
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021
1103

PAPER Special Section on Multiple-Valued Logic and VLSI Computing

Construction of Multiple-Valued Bent Functions Using Subsets of
Coefficients in GF and RMF Domains
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SUMMARY Multiple-valued bent functions are functions with highest
nonlinearity which makes them interesting for multiple-valued cryptogra-
phy. Since the general structure of bent functions is still unknown, methods
for construction of bent functions are often based on some deterministic cri-
teria. For practical applications, it is often necessary to be able to construct
a bent function that does not belong to any specific class of functions. Thus,
the criteria for constructions are combined with exhaustive search over all
possible functions which can be very CPU time consuming. A solution is
to restrict the search space by some conditions that should be satisfied by
the produced bent functions. In this paper, we proposed the construction
method based on spectral subsets of multiple-valued bent functions satis-
fying certain appropriately formulated restrictions in Galois field (GF) and
Reed-Muller-Fourier (RMF) domains. Experimental results show that the
proposed method efficiently constructs ternary and quaternary bent func-
tions by using these restrictions.
key words: multiple-valued functions, cryptography, bent functions, Galois
field and Reed-Muller-Fourier domain, construction

1. Introduction

Bent functions are by the definition the most nonlinear func-
tion and at the maximum distance from affine functions.
These functions are the core of numerous cryptographic
systems thanks to their ability to prevent the system from
attacks. They have applications in a variety of such sys-
tems, like block chippers, stream chippers and hash func-
tions [1]. Therefore, the study of bent functions for cryptog-
raphy is fundamental for secure communication in the fu-
ture [2]. The construction of cryptographically useful bent
functions is a difficult task. As the number of variables in
a function increases, bent functions become extremely rare
in the set of all possible functions. The binary bent func-
tions exist only for the even number of variables. Unlike
the binary case, multiple-valued (MV) bent functions may
have an odd or an even number of variables. Furthermore,
the precise general definition of the structure of bent func-
tions does not exist. Also, there is not a formal method for
construction of bent functions.

Thus, during recent years, it has been developed a lot
of methods for construction of binary bent functions with
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some properties using combinatorial, algebraic, and heuris-
tic techniques. Combinatorial techniques for constructing
bent functions such as iterative construction methods [2], the
Maiorana-McFarland construction method, and the partial
spread method [1] are the most popular [1]. The most fa-
mous iterative construction was given by Rothaus as early
as 1976. Constructions of bent functions can be catego-
rized as primary and secondary [2]. In primary construc-
tions, new bent functions are directly obtained, while in sec-
ondary constructions new bent functions are derived from
already known bent functions.

Combinatorial techniques are in most cases secondary
constructions. Since the algebraic degree of any bent func-
tion in polynomial form is restricted, the numbers of re-
searchers have been interested in providing constructions of
bent functions using the algebraic technique. The mono-
mial and binomial functions are particular cases of functions
in polynomial form. The known monomial bent construc-
tions are methods using exponents of Gold, Dillon, Kasami,
Canteaut–Leander and Canteaut–Charpin–Kuyreghyan [1].
The most known binomial bent construction is the method
using Niho exponents [1]. In contrast to combinatorial and
algebraic constructions, some researches proposed heuristic
techniques to obtain bent functions. The methods of gradi-
ent descent and the use of a genetic algorithm have proven
useful in the random generation of bent functions [3]. These
methods can be complex, computationally intensive, diffi-
cult to implement, and do not always produce a sufficient
variety of bent functions.

Finding the complete set of bent functions for given
number of inputs is an open problem and it is known the
lower and upper bounds in respect to the number of inputs.
Since we are not able to classify the set of bent functions, an
important topic in research is to find a subset of bent func-
tions leading to efficient construction of bent functions.

The most common characterization of binary bent
functions is the same absolute values of all coefficients
of their Walsh spectra. All coefficients have the absolute
value 2n/2, where n is the number of binary function vari-
ables. Multiple-valued bent functions can be characterized
by the equal value of complex modulus of coefficients of the
Vilenkin-Chrestenson (VC) transform. Testing of all VC co-
efficients of p-valued functions requires computation of all
pn coefficients and related comparisons. This computation,
even for small number of variables, requires a lot of pro-
cessing time [4]. Therefore, techniques for construction of
bent functions usually combine construction methods with
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the exhaustive search over all possible functions, most often
with a small number of variables.

The existing methods are mainly focused on the reduc-
tion of the search time [5]. In this paper we propose the re-
duction of the search time by using restrictions imposed on
functions in the GF and RMF domains. The GF and RMF
spectral transforms have many applications in signal encod-
ing and processing techniques, synthesis, verification, and
testing of circuits, and other areas [6]. For practical appli-
cations, it is often necessary to be able to efficiently com-
pute these transforms. With the discovery of a fast algo-
rithm which reduces computational complexity of spectral
transform from O(np) to O(nlogpn), the fast spectral trans-
form algorithm is an extremely effective tool. This algo-
rithm is also developed for parallel environments for both
shared memory and distributed memory platforms.

Since the algebraic degree of bent functions in the GF
and RMF domains is restricted, the spectral search space for
discovering of bent functions in the GF and RMF domains
is discussed in [7]. It is shown that in the GF and RMF
domains the discovery is extended to ternary bent functions
with 6 variables, and to quaternary bent functions with 4
variables. For construction of these functions with the large
number of variables, it can be used various secondary con-
struction techniques applied on discovered bent functions.
In the multiple-valued case, the size of spectral search space
in the GF and RMF domains increases rapidly in respect to
multiple-valued order, as well as the number of variables.
Therefore, discovery of bent functions necessarily requires
additional reduction of the spectral search space by satis-
fying restrictions in GF and RMF domains. It was shown
that using restrictions of binary functions in the Reed-Muller
(RM) domain, the set of functions can be split into the spec-
tral subset with respect to three different criteria related to
the properties of RM-spectra of bent functions. The verti-
cal, horizontal, and grid RM subsets are defined [8]. Experi-
mental results showed some interesting properties of differ-
ent subsets in the spectral RM domain which can be helpful
in designing construction methods for obtaining bent func-
tions.

Thus, in this paper, it is presented an efficient method
for construction of bent functions using GF and RMF do-
main subsets. GF and RMF subsets are based on the restric-
tions of the number and order of spectral coefficients for
bent functions. Using properties of bent functions in the GF
and RMF domains, there are vertical, horizontal, and grid
subsets of MV functions. The aim is to show how to re-
strict the spectral search space for bent functions in the GF
and RMF domains. Experimental results show that the pro-
posed method for construction of bent functions in the GF
and RMF domain extends obtaining ternary and quaternary
bent functions. This method is investigated using different
subsets in the GF as well as in the RMF domain. As the
function size increases, the amount of VC coefficients com-
putations extremely increases. For this reason, it is experi-
mented with benchmarks up to 6 variables.

This paper is organized as follows: Sect. 2 shortly in-

troduces the definitions of GF and RMF transforms of MV
functions and the appropriate fast computation algorithms.
Sections 3 and 5 give an overview of vertical, horizontal
and grid subsets of functions in GF and RMF domains. In
Sect. 4, it is described the method for construction of bent
functions in GF and RMF domains. The features of pro-
posed method for ternary and quaternary functions were ex-
perimentally tested in Sect. 6. In Sect. 7, some of the con-
cluding remarks of the proposed method are presented and
how the solution can be found in future work.

2. Background Theory

2.1 Galois Field Transform

Binary RM transform, can be generalized to multiple-valued
domains as GF transforms, which are defined as representa-
tions of p-valued functions over finite fields GF(p).

Each n-variable p-valued function can be represented
as a polynomial form [6]:

f (x1, x2, . . . , xn) =
pn−1∑
i=0

giϕi, (1)

where gi ∈ {0, 1, . . . , p − 1} and ϕi are the product terms
defined in the Hadamard order as elements of the vector
XGF(n) defined as:

XGF(n) =
n
⊗

i=1
XGF(1), (2)

where XGF(1) = [x0
i x1

i x2
i . . . xp−1

i ] and addition and
multiplication are carried out in GF(p). In matrix nota-
tion, for a function f specified by the function vector F =
[ f (0), . . . , f (pn − 1)]T , the GF sepectrum represented as a
vector S f ,GF = [S f (0), S f (1), . . . , S f (pn − 1)]T is calculated
as [6]:

S f ,GF = GGF(n)F (3)

where,

GGF(n) =
n
⊗

i=1
GGF(1),

GGF(1) = (XGF(1))−1inGF(p).
(4)

For the considerations in this paper, the indices of spec-
tral coefficients are represented as p-ary representation
of integers 0, 1, . . . , pn−1. For example, in this notation,
for p = 3 and n = 2, the GF-spectrum is S f ,GF =

[S f (00), S f (01), S f (02), S f (10), S f (11), S f (12), S f (20),
S f (21), S f (22)]T . The number of non-zero bits in ternary
representation for indices is the order of the spectral coeffi-
cient. Accordingly, the algebraic degree is the maximum
number of non-zero bits in ternary representation for in-
dices.

For example, the basic Galois field transform matrices,
for GF(3) and GF(4) are defined as:
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Fig. 1 The elementary butterfly operations for the basic GF transform
matrices for ternary and quaternary functions.

G3GF(1) =

 1 0 0
0 2 1
2 2 2

 . (5)

and,

G4GF(1) =


1 0 0 0
0 1 3 2
0 1 2 3
1 1 1 1

 . (6)

The fast computing FFT-like algorithms developed in signal
processing can be used to compute the coefficients in GF or
RMF functional expressions. Figure 1 shows the elementary
butterflies operations (flow-graphs) for the basic GF (Eq. (5)
and Eq. (6)) transform matrices, respectively, for ternary and
quaternary functions.

2.2 Reed-Muller-Fourier Transform

The Reed-Muller-Fourier transform is a generalization of
the Reed-Muller transform of Boolean functions considered
in the Gibbs algebra [6]. There are two reasons for intro-
ducing Gibbs algebra in the context of the RM transform.
The transform matrix used in the GF transform does not
have a triangular form as it is the case for the RM trans-
form of Boolean functions. Further, the GF transform does
not share many common features of Fourier series for real-
valued functions of real-valued variables [6].

Denote by G a group of n-ary p-valued sequences
x = (x1, . . . , xn) with the group operation componentwise
addition modulo p defined as [6]:

∀x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ G

x ⊕ y = (x1, . . . , xn) ⊕ (y1, . . . , yn) =

= ((x1 ⊕ y1) . . . (xn ⊕ yn))modp

(7)

Denote by Zp the set of first p non-negative integers.
For each x ∈ G, the p-adic contraction is defined as a map-
ping σ : G → Zp, given by [6]:

σ(x) =
n∑

i=1

xi p
n−i (8)

Denote by P(G) the set of all functions f : G → Zp. In
P(G), we define the addition as modulo p addition [6]:

( f ⊕ g)(x) = f (x) ⊕ g(x),∀x ∈ G (9)

and multiplication as a convolutionwise (Gibbs) multiplica-
tion:

( fg)(0) = 0,

( fg)(x) =
σ(x)−1∑

s=0

f (σ(x) − 1 − s)g(s), ∀x ∈ G, x , 0.
(10)

The following definition allows to consider the RMF-
expressions as polynomial expressions representing a gener-
alization of the Reed-Muller expressions for Boolean func-
tions to multiple-valued functions.

Any p-valued n-variable function x = (x1, . . . , xn) can
be expanded in powers of variables xi, i = 1, . . . , n as [6]:

f (x1, . . . , xn) = (−1)n
∑
a∈Vn

q(a)x∗a1
1 . . . x

∗an
n (11)

where Vn is the set of all p-valued n-tuples, q(a) ∈
{0, 1, 2, . . . , p − 1}, and the exponentiation is defined as
x∗0 = −1modp, and for i > 0, x∗i is determined in terms of
the convolutionwise (Gibbs) multiplication defined above.
In matrix notation, a set of pn product terms appearing in
the positive polarity RMF expression is given by [6]:

XpRMF(n) =
n
⊗

i=1
Xi(1), (12)

where Xi = [x∗0i x∗1i . . . x
∗(p−1)
i ] and with multiplication mod-

ulo p and exponentiation defined above applied to the p-
valued variables.

In matrix notation, for a function f specified
by the function vector F = [ f (0), . . . , f (pn − 1)]T ,
the RMF spectrum represented as a vector S f ,RMF =

[S f (0), S f (1), . . . , S f (pn − 1)]T is calculated as:

S f ,RMF = RpRMF(n)F (13)

where,

RpRMF(n) =
n
⊗

i=1
RpRMF(1),

RpRMF(1) = (XpRMF(1))−1.
(14)

For example, the basic RMF transform matrices, for ternary
and quaternary functions are defined as:

R3RMF(1) = 2

 1 0 0
1 2 0
1 1 1

 . (15)

and,

R4RMF(1) = 3


1 0 0 0
1 3 0 0
1 2 1 0
1 1 3 3

 . (16)

Figure 2 shows the elementary butterflies operations (flow-
graphs) for the basic RMF (Eq. (15) and Eq. (16)) transform
matrices, respectively, for ternary and quaternary functions.

2.3 Vilenkin-Chrestenson Transform

The Vilenkin-Chrestenson (VC) transform is viewed as a
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Fig. 2 The elementary butterfly operations for the basic RMF transform
matrices for ternary and quaternary functions.

generalization of the Walsh transaform. The VC spectrum,
represented as the vector S f ,VC = [S f (0), S f (1), . . . , S f (pn−
1)]T , is computed using the VC transform matrix [6]:

S f ,VC = VCp(n)F (17)

where,

VCp(n) =
n
⊗

i=1
VCp(1), (18)

For example, the basic VC transform matrices for p = 3 and
p = 4 are defined as:

VC3(1) =

 1 1 1
1 e2 e1

1 e1 e2

 , e1 = −0.5(1 + i
√

3)
e2 = −0.5(1 − i

√
3)

(19)

and,

VC4(1) =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 . (20)

An n-variable p-valued function is called bent if all VC co-
efficients in the vector S f ,VC have the same complex mod-
ulus (magnitude) of value pn/2 [2]. In computing the VC
transform of p-valued functions it is usually used the encod-
ing (0, 1, 2) → (1, e1, e2) and (0, 1, 2, 3) → (1,−1, i,−i) for
p = 3 and p = 4, respectively.

3. Subsets of Bent Functions in GF and RMF Domains

Since the algebraic degree of n-variable p-valued bent func-
tions in the polynomial form is at most ⌈n/2⌉ for n > 2, the
possible positions of the non-zero coefficients in the spec-
trum of bent functions are restricted. By using the same fea-
ture in the case of binary bent functions, we proposed in [8]
splitting the set of all Boolean bent functions with respect to
three different criteria related to the properties of their RM
spectra. In this paper, the approach is generalized to ternary
and quaternary functions. We consider the number and the
order of non-zero coefficients for bent functions of different
degree. Depending on that, as in the binary case, [8], [9], we
define three different subsets: vertical, horizontal, and grid,
for multiple-valued functions. Another difference is that we
are using coefficients of two different transforms, the GF and
RMF spectra.

3.1 Vertical GF and RMF Subsets

The possible number of non-zero coefficients in GF and
RMF spectra of bent functions is limited as well as their
position in the spectrum, since the order of coefficients has
an upper bound. For example, the ternary bent functions
with 4 variables can have non-zero GF or RMF coeffcients
of order 0, 1, or 2. Thus, the number of non-zero values in
the 3-valued representation of their coefficient index of GF
or RMF spectrum is less or equal 2.

If a bent function has k non-zero GF coefficients in the
spectrum, then this function belongs to the Vertical GF k-
subset denoted by VGF(k). The number of possible VGF

subsets depends of the number of variables. The value of
k needs to be less or equal to the possible number of non-
zero coefficients in the GF spectrum of a bent function.
For example, two ternary bent functions of 2 variables with
GF spectra S f1,GF = [1, 0, 2, 0, 0, 0, 2, 0, 0]T and S f2,GF =

[2, 0, 1, 0, 0, 0, 1, 0, 0]T have 3 non-zero GF-coefficients and
belong to the subset VGF(3).

The same definition applied to the RMF spectra of
bent functions. If a bent function has k non-zero RMF-
coefficients in the spectrum, then this function belongs to the
Vertical RMF k-subset denoted by VRMF(k). Also, the num-
ber of possible VRMF subsets depends on the number of vari-
ables. For example, two ternary bent functions of 2 variables
with RMF spectra S f1,RMF = [0, 0, 2, 1, 0, 0, 1, 0, 0]T and
S f2,RMF = [0, 0, 1, 1, 0, 0, 1, 0, 0]T have 3 non-zero RMF-
coefficients and belong to the subset VRMF(3).

3.2 Horizontal GF and RMF Subsets

The possible order of non-zero coefficients in GF and RMF
spectra of bent functions is also specified, since the alge-
braic degree of their polynomial representations has an up-
per bound. For example, the ternary functions with 4 vari-
ables can have coefficients of orders: 0,1, or 2.

If a bent function has the minimum kmin and the maxi-
mum kmax order of GF-coefficients in the spectrum, then this
function belongs to the Horizontal GF (kmin, kmax)-subset
denoted by HGF(kmin, kmax). The number of possible HGF

subsets depends of the number of variables. For exam-
ple, for the ternary functions with 4 variables, there are
6 possible HGF subsets: HGF(0, 0), HGF(0, 1), HGF(0, 2),
HGF(1, 1), HGF(1, 2), and, HGF(2, 2). Note that, it can hap-
pen that some possible subset does not contain a bent func-
tion. For example, two ternary bent functions of 2 vari-
ables with GF spectra S f1,GF = [0, 1, 1, 0, 0, 0, 2, 0, 0]T and
S f2,GF = [0, 1, 2, 0, 0, 0, 2, 0, 0]T have coefficients of order
1. It means that they belong to the subset HGF(1, 1). The
corresponding polynomial forms are:

f1(x1, x2) = x1
2 ⊕ x2

2 ⊕ 2x2
1

f2(x1, x2) = x1
2 ⊕ 2x2

2 ⊕ 2x2
1

(21)

If a bent function has the minimum and the max-
imum order of RMF-coefficients in the spectrum then
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this function belongs to the Horizontal RMF (kmin, kmax)-
subset denoted by HRMF(kmin, kmax). For example, two
ternary bent functions of 2 variables with RMF spec-
tra S f1,RMF = [0, 0, 2, 0, 0, 0, 1, 0, 0]T and S f2,RMF =

[0, 0, 1, 0, 0, 0, 2, 0, 0]T have all the coefficients of order 1.
It means that they belong to the subset HRMF(1, 1). The cor-
responding polynomial forms are:

f1(x1, x2) = 2x∗22 ⊕ x∗21

f2(x1, x2) = x∗22 ⊕ 2x∗21

(22)

3.3 Grid GF and RMF Subsets

In definition of this subset, we take into account both, the or-
ders and the number of non-zero coefficients. If a bent func-
tion has k non-zero GF coefficients and the minimum kmin

and the maximum kmax order of GF-coefficients in the spec-
trum then this function belongs to the Grid GF (k, kmin, kmax)-
subset denoted by GGF(k, kmin, kmax). The number of possi-
ble GGF subsets depends of the number of variables. For
example, for the ternary functions with 2 variables, some
possible GGF subsets are: GGF(1, 0, 1), GGF(2, 0, 1), and,
GGF(3, 0, 1). For example, two ternary bent functions of 2
variables with GF spectra S f1,GF = [0, 1, 1, 0, 0, 0, 2, 0, 0]T

and S f2,GF = [0, 1, 2, 0, 0, 0, 2, 0, 0]T belong to the subset
GGF(3, 1, 1).

If a bent function has k non-zero RMF coeffi-
cients and the minimum kmin and the maximum kmax

order of RMF coefficients in the spectrum then this
function belongs to the Grid RMF (k, kmin, kmax)-subset
denoted by GRMF(k, kmin, kmax). For example, two
ternary bent functions of 2 variables with RMF spec-
tra S f1,RMF = [0, 0, 2, 0, 0, 0, 1, 0, 0]T and S f2,RMF =

[0, 0, 1, 0, 0, 0, 2, 0, 0]T belong to the subset GRMF(2, 1, 1).

4. Constructions of Bent Functions in GF and RMF
Domains

The algorithm for the construction of bent functions using
GF and RMF subsets is given as Algorithm 1.

Algorithm 1
1: Set the number of function variables n.
2: Set the domain: GF or RMF.
3: Set the type of subsets: vertical, horizontal, or grid.
4: Set the selected subsets parameters (the number of the non-

zero coefficients for the vertical, min and max order of the non-
zero coefficients, for the horizontal, and all three parameters
for the greed).

5: Random create functions within the selected subset.
6: Compute the VC spectrum and test bentness for created func-

tion, if failed, go to the step 2, else return bent function found.

The algorithm for the construction of bent functions
using GF or RMF subsets takes as its input the number of
function variables. In any of three types of subsets it takes

as its input parameter the number of non-zero GF or RMF
coefficients. This parameter should be less then the maxi-
mal number of non-zero coefficients that is allowed for bent
functions. Depending on the selected type of the subset,
it also takes the min and max parameters as the range for
the order of the non-zero coefficients. This max parame-
ter should be less then maximal order of coefficients that is
allowed for bent functions. The orders of GF or RMF coeffi-
cients restrict their positions in the spectrum. These restric-
tions ensure construction possibility and consequently re-
duce the possible search space in the GF or RMF domain
for bent function random construction.

For example, for the ternary functions with 4 vari-
ables, there are 1 zero order, 8 first order, and 24
second order coefficients. The set of possible co-
efficients of the GF-spectrum for bent functions is
[S f (0000), S f (0001), S f (0002), S f (0010), S f (0020),
S f (0100), S f (0200), S f (1000), S f (2000), S f (0011),
S f (0012), S f (0021), S f (0022), S f (0101), S f (0102),
S f (0201), S f (0202), S f (0110), S f (0120), S f (0210),
S f (0220), S f (1001), S f (1002), S f (2001), S f (2002),
S f (1010), S f (1020), S f (2010), S f (2020), S f (1100),
S f (1200), S f (2100), S f (2200)]T .

Thus, the search space size of random construction in
GF or RMF domains is 31+8+24 − 1 = 333 − 1. If the order
is restricted, for example, to the HGF(1, 1)-subset, then the
search space size of random construction using subset in GF
or RMF domains is only 38 − 1.

The bent testing of VC coefficients includes checking
if all the coefficients have the complex modulus (magnitude)
equal to pn/2. Computation of VC coefficients in this algo-
rithm is performed by the Fast VC spectral transform.

5. Illustrative Examples

In this section, we enumerate bent functions in some ver-
tical, horizontal and grid subsets, in the GF and RMF do-
mains, for ternary and quaternary functions. The aim is to
provide specifications how to restrict the search space in GF
and RMF domains for bent functions according to the prob-
ability of finding them in selected subsets.

Table 1 shows the number of ternary bent functions in
the vertical subsets VGF(k) and VRMF(k) for functions of one
variable. Table 2 shows the number of ternary bent functions
in the subsets VGF(k) and VRMF(k) for two variables. For
ternary functions, number of bent functions is equal for all
vertical subsets between GF and RMF domains.

Table 3 shows the number of quaternary bent functions
in the subsets VGF(k) and VRMF(k) for one variable. Table 4
shows the number of quaternary bent functions in the sub-

Table 1 The number of ternary bent functions in VGF (k) and VRMF (k)
for one variable

k # f of VGF (k) # f of VRMF (k)
1 3 2
2 8 8
3 8 8
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Table 2 The number of ternary bent functions in VGF (k) and VRMF (k)
for two variables

k # f of VGF (k) # f of VRMF (k)
1 2 2
2 24 24
3 100 100
4 184 184
5 144 144
6 32 32

Table 3 The number of quaternary bent functions in VGF (k) and
VRMF (k) for one variable

k # f of VGF (k) # f of VRMF (k)
1 1 1
2 5 4
3 11 15
4 15 12

Table 4 The number of quaternary bent functions in VGF (k) and
VRMF (k) for two variables

k # f of VGF (k) # f of VRMF (k)
1 0 2
2 3 48
3 33 404
4 184 1754
5 792 4774
6 3190 9646
7 9554 16404
8 20128 24504
9 34328 32090
10 41983 35180
11 37101 31440
12 27744 21506
13 15640 12350
14 7888 7686
15 2136 2376
16 0 540

sets VGF(k) and VRMF(k) for two variables. For quaternary
functions, number of bent functions is not equal for all ver-
tical subsets between GF and RMF domains. For example,
vertical subset VGF(4) has about 9.5 times more bent func-
tions than VRMF(4). It means that in this case, construction
of bent functions in RMF domain will be about 9.5 times
faster than in the GF domain.

Table 5 shows the number of ternary bent functions
in the subsets HGF(kmin, kmax) and HRMF(kmin, kmax) for two
variables where (kmin, kmax) ∈ {(0, 1), (1, 1), (1, 2), (2, 2)}.
Table 6 shows the number of quaternary bent functions in
the subsets HGF(kmin, kmax) and HRMF(kmin, kmax) for two
variables where (kmin, kmax) ∈ {(0, 1), (1, 1), (1, 2), (2, 2)}.
Note that for ternary and quaternary functions, number of
bent functions is equal for all horizontal subsets between
GF and RMF domains.

Table 7 shows the number of ternary bent functions
in the subsets GGF(k, kmin, kmax) and GRMF(k, kmin, kmax) for
two variables where (k, kmin, kmax) ∈ {(1, 2, 2), (2, 0, 1),
(2, 1, 1), (2, 1, 2), (3, 0, 1), (3, 1, 1), (3, 1, 2))}. Again, for
ternary functions, number of bent functions is equal for
all grid subsets between GF and RMF domains. Table 8

Table 5 The number of ternary bent functions in HGF (kmin, kmax) and
HRMF (kmin, kmax) for two variables

(kmin, kmax) # f of # f of
HGF (kmin, kmax) HRMF (kmin, kmax)

0,1 108 108
1,1 36 36
1,2 162 162
2,2 2 2

Table 6 The number of quaternary bent functions in HGF (kmin, kmax) and
HRMF (kmin, kmax) for two variables

k # f of VGF (k) # f of VRMF (k)
0,1 256 256
1,1 64 64
1,2 50176 50176
2,2 12 12

Table 7 The number of ternary bent functions in GGF (k, kmin, kmax) and
GRMF (k, kmin, kmax) for two variables

(k, kmin, kmax) # f of # f of
GGF (k, kmin, kmax) GRMF (k, kmin, kmax)

1,2,2 2 2
2,0,1 4 4
2,1,1 4 4
2,1,2 20 20
3,0,1 24 24
3,1,1 16 16
3,1,2 60 60

Table 8 The number of quaternary bent functions in GGF (k, kmin, kmax)
and GRMF (k, kmin, kmax) for two variables

(k, kmin, kmax) # f of # f of
GGF (k, kmin, kmax) GRMF (k, kmin, kmax)

2,0,1 1 1
2,1,1 1 1
2,1,2 3 42
2,2,2 2 5
3,0,1 7 11
3,1,1 4 8
3,1,2 24 278
3,2,2 0 5

shows the number of quaternary bent functions in the sub-
sets GGF(k, kmin, kmax) and GRMF(k, kmin, kmax) for two vari-
ables. For quaternary functions, as it was the case with the
vertical subsets, the number of bent functions is different
between the GF and RMF domain.

Experimental results from Table 1–8 showed some in-
teresting properties of different subsets in GF and RMF do-
main. It is shown that some vertical, horizontal, and grid
subsets contain large, but some other a small number of bent
functions. There is no difference in the number of ternary
bent functions between subsets in the GF and RMF domain.
But, for quaternary functions there is the difference. This
information can be helpful in designing search method for
construction of bent functions.

6. Experimental Results

For an experimental analysis, it is developed an implemen-
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tation using C++ programming language of the proposed
method for the random construction of bent functions in the
GF and RMF domains. Also, it is developed an implementa-
tion of the construction of bent functions using GF and RMF
subsets. These experiments are performed on a standard PC
platform (CPU: 3.6 GHZ, RAM: 12 GB).

Table 9 shows computation performance of the Algo-
rithm 1 for construction of bent function using the random
construction in the GF domain and GF subsets. The compu-
tational times are given in seconds. It is compared the com-
putation time needed for random construction of one bent
function, in respect to the construction of one bent function
from the defined subset. Comparison of these numbers is
motivated by decreasing computation time when discovery
uses GF or RMF subsets. When the number of non-zero co-
efficients is relatively small, construction of bent functions
is faster. The proposed algorithm is implemented and exper-
imentally tested for construction of ternary bent function of
4, 5, and 6 variables and quaternary bent functions of 3, and
4 variables in the GF and RMF domain.

In order to estimate applicability of the proposed algo-
rithm in practice, we point out the following. In the binary
case, the keys in block chippers are often constructed by
using bent functions. Typically, the length of the key is at
least as long as the block length and there are recommen-
dations that the key length should be longer than the block
length. For example, in block ciphers with DES algorithm,
the keys are composed from four Boolean functions which
can be constructed using bent function of 6 variables. The
AES algorithm uses a bent function of 8 variables [1]. The
keys with a larger number of bits can be obtained by con-
catenating two or more bent functions. Since a quaternary
bent function in n variables can be viewed as an encoding
of two binary bent functions in 2n variables [10], [11], the
proposed method can be used in such applications.

The presented algorithm is compared with our previous
algorithm with exhaustive search for random discovering of
bent functions in both domains [7]. The proposed algorithm
using GF or RMF subsets reduces the number of possible
positions of non-zero coefficients in the spectrum. By using
vertical subsets for different values of the parameter k all
bent functions can be constructed, since bent functions in
these subsets are disjoint. This is however not the case with

Table 9 Computation time of algorithm for construction of bent func-
tions using GF and RMF subsets

parameters computation time [s]
p / n / domain exhaustive V(8) H(3, 4) G(8, 3, 4)
3 / 4 / GF 0.018 0.003 0.001 0.002
3 / 5 / GF 0.031 0.024 0.014 0.019
3 / 6 / GF 2.743 2.415 1.115 2.112
4 / 3 / GF 0.004 0.001 0.001 0.001
4 / 4 / GF 0.041 0.032 0.025 0.028
3 / 4 / RMF 0.009 0.001 0.001 0.001
3 / 5 / RMF 0.022 0.018 0.011 0.016
3 / 6 / RMF 3.145 2.845 1.458 2.459
4 / 3 / RMF 0.008 0.001 0.001 0.001
4 / 4 / RMF 0.039 0.009 0.022 0.014

horizontal and grid subsets. The only case when these sub-
sets cover all bent functions is when kmin takes the minimum
value and kmax takes the maximum possible value for the or-
der of the coefficients. The bent functions in these subsets
are not disjoint. Very often some functions in one subset of
constructed functions are contained in another subset. We
do not present the experimental results with these values of
parameters, because on the used hardware the computation
time limit of 30 minutes is exceeded for both algorithms.

Note that in the proposed method, the parameters of
subsets can be selected arbitrarily. These parameters di-
rectly determine the size of the search space. For different
choices of the parameters, the search space ranges from the
small size to the entire search space in the GF/RMF domain.
For example, for ternary functions of 7 variables, the subset
H(2, 2) results in a relatively small search space, because it
contains only quadratic bent functions. In contrast, for the
subset H(1, 4) the search space is huge, since the order of
the coefficients can take a lot of different values, and there-
fore the number of different combinations increases expo-
nentially.

It should be noticed that the computation times for con-
struction of bent functions using GF and RMF subsets for
all tests are always smaller than using the exhaustive search
construction. This was expected since the search space us-
ing GF and RMF was reduced. Difference between GF and
RMF domain is only obvious between quaternary functions
for the vertical and grid subsets. This is due to the large
number of functions in the vertical and grid RMF subsets
where k is low. Note that for the larger k, the difference will
be reversed.

7. Conclusion

This paper proposes a technique for efficient construction
of multiple-valued bent functions in the GF and RMF do-
mains. The algorithm is based on the random discovery of
GF or RMF spectrum of bent function by using GF or RMF
subsets. The technique is mainly focused on the reduction
of the discovery search time. The GF and RMF subsets are
based on the restrictions of the number and/or order of GF
or RMF coefficients for bent functions. Using these restric-
tions, there are vertical, horizontal, and grid subsets of func-
tions.

The proposed algorithm is implemented and experi-
mentally tested for construction ternary and quaternary bent
function with up to 6 variables. Experimental results con-
firm that the time required for construction of bent function
when using GF or RMF subsets is smaller than when using
random construction. It can be also seen that the proposed
algorithm in the GF and RMF domains significantly reduces
search space for bent function discovery.

Therefore, in practical application there is a need for
using various GF or RMF subsets. Difference between con-
struction of p-valued bent function in the GF and RMF do-
main is obviously large when p is non prime. It should be
noticed that for same number of non-zero coefficients in the
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spectrum, there are more bent functions in the RMF domain
than in the GF domain. This is true only when the num-
ber of non-zero coefficients is small. Thus, when number
of non-zero coefficients is small it is more efficient to use
construction in the RMF domain. In other cases, the using
of GF and RMF domain is equal.

Future work will be on extension of the proposed algo-
rithm to various other spectral domains, like Haar, or Kro-
necker domains.
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University of Niš, Serbia, in 2001, 2006, and
2015, respectively. Currently, he is an assistant
professor in the Department of Computer Sci-
ence, Faculty of Electronic Engineering, Uni-
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