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PAPER

Health Indicator Estimation by Video-Based Gait Analysis

Ruochen LIAO†a), Kousuke MORIWAKI†, Nonmembers, Yasushi MAKIHARA†,
Daigo MURAMATSU†,††, Members, Noriko TAKEMURA†, Nonmember, and Yasushi YAGI†, Member

SUMMARY In this study, we propose a method to estimate body
composition-related health indicators (e.g., ratio of body fat, body water,
and muscle, etc.) using video-based gait analysis. This method is more
efficient than individual measurement using a conventional body compo-
sition meter. Specifically, we designed a deep-learning framework with
a convolutional neural network (CNN), where the input is a gait energy
image (GEI) and the output consists of the health indicators. Although
a vast amount of training data is typically required to train network pa-
rameters, it is unfeasible to collect sufficient ground-truth data, i.e., pairs
consisting of the gait video and the health indicators measured using a
body composition meter for each subject. We therefore use a two-step
approach to exploit an auxiliary gait dataset that contains a large number
of subjects but lacks the ground-truth health indicators. At the first step,
we pre-train a backbone network using the auxiliary dataset to output gait
primitives such as arm swing, stride, the degree of stoop, and the body
width — considered to be relevant to the health indicators. At the second
step, we add some layers to the backbone network and fine-tune the en-
tire network to output the health indicators even with a limited number of
ground-truth data points of the health indicators. Experimental results show
that the proposed method outperforms the other methods when training
from scratch as well as when using an auto-encoder-based pre-training and
fine-tuning approach; it achieves relatively high estimation accuracy for
the body composition-related health indicators except for body fat-relevant
ones.
key words: gait analysis, body composition, deep learning, healthcare

1. Introduction

Body composition refers to the proportions of major com-
ponents of the human body such as water, fat, and muscle.
Common health indicators such as muscle mass and basal
metabolic rate can be calculated from the body composi-
tion information. It is also known that the body compo-
sition changes and muscle mass decreases with aging [1].
The body composition information is therefore used for
health management including prevention and mitigation of
lifestyle-related diseases and for management of physical
training [2]–[5].

Most existing commercially available body composi-
tion meters employ bioelectrical impedance [6], [7]. These
methods involve sending a weak alternating current from the
subject’s hands and feet into the body, and analyzing the
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impedance to measure the body composition and estimate
related health indicators. Although these methods can ac-
curately measure the indicators, it requires relatively time-
consuming steps: removing socks, cleaning hands and feet,
and standing on the body composition meter, which may
take several minutes in total. Furthermore, the same ma-
chine cannot measure multiple people simultaneously.

Because body composition is closely related to human
motor function [8]–[10] as well as body shape [11]–[14],
there is a possibility that we can estimate body composi-
tion and the related health indicators by analyzing the hu-
man motor function and body shape, which could be ob-
served from gait videos. We therefore raise a research ques-
tion on the possibility of health indicator estimation from
gait videos as an alternative for the body composition me-
ter. One of the most promising approaches is visually ob-
serving the subject walking, i.e., assessing the gait. A gait
video contains information pertaining to the subject’s motor
function and body shape. Thus, is may be possible to es-
timate the health indicators using video-based gait analysis
techniques. Moreover, because gait is the most fundamen-
tal mode of locomotion, we have more opportunities to ob-
serve it than other actions (e.g., jumping or doing bending
exercises).

Video-based gait analysis is the subject of a large body
of literature, including but not limited to gait-based estima-
tion of gender, age, and health status [15]–[19]. Generally,
the related techniques require just one gait period of a gait
video (i.e., approximately one second) for analysis, thus
suggesting that the health indicators can also be obtained
much faster than with body composition meters.

The above-mentioned studies on video-based gait anal-
ysis typically employ machine learning techniques (e.g.,
classifiers for gender classification, regression techniques
for age estimation) and the amount of training data is cru-
cial to the success of these algorithms (e.g., pairs consisting
of the gait video and ground-truth age label for age estima-
tion), in particular, in this deep learning era.

It is, however, relatively difficult to collect a sufficiently
large amount of training data, particularly if medical data is
required. For example, studying the relationship between
gait and a certain disease requires establishing collabora-
tion with a hospital and obtaining informed consent from
patients. Furthermore, it requires the effort of collecting
gait videos of the patients and asking a medical profes-
sional to annotate ground-truth labels for each gait video.
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Moreover, the number of instances related to a specific
disease is considerably limited compared to healthy subject
data. As a result, the researcher must work with small-scale
data, and hence tend to rely on handcrafted gait features
and classical machine learning or even rule-based meth-
ods [18], [20]–[22]. This is in contrast to general computer
vision tasks, such as object recognition and human pose es-
timation, which rely on deep learning frameworks [23], [24]
with the help of publicly available and well organized large-
scale databases [25], [26].

Some large-scale publicly available databases exist for
video-based gait analysis [27]–[29] containing over 10,000
subjects. Although these databases are not aimed at
medical/healthcare-oriented applications, but at individual
recognition [30]–[32]. We may be able to use their data to
pre-train a backbone network for video-based gait analysis,
and subsequently fine-tune the network for our task; i.e.,
health indicator estimation with a limited training data. This
is a similar approach to computer vision research that fine-
tunes networks pre-trained by standard datasets [25], [26]
for specific tasks.

In this paper, we therefore propose a deep learning
framework to estimate health indicators via video-based gait
analysis even with limited ground-truth training data. The
contributions of this work are summarized as follows.
1. Health indicator estimation from a walking video.

To our knowledge, this is the first work to estimate
health indicators based entirely on a video of the subject
walking. This potentially increases the efficiency and ease
of health indicator measurement compared to the conven-
tional body composition meter.
2. Pre-training and fine-tuning strategies with gait prim-
itives relevant to health indicators.

To enable the use of a deep learning framework even
with the limited number of training data for gait-based
health indicators, we use pre-training and fine-tuning strate-
gies. Presently, there has not been extensive research on a
pre-training strategy before fine-tuning in video-based gait
analysis. Thus, we demonstrate that pre-training with gait
primitives relevant to health indicators (e.g., arm swing,
stride, the degree of stoop, and body width) is beneficial
for the subsequent fine-tuning for the health indicator es-
timation task. This achieves an improvement in accuracy
compared with training from scratch or pre-training using a
conventional reconstruction task with an auto-encoder.

2. Related Work

2.1 Video-Based Gait Analysis

There is a rich body of literature on video-based gait anal-
ysis which we address in this subsection. Several compre-
hensive surveys on this topic provide further details for the
interested reader [33]–[36].

The majority of studies on this topic pertain to
gait recognition, i.e., person identification from walking
videos [37]–[43]. Other popular related topics include gen-

der classification [15] and age estimation [44].
Early studies in video-based gait analysis mainly fo-

cused on developing handcrafted gait features using both
model-based approaches [38] and appearance-based ap-
proaches [41], [45]–[48], and applied traditional machine
learning techniques (e.g., linear discriminant analysis and
support vector machines) to the gait features for tasks such
as person identification, gender classification, or age estima-
tion. Publicly available gait video databases [40], [49]–[51]
played an important role in training the machine learning
models and providing a basis for performance evaluation,
although database sizes were limited (i.e., at most a few hun-
dreds subjects).

Subsequently, deep learning frameworks were applied
to video-based gait analysis [17], [52]–[62] in a similar fash-
ion to other computer vision topics such as face recognition,
object recognition, semantic segmentation, and human pose
estimation. Because deep learning frameworks generally
require substantial training data, the aforementioned stud-
ies typically used larger-scale gait databases [27]–[29], [63]
(e.g., over 60,000 subjects in [28], [29]) for training and per-
formance evaluation.

In contrast, it is difficult to collect large-scale gait data
in the field of medical/healthcare-oriented gait analysis, both
because the number of eligible subjects is limited, and an-
notation by a medical professional is required. Thus, studies
in this field typically rely on small-scale gait databases. As
a result, handcrafted features and classical machine learning
or rule-based techniques are often employed because they
can achieve suitable performance without substantial train-
ing data. For example, Liao et al. [20] and Ajay et al. [22]
conducted gait analysis studies for specific diseases by using
a small number of gait data including only 20 to 30 subjects.
Aoki et al. [21] and Matsuura et al. [18] tackled the more
general topic of cognitive function estimation from gait for
hundreds of subjects, which is a larger dataset than those
used in [20], [22], but still too small to apply a deep learn-
ing framework.

There are some studies that have applied deep learning
frameworks in the field of medical gait analysis. For ex-
ample, Zhang et al. [64] and Camps et al. [65] applied deep
learning frameworks with only 18 and 21 subjects, respec-
tively, with the help of data augmentation to cover the short-
age of training data. The data augmentation, however, does
not necessarily reflect subject diversity.

2.2 Fine-Tuning in Deep Learning

Because deep learning frameworks usually require sub-
stantial training data that is not necessarily easy to col-
lect, a researcher may decide to use a network pre-trained
for general tasks on large-scale annotated databases (e.g.,
ImageNet [26], MS-COCO [25]), and fine-tune the network
for a specific task such as object recognition [66], [67],
action recognition [68], image retrieval [69], age estima-
tion [70], person re-identification [71], and computer-aided
diagnosis [72]–[75].
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The networks pre-trained for general tasks with
general image databases (e.g., for object recognition with
ImageNet [26]), however, this data is not necessarily effec-
tive for fine-tuning for a specific task, particularly, when
there are different domains between the general tasks and the
specific tasks. To address this issue, some researchers pre-
pare another training set for pre-training, whose domain/task
is more relevant to the target task. For example, Yang
et al. [70] pre-trained another network using facial images
in addition to the network trained using a large-scale generic
image database, and fine-tuned the two pre-trained networks
for face-based age estimation. Wang et al. [76] pre-trained a
network using pairs of real magnetic resonance images and
manual segmentation annotations by radiologists, and fine-
tuned the network for medical image segmentation. Gong
et al. [77] used simulated positron emission tomography
(PET) images to pre-train a network, and fine-tuned the net-
work to improve the quality of PET images.

Similarly, we pre-train our network using large-scale
databases for gait analysis, add some layers to the network,
and then fine-tune the network for the target task. Specifi-
cally, we explore suitable tasks for pre-training in this work
to achieve suitable fine-tuning for the subsequent health in-
dicator estimation.

3. Health Indicators

We briefly introduce the health indicators used in our work.
The indicators are summarized in Table 1. The health
indicators are measured using a body composition meter
InBody270 (InBody Japan Inc.), and the descriptions of the
indicators are as follows:

• Weight, total body water (TBW), protein, minerals,
body fat mass (BFM), soft lean mass (SLM), and skele-

Table 1 Health indicators.

Indicator Abbreviation Unit
Measured value

Mean SD

Weight Weight kg 60.5 12.3
Total Body Water TBW L 33.2 6.90
Protein Protein kg 8.93 1.91
Minerals Minerals kg 3.15 0.64
Soft Lean Mass SLM kg 42.7 8.92
Fat Free Mass FFM kg 45.3 9.44
Skeletal Muscle Mass SMM kg 24.9 5.76
Segmental Mean of Arms LBM MA kg 2.15 0.67
Lean Body Mean of Legs LBM ML kg 7.30 1.72
Mass Trunk LBM T kg 19.2 4.26
Limbs’ Lean Body Mass L LBM kg 18.9 4.71
Body Mass Index BMI kg/m2 22.2 3.53
InBody Score IBS N/A 72.3 5.40
Waist-Hip Ratio WHR N/A 0.812 0.0545
Obesity Degree OD % 103.3 16.0
Body Fat Mass BFM kg 15.2 6.95
Percent Body Fat PBF % 24.7 8.46
Segmental Mean of Arms BFM MA kg 1.00 0.59
Body Fat Mean of Legs BFM ML kg 2.54 1.06
Mass Trunk BFM T kg 7.13 3.62
Visceral Fat Level VFL Level 5.78 3.41

tal muscle mass (SMM) signify the body weight and
the mass of each body composition factor measured di-
rectly. The sum of TBW, protein, minerals, and BFM
is equal to the weight. SLM is the mass of all of the
muscles, and SMM is the mass of muscles to move the
skeleton, which is more directly related to the motor
function. The percent body fat (PBF) is the ratio [%]
of BFM to the body weight.
• Fat free mass (FFM) is calculated as the weight mi-

nus BFM. The basal metabolic rate (BMR), which is
the energy a person consumes daily to sustain vital
activities, can be calculated from the FFM using the
Cunningham equation [78]:

vBMR = 370 + 21.6 × vFFM.

Because the right-hand side of this equation is calcu-
lated using only FFMs and constants, we omit the BMR
estimation.
• Body mass index (BMI) is calculated using weight w

and manually inputted height h by the following equa-
tion:

vBMI = w/h
2.

• InBody score (IBS) is an indicator originally defined by
the manufacturer of the body composition meter, and is
calculated by comparing the measured value and stan-
dard value of BFM and FFM. Obesity degree (OD) is
the ratio of measured weight to standard weight. The
standard weight is dependent on the height.
• Waist-hip ratio (WHR) is the estimated ratio of waist

circumference and hip circumference. Visceral fat
level (VFL) is a grading of visceral fat in the horizon-
tal section of the abdomen around the navel. Both of
these indicators are estimated by the body composition
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meter using the measured data.
• Segmental lean body mass (LBM)/body fat mass

(BFM) refers to the muscle/body fat mass of each
arm/leg and the trunk. The output of the body compo-
sition meter includes the value for each limb. Because
we observe the subject walking from a side view in this
work, it is difficult to distinguish motions derived from
left and right arms/legs. We therefore use an average of
the LBM/BFM over the left and right arms/legs.
• Skeletal muscle index (SMI) evaluates the motor func-

tion and is calculated using the total muscle mass of the
limbs vL LBM and the height h by the following equa-
tion:

vSMI = vL LBM/h
2.

This indicator is output by the body composition me-
ter, but data acquisition errors for some subjects pre-
clude us from including it in our work. We therefore
substitute SMI with the summation of segmental LBM
of the arms and legs to form the limb lean body mass
(L LBM).

4. Health Indicator Estimation Using Gait-Primitive
Networks

4.1 Overview

Figure 1 provides an overview of the proposed method to
estimate the health indicators from a walking video. First,
we design a deep neural network whose input is a gait tem-
plate image (e.g., [41], [45]–[48]) and the output is a gait
primitive (e.g., arm swing, body width). We pre-train this
network using publicly available large-scale gait databases
(e.g., [27]–[29]) and refer to it as a gait primitive network.
Secondly, we design a deep neural network where the input
is the gait template image and the output is the indicators.
We achieve this by adding some layers to the gait primitive
network and fine-tuning it with a limited number of training
data. We describe the details in the following subsections.

Fig. 1 Overview of the proposed method

4.2 Gait Template Image

Gait recognition researchers have proposed a variety of gait
template images such as gait energy image (GEI) [45] a.k.a.
averaged silhouette [79], frequency-domain features [41],
gait flow image [47], chrono-gait image [39], and masked
GEI [48]. Among them, GEI is the most frequently used
method in video-based gait analysis because it is simple yet
effective.

The GEI is obtained by averaging cropped silhouette
images, whose size is 88 by 128 pixels, over one gait period,
as shown in Fig. 1 (see inputs for the network). It encodes
both static body shape (e.g., body part width with white pix-
els) and dynamic motion (e.g., arm swing and leg movement
with grey pixels). There are some literature reported corre-
lations between muscle strength and walking ability, e.g.,
walking speed [80]–[82], which can be considered as cor-
relations between muscle mass (i.e., SLM, SMM, etc.) and
motion characteristics of gait; while others reported corre-
lations between body fat mass (BFM) or percent body fat
(PBF) and body shape parameters such as waist circumfer-
ence [11]–[14]. In addition, the waist-hip ratio (WHR) itself
is an indicator that describes body shape. This suggests that
to estimate all of the indicators, the input data is required
to contain both motion and shape information. The GEI is
therefore suitable as the input for the network to estimate
the health indicators as well as the gait primitives. The GEI
is therefore suitable as the input for the network to estimate
the health indicators as well as the gait primitives.

4.3 Gait Primitives

The gait primitives refer to the fundamental components
describing a subject’s gait characteristics including motion
characteristics, like arm swing, stride, and and the degree
of motion symmetry; pose characteristics, like the degree
of stoop and pitch; and shape characteristics, like height
and body width, etc. To effectively pre-train the network,
the gait primitives must be relevant to the motor function
and the body shape, which are subsequently relevant to the
health indicators. Furthermore, it is preferable to automat-
ically extract the gait primitives without laborious manual
annotation for a large-scale gait database.

Considering these criteria, we select four gait prim-
itives: forward arm swing, backward arm swing, back
straightness, and stride length, as proposed in [83]. These
gait primitives are relevant to motion characteristics of walk-
ing, and are measurable automatically from a cropped sil-
houette sequence. Although relatively simple handcrafted
methods are used to extract these gait primitives [83], their
reliability has been demonstrated through an experience-
based long-run exhibition of video-based gait analysis con-
ducted in a science museum, where over 70,000 visitors
joined the demonstration over approximately one year [84],
[85].

We briefly explain each of the gait primitives in the
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Fig. 2 Measurement of forward and backward arm swing. Reprinted
with permission from Springer [83], COPYRIGHT (2009).

Fig. 3 Measurement of body width. The average row width of the sil-
houette in each region is calculated as the body width

following paragraphs and refer interested readers to [83] for
further details.

• Forward arm swing (FAS) and backward arm
swing (BAS)
The front-end and back-end lines of the torso are ex-
tracted from a cropped silhouette at a single support
phase and then forward/backward arm swing candi-
date regions are set. Areas swept by silhouettes in
the forward/backward arm swing candidate region are
counted as the degree of forward/backward arm swing,
as shown in Fig. 2
• Back straightness (BS)

The back-end line of the torso is extracted and the slope
of the back-end line is regarded as the back straight-
ness. Specifically, if the line is more vertical, the back
is straighter, and a less vertical result signifies stoop.
• Stride length (SL)

The gait period is obtained as the time shift that maxi-
mizes the auto-correlation of the cropped silhouette se-
quence along the temporal axis [41]. The total travel-
ing distance during a walking sequence is computed
by subtracting the start position from the end position,
and the walking speed is then computed by dividing
the total traveling distance by the elapsed time during
the walking sequence. Finally, the stride length is re-
garded as the traveling distance over half of a gait pe-
riod, and hence it is calculated as the product of the
walking speed and half of the gait period.

Furthermore, since the above-mentioned four gait
primitives only contain motion and pose characteristics and
do not contain shape characteristics, we designed an au-
tomatically extracted shape-oriented primitive, i.e., body
width shown in Fig. 3. We first extract an almost static
foreground part of the GEI by thresholding with 75% of

Fig. 4 Structure of the gait primitive network that takes a GEI as input
and outputs the gait primitive. The abbreviations conv, norm, pool, and fc
refer to convolutional layer, normalization layer, pooling layer, and fully
connected layer, respectively. This convention is consistent throughout this
paper. The layers with gray background rectangles are used in fine-tuning.

Table 2 Layer configurations for GEINet. Act. denotes the activation
function.

Layer #Kernels Size/stride Act. Pooling

conv1 81 5 × 5 × 1/1 ReLU
pool1 3 × 3/2 Max pooling
conv2 45 7 × 7 × 81/1 ReLU
pool2 2 × 2/2 Max pooling

the maximum intensity and compute the average width of
the static part for different height ranges: a chest region
(24 ≤ y ≤ 40), a waist region (48 ≤ y ≤ 64), and a hip
region (64 ≤ y ≤ 80).

4.4 Pre-Training the Gait Primitive Network

We used GEINet [54] as the backbone for our gait primi-
tive network. GEINet is a standard convolutional neural net-
work (CNN) and is utilized in tasks such as person identifi-
cation [54], gender classification, and age estimation [17].

The structure of the gait primitive network is almost the
same as the original GEINet [54], as shown in Fig. 4, where
the leading six layers are two sequential triplets of convo-
lution, pooling, and normalization layers, followed by two
fully connected layers. While the last layer outputs 1,024
units in the original GEINet for person identification, the
last layer (fc2) in our gait primitive network outputs only
one unit, because each gait primitive is defined as a scalar
value (i.e., one dimension). The penultimate layer (fc1) out-
puts 1024 units. The other detailed configurations for the
convolution and pooling layers are shown in Table 2, where
the number and size of the kernels are slightly different from
the original GEINet [54] to suit our health indicator estima-
tion task.

Once the gait primitive network structure is designed,
we pre-train each gait primitive network using a training
set composed of pairs of GEIs and each corresponding gait
primitive so as to minimize a loss function, i.e., mean abso-
lute error (MAE) between estimated gait primitives through
the gait primitive network and gait primitives measured by
the handcrafted method in [83] (i.e., a sort of the ground-
truth gait primitives).

4.5 Fine-Tuning the Gait Primitive Network for Health In-
dicator Estimation

We fine-tune the gait primitive networks for health indica-
tor estimation. Because the output from the last layer (fc2)
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Fig. 5 Network structure for health indicator estimation in conjunction
with two gait primitive networks. The outputs from the penultimate layers
of the two gait primitive networks are concatenated and fed into a fully
connected layer to estimate health indicators. The two sets of layers with
gray background rectangles are from the pre-trained primitive networks.

of the gait primitive network is just a single unit (i.e., one
dimension), the output itself does not contain sufficient in-
formation for health indicator estimation. Instead, we uti-
lize the output of the penultimate layer (fc1), which com-
prises 1024-dimensions, for health indicator estimation. The
output from the penultimate layer is fed into a fully con-
nected layer (fc2) to estimate one health indicator. Specif-
ically, we fine-tune the layers from the gait primitive net-
work (i.e., conv1, conv2, fc1) while we train the newly
added fully connected layer fc2 from scratch. For this pur-
pose, we first define the MAE for the health indicator as
LMAE =

1
N

∑N
i=1 |ŷi − yi|, where N is the number of training

data, ŷi and yi are the estimated health indicator through the
network (i.e., an output of fc2) and the ground-truth of the
health indicator for the i-th sample. We then use the LMAE

as the loss function to minimize during network training.
We also use multiple gait primitive networks for further

improvement, as shown in Fig. 5. We concatenate the out-
puts from the penultimate layers of the multiple primitive
networks, and the concatenated feature is fed into a fully
connected layer fc2. Thereafter, we train the network simi-
larly to the aforementioned case of the single gait primitive
network.

Some of the health indicators, such as the body weight
and the mass of various body components, are closely re-
lated to the subject’s height. However, the input to the net-
work (i.e., the GEI) lacks height information because we use
height-normalized cropped silhouettes. The health indica-
tors that are represented by mass in kilograms (e.g., weight
and SLM) and volume in liters (e.g., TBW) are also normal-
ized by the height, specifically, divided by the cubic height,
and height-normalized health indicators are set as estimation
targets. We require the subject’s height information for this
normalization, and hence we assume that the subject pro-
vides the height information or we automatically measure
the subject’s height from a captured image with a calibrated
camera and a ground plane constraint [86]. Once we esti-
mate the height-normalized health indicators, we obtain the
original health indicators by un-normalizing them (i.e., mul-
tiplying by the cubic height).

5. Experiments

5.1 Dataset

We used OU-ISIR Gait Database, Large Population Dataset
with Age (OULP-Age) [29] for pre-training the gait primi-
tive networks. More specifically, we extracted a subset of
40,000 subjects out of 63,846 subjects.

We conducted experiments to collect the data used for
training and evaluating health indicator estimation because
there is no such publicly available database. We conducted
the experiments twice in March 2019 and September 2019,
and recruited a total of 332 subjects (167 females and 165
males). The ages of the subjects range from 8 to 71 years
old, with a mean age of 34.6 years and a standard devia-
tion of 15.6 years. We obtained informed consent from the
subjects to use the data for research purposes.

We asked each subject to walk on a pre-defined course
of approximately 8 meters at his/her natural walking speed
in two sessions: in the morning and in the afternoon. We
thus obtained 653 valid gait videos after removing those
with unnatural walking actions (e.g., touching the head or
hands on the waist while walking). A camera was set up
approximately five-meters away from the walking course to
capture the walking subject from a side view. The captured
walking video’s frame size was 640 by 480 pixels and it con-
tained 30 frames per second (fps) for 2.5 seconds (75 frames
in total). We extracted silhouettes from the original walking
video, cropped the height-normalized silhouettes, and then
extracted the GEIs.

We also measured the health indicators of each sub-
ject using the InBody270 body composition meter. Because
the body composition meter requires the subject’s height to
measure the health indicators, we asked each subject his/her
height in advance. Because of time limitations, each sub-
ject’s health indicators were measured only in one session,
we thus associated the single health indicator measurement
with both GEIs extracted in the two walking sessions for
each subject.

5.2 Setup

We employed 20-fold cross-validation to fine-tune and eval-
uate performance. We randomly divide the entire dataset
into 20 groups with approximately equal number of sub-
jects. We use one group as the validation set, and the rest
as the training set in the fine-tuning. That is, 315 or 316
subjects were used as the training set and 16 or 17 subjects
were used as the validation set.

We evaluated the accuracy using the relative errors of
the health indicators, defined as the ratio of the MAE of
the estimated health indicator to the mean of the measured
(ground-truth) values. This scheme enables us to evaluate
the accuracy despite the varying scales of the different health
indicators.

In the training stage, the size of mini-batches was 128
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and the initial learning rate was set to 0.001. The number
of epochs was set to 200 and 250 for pre-training and fine-
tuning, respectively.

5.3 Benchmarks

Because this is the first work to address health indicator es-
timation from gait, there are no benchmarks for this specific
task. We therefore prepare a suite of benchmarks for this
purpose.

Firstly, to verify the effectiveness of our pre-training
and fine-tuning strategy with the gait primitive networks,
we trained the entire network for health indicator estima-
tion from scratch, denoted as DL (scratch). Note that this is
equivalent to the proposed method without pre-training.

Secondly, to verify the effectiveness of the gait prim-
itives for pre-training, we pre-trained the network using an
auto-encoder (see Fig. 6) to minimize the reconstruction er-
rors of the GEIs. The pre-trained encoder part of the net-
work, whose structure is identical to that of the gait prim-
itive network except for the absence of the last layer (fc2),
was used for fine-tuning in the same way as the proposed
method, and is denoted as DL (auto-encoder + fine-tuning).

Finally, we employed support vector regression (SVR)
as a family of classical machine learning. The classical

Fig. 6 Network structure of the auto-encoder. The abbreviation upsamp
indicates an upsampling layer. We used the encoder part (layers with gray
background rectangles) for fine-tuning.

Fig. 7 Comparison of the relative errors among the gait primitives with motion/pose characteristics.
Hatched colored bars indicate a single gait primitive, while solid colored bars indicate combinations of
two gait primitives. The solid black bar indicates all four gait primitives.

machine learning usually works better even with less num-
ber of training data than deep learning-based approaches,
while its capability is usually inferior to the deep learning-
based approaches. We therefore investigated the trade-off
between the number of training data and the capability by
comparing the proposed method with SVR.

5.4 Ablation Studies on Gait Primitives

We conducted ablation studies to determine the best use
schema of the primitive networks.

For the gait primitives with motion and pose character-
istics, we report the relative errors for particular health in-
dicators when each single gait primitive is used, each com-
bination of two gait primitives are used, and all four gait
primitives are used in Fig. 7. We see that the estimation er-
ror increases significantly when we pre-train the networks
with the step length gait primitive. The estimation errors
using the other gait primitives did not show significant vari-
ation. Furthermore, pre-training using all of the gait primi-
tives does not outperform dual network combinations (e.g.,
FAS + BAS). Therefore, considering cost-effectiveness, we
selected the dual network combination yielding the high-
est accuracy — forward/backward arm swing — as the best
schema.

On the other hand, for the gait primitives with shape
characteristics, we similarly report the relative errors when
pre-training using single, dual or all the three regional body
widths as gait primitives in Fig. 8. We found that combining
multiple primitive networks resulted in marginal improve-
ment in accuracy when using gait primitives with shape
characteristics. Therefore, we chose the body width of the
hip region, with the lowest error among the single primi-
tives, as the best schema.

We compare the original MAEs and relative errors of
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Fig. 8 Comparison of the relative errors among the gait primitives with shape characteristics. Same
as Fig. 7, hatched colored bars indicate a single gait primitive, while solid colored bars indicate combi-
nations of two gait primitives. The solid black bar indicates all three gait primitives.

Table 3 MAEs and relative errors of the proposed method of using
gait primitive with motion/pose characteristics and shape characteristics,
respectively

Indicator
Mean MAE Relative error

Motion/pose Shape Motion/pose Shape

Weight 3.63 3.04 6.00% 5.02%
TBW 1.84 1.62 5.54% 4.86%
Protein 0.53 0.46 5.90% 5.12%
Minerals 0.18 0.16 5.69% 4.95%
SLM 2.30 2.09 5.39% 4.89%
FFM 2.45 2.20 5.41% 4.86%
SMM 1.53 1.41 6.15% 5.63%
LBM MA 0.21 0.20 9.89% 9.24%
LBM ML 0.43 0.37 5.94% 5.02%
LBM T 1.15 1.06 6.00% 5.50%
L LBM 1.20 1.05 6.37% 5.58%
BMI 1.47 1.30 6.64% 5.85%
IBS 3.89 3.34 5.38% 4.62%
WHR 0.03 0.03 4.21% 3.63%
OD 6.51 5.84 6.30% 5.65%
BFM 2.80 2.57 18.40% 16.93%
PBF 3.72 3.43 15.03% 13.87%
BFM MA 0.23 0.22 23.41% 22.18%
BFM ML 0.43 0.41 16.95% 16.12%
BFM T 1.51 1.37 21.14% 19.14%
VFL 1.51 1.40 26.14% 24.27%

the two best schemas in Table 3. The comparison shows
that pretraining using gait primitives with shape character-
istics results in smaller errors in all indicators than using
those with motion characteristics. We also tried to com-
bine the primitive networks of the two best schemas (see
Fig. 9), but no significant improvement in accuracy was ob-
tained. Therefore, we decided to use the gait primitives with
shape features, i.e., hip region body width, as the proposed
method.

On the other hand, we see that the proposed method
with the body shape-oriented gait primitive can relatively

Fig. 9 Comparison of the respective best schemes for gait primitives
with motion/pose characteristics and shape characteristics, and their com-
binations. The “shape” one is body wide in the hip region and the “mo-
tion/pose” one is the combination of forward and backward arm swing.

accurately estimate the health indicators other than body fat-
relevant ones (i.e., the relative errors are approximately 5%).
However, the indicators related to body fat show higher
errors (e.g., from 15 to 30% error) than the other indica-
tors. We hypothesize that this may be related to the sub-
jects’ clothing — participants in the experiment conducted
in March generally wore thicker clothing, and their body
shape would have been obscured and not properly repre-
sented by the silhouette. Furthermore, since the body com-
position meter needs to ensure that the sum of TBW, protein,
minerals and BFM output is exactly equal to the weight, it
is possible that the measured weight minus the first three
values will be used as the BFM measurement; and the devi-
ation of the measured weight of the subjects will also vary
due to the different clothing. Further validation is therefore



1686
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.10 OCTOBER 2021

Fig. 10 Comparison of the relative errors with the benchmarks.

still needed in future.

5.5 Comparison with Benchmarks

We evaluated the relative errors among the benchmarks as
shown in Fig. 10. SVR (i.e., a classical machine learning
technique) underperforms compared to deep learning from
scratch for body fat-related indicators, but these two meth-
ods are comparable for the other indicators. Among the deep
learning methods, deep learning frameworks trained from
scratch show higher estimation errors for most of the indica-
tors as compared to the method that is fine-tuned with auto-
encoder. Furthermore, the proposed deep learning frame-
work fine-tuned with the gait primitive network yields the
highest accuracy. This indicates the effectiveness of the
proposed pre-training and fine-tuning strategy compared to
training from scratch when using a limited number of train-
ing samples for the target task. Also, we observe that it is
essential to pre-train the network with features relevant to
the target task (i.e., gait primitives for health indicator es-
timation) rather than pre-training in a general way (i.e., us-
ing an auto-encoder). Without proper pre-training the deep
learning methods lose their effectiveness and may become
inferior to classical machine learning methods (e.g., while
SVR yields less than 10% error for TBW, pre-training with
auto-encoder yields over 10% error).

5.6 Sensitivity Analysis of the Number of Training Sam-
ples

Because we claim the effectiveness of the proposed method
for a relatively small number of training samples for the tar-
get task, we conducted a sensitivity analysis of the num-
ber of training samples on the accuracy of health indicator
estimation. For this purpose, we evaluated the relative er-
rors of the proposed method for selected health indicators as
we decreased the number of training samples, as shown in

Fig. 11 Sensitivity analysis of the number of training samples on the rel-
ative errors.

Fig. 11. This experiment indicates that the proposed method
can adequately accomplish the target task when the number
of training samples exceeds 100.

5.7 Discussion

Although the proposed method still has some limitations,
such as a large error in estimation of body fat-related indi-
cators, its advantages over existing body composition me-
ters still exist. In our data collection experiments, it took
about 2 minutes per subject to measure health indicators us-
ing a body composition meter, including preparation time
(e.g., taking off and putting on shoes and socks). On the
other hand, it took only took only 6 to 8 seconds per sub-
ject to capture a gait video, i.e., much faster than the body
composition meter. Moreover, while the body composition
meter requires subject’s contact to the device, the gait video
capturing does not require the subject’s contact, which is
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preferable under the situation of the current COVID-19
pandemic.

6. Conclusion

We proposed a method to estimate health indicators related
to body composition using video-based gait analysis by a
deep learning framework. To address the challenge of the
small sample size, we pre-trained the gait primitive net-
works with a large-scale gait database, and fine-tuned them
with a limited number of health indicator training samples.
We confirmed that the proposed method achieved fairly low
relative errors (approximately 5%) for the health indica-
tors other than body fat-relevant ones, and outperformed the
benchmarks.

Future research directions include incorporating age
and gender information for health indicator estimation be-
cause the correlation between these factors is well estab-
lished. In addition, the temporal information of gait is
not exploited by the estimation due to using GEI as input.
Therefore, we will try to use gait features that contain tem-
poral information, e.g., silhouette sequences. Furthermore,
although we used only side-view gait images in this study,
we believe that estimation using data from other view an-
gles is also possible. Since the multi-view large-scale gait
database [29] has been already available, we will try to ex-
tend the proposed method to allow the estimation of health
indicators using an arbitrary-view gait video.
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