗ I(1)

[011011011122200011122011200]T

x1 x2 ⊕ (x3)2 ⊕ (x2)2 ⊕ 2x2 x3 I(1) ⊗ P1,2

[011110101011221020011002212]T

x1 x2 ⊕ (x3)2 ⊕ (x2)2 P2,2 ⊗ I(1)

[011122122011200011011011200]T

x1 x2 ⊕ (x3)2 ⊕ x1 x3 I(1) ⊗ P2,2

[011011011020101212002221110]T

The matrices for adding quadratic terms are con-
structed as

R1 = A ⊗ B ⊗ I(1), R4 = B ⊗ A ⊗ I(1),

R2 = A ⊗ I(1) ⊗ B, R5 = B ⊗ I(1) ⊗ A,

R3 = I(1) ⊗ A ⊗ B, R6 = I(1) ⊗ B ⊗ A,

followed by the replacement of their elements by 1 and 0 as
specified above.

Depending on the functions to which they are applied,
q1 or q2, these matrices add terms (x1)2, (x2)2, and (x3)2 pos-
sibly combined with variables. In all the cases, coefficients
in the added terms can be either 1 or 2, which increases the
number of new bent functions that can be produced.

Table 8 shows bent functions derived from the function
q1 = x1x2 ⊕ (x3)2 with the composition (9, 12, 6). Table 9
shows bent functions derived from the function q2 = (x1)2 ⊕
(x2)2 ⊕ (x3)2 with the composition (9, 6, 12).

The matrix which expresses adding the term of order
three (x1)2x3 to the function q1 = x1x2 ⊕ (x3)2 is defined as

P3 = diag(I(1) ⊗ I(1),X1 ⊗ X1,XT
1 ⊗ X1).

The structure of this matrix is typical for the (n − 1)-th step
in Cooley-Tukey FFT algorithms.

The value vector of f = x1x2 ⊕ (x3)2 ⊕ (x1)2x3 is

F3 = [011011011020101212020212101]T .

The composition is (9, 12, 6). The same value vector can be
obtained as F3 = P3Fx1 x2⊕(x3)2 .

Another approach to construct bent functions with the
selected distribution and the degree is the following.

1. Given a bent function f with the distribution D and the
degree deg( f ).

2. Split the function vector F of f into subvectors of
length 3k, 1 ≤ k ≤ n − 1.

3. Perform encoding of subvectors and construct a new
function vector Fe which elements are symbols as-
signed to the subvectors.

Table 9 Construction of ternary bent functions by permutation matrices
from q2 with the composition (9, 6, 12).

Function Permutation matrices

2(x1)2 ⊕ (x2)2 ⊕ (x3)2 ⊕ 2x1 x2 P1,2 ⊗ I(1)

[011122122200200122200122200]T

(x1)2 ⊕ 2(x2)2 ⊕ (x3)2 ⊕ 2x2 x3 I(1) ⊗ P1,2

[011221212122002020122002020]T

(x1)2 ⊕ 2(x2)2 ⊕ (x3)2 ⊕ 2x1 x2 P2,2 ⊗ I(1)

[011200200122200122122122200]T

(x1)2 ⊕ (x2)2 ⊕ 2(x3)2 ⊕ 2x2 x3 I(1) ⊗ P2,2

[022121112100202220100202220]T

4. Apply a FFT-like permutation matrix R to Fe and pro-
duce a new bent function fe.

5. Apply the FFT-like permutation matrix R to the sub-
vectors and produce another bent function fe,R.

Conversion of performing permutations over subvec-
tors instead over the complete function vector is aimed at
making the procedure convenient for implementation on
parallel hardware structures. It should be noticed that the
choice of the parameter k determines which step of FFT-
like permutation algorithm is actually performed. This at
the same time defines in terms of which variable the spec-
tral invariant operation corresponding to the matrix R is per-
formed. The choice of the matrix used to perform the per-
mutation defines which spectral invariant operation is per-
formed.

Example 8: The ternary function in 3 variables

f (x1, x2, x3) = x1x2 ⊕ x2
3 ⊕ x2

2x3

is a bent function of degree 3. Its functions vector is

F = [011020020011101212011212101]T .

The distribution of function values is (9, 12, 6).
We split this function vector into three suvectors of 9

elements as

K0 = [0, 1, 1, 0, 2, 0, 0, 2, 0]T ,

K1 = [0, 1, 1, 1, 0, 1, 2, 1, 2]T ,

K2 = [0, 1, 1, 2, 1, 2, 1, 0, 1]T .

With this notation, it is

F = [K0,K1,K2]T .

The matrix Q1 converts F into FQ1 = [K1,K0,K2]T ,
which is

FQ1 = [011101212011020020011212101]T .

The corresponding function expression is

f (x1, x2, x3)Q1 = x2
3 ⊕ x2 ⊕ x2

2x3 ⊕ 2x1x2,

and it can obtained by the spectral invariant operation x1 →
2x1 ⊕ 1. Thus, the matrix Q1 applied to subvectors of length
9 performs this spectral invariant operation as the example
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Table 10 Spectral invariant operations and basic permutation matrices.

Matrix Reordering Transformation
Q1 FQ1 = [K1,K0,K2]T x1 → 2x1 ⊕ 1
Q2 FQ2 = [K0,K2,K1]T x1 → 2x1

X1 FX1 = [K2,K0,K1]T x1 → x1 ⊕ 2
XT

1 FXT
1
= [K1,K2,K0]T x1 → x1 ⊕ 1

N1 FN1 = [K2,K1,K0]T x1 → 2x1 ⊕ 2

Table 11 Bent functions constructed by basic permutation matrices from
the function f in Example 8.

Matrix Function
Q1 f (x1, x2, x3)Q1 = x2

3 ⊕ x2 ⊕ x2
2 x3 ⊕ 2x1 x2

Q2 f (x1, x2, x3)Q2 = x2
3 ⊕ x2

2 x3 ⊕ 2x1 x2

X1 f (x1, x2, x3)X1 = x2
3 ⊕ 2x2 ⊕ x2

2 x3 ⊕ x1 x2

XT
1 f (x1, x2, x3)XT

1
= x2

3 ⊕ x2 ⊕ x2
2 x3 ⊕ x1 x2

N1 f (x1, x2, x3)N1 = x2
3 ⊕ 2x2 ⊕ x2

2 x3 ⊕ 2x1 x2

illustrates.
Table 10 shows the reordering of subvectors produced

by the application of matrices Q1, Q2, X1, XT
1 , and N1, the

functional expressions of resulting functions and the corre-
sponding spectral invariant operations. Table 11 shows the
functions obtained by the application of these permutation
matrices.

From the structure of FFT-like algorithms for the
Vilenkin-Chrestenson transform of ternary functions, it is
easy to see that the application of the considered (3 × 3)
matrices to subvectors of length 9 is equivalent to multipli-
cation of F with the matrix

A ⊗ I(1) ⊗ I(1)

where A is any of the considered matrices. In other words,
it is equivalent to performing the permutation correspond-
ing to the first step of the FFT-like algorithm. Due to
this, the performed spectral invariant operations are with
respect to the first variable x1. Performing the permu-
tations corresponding to the i-th step results in the spec-
tral invariant operations are with respect to i-th variable xi,
i ∈ {x1, x2, . . . , xn}.

When to the function obtained by the application of
X(1), we apply the same transformation to subvectors of
length 9, we get the function with the function vector

F = [101011212020011020212011101]T ,

which is bent and it is obtained by the successive application
of the spectral invariant operations x1 → x1 ⊕ 2 and x2 →
x2 ⊕ 2.

8. Closing Remarks

For ternary bent functions there are specific combinations of
ternary values a function can take. This feature is expressed
as the distribution of function values. As in the binary case,
the distribution depends on the number of variables. For
any n, the bent functions can be split into 6 classes that are
related by encoding. Functions within a class having the
same composition of values, are mutually related by permu-
tation of elements in their value vectors. Therefore, by start-

ing from a function representing the class, all other func-
tions in the class can be derived by permutation of elements
in value vectors. These permutations are not arbitrary, but
strictly structured, since bentness, alternatively flatness of
the Vilenkin-Chrestenson spectra should be preserved. We
show that the corresponding permutation matrices have a
block structure similar to that in factor matrices of Cooley-
Tukey FFT.
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