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SUMMARY In recent years, federated learning has attracted more and
more attention as it could collaboratively train a global model without gath-
ering the users’ raw data. It has brought many challenges. In this paper, we
proposed layer-based federated learning system with privacy preservation.
We successfully reduced the communication cost by selecting several lay-
ers of the model to upload for global averaging and enhanced the privacy
protection by applying local differential privacy. We evaluated our system
in non independently and identically distributed scenario on three datasets.
Compared with existing works, our solution achieved better performance
in both model accuracy and training time.
key words: federated learning, privacy preservation, parameter selection,
communication-efficient, non-IID data

1. Introduction

In recent years, mobile devices have been widely used, and a
large amount of data is generated locally. It is usually valu-
able but difficult for third parties to obtain as it can lead to
privacy leakage. Thanks to the improvement in both com-
puting power and storage capacity, training on mobile de-
vices has become possible. In 2017, Google proposed fed-
erated learning, which allows clients to train on mobile de-
vices with local data and protect personal privacy by only
uploading the training result (e.g., gradients or parameters)
and also designed Federated Averaging (FedAvg) algorithm
for parameter updating [2].

There is usually one centralized parameter server and
many clients (e.g., smartphones or IoT devices) in a fed-
erated learning system. Firstly, each client trains the lo-
cal model, which is initialized at the beginning with local
data and generates a new local model. Secondly, clients will
send local models to the parameter server for averaging. The
server aggregates all updates, generates a new global model
and sends it back to all clients to update their local models.
The process repeats until reaching the number of epochs or
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the set accuracy.
It brings many challenges as its distributed characteris-

tics. In reality, the network condition for each client is dif-
ferent. Although network and communication technology
have seen a rapid increase, it is still a significant concern in
federated learning due to the heterogeneity among mobile
devices.

Based on the problems mentioned above, we con-
sider both the communication cost and privacy preserva-
tion in federated learning. We designed a novel layer-based
communication-efficient federated learning system with pri-
vacy preservation which is illustrated in Fig. 1. To simplify
the description, we call it our system in the following.

In our system, we proposed layer-based parameter se-
lection method based on the basic structure of convolution
neural network (CNN) to realize communication-efficient.
Moreover, we enhanced privacy protection by adding artifi-
cial noise after the selection process, as Fig. 1 shows. We
use local differential privacy mechanism in our simulation
experiment. Once the layers are selected, clients will add
noise to the selected part of model for privacy concerns. Af-
ter that, these parameters will be sent to the server to update
the global model.

There is an related study called Communication-
Mitigated Federated Learning (CMFL) in [3]. Please note
that they do parameter selection in a model sight, which
means they will select a whole model for transmission or
discard the whole model. They decide that whether the
whole local model or, in other words, the client will take
part in the aggregation step or not by computing the rele-
vance between the local model and global model. The com-
munication time could hardly be reduced because it always
depends on the slowest client in each round of updates, and
the participants still need to upload all model parameters.
That is why we say this method is inefficient and not fine-
grained enough. However, in our layer-based parameter se-
lection method, we can shorten the communication time as
the layer-based selection method could reduce the update
data size by selecting several layers to transmit compared
with CMFL.

In addition to the above two problems in federated
learning, training data generated locally is always non-
independent and identically distributed (non-IID), and it is
mentioned in [4] that keep fitting models with non-IID data
on different devices will eventually degrade the training per-
formance. We design this system to be very flexible. There-
fore, we can combine well with the existing research on non-
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Fig. 1 Comparison of traditional federated learning system and our system

IID training.
We performed experiments on MNIST, Fashion-

MNIST, and CIFAR-10. The non-IID datasets based on the
above three were made to test the non-IID senior. Compared
with traditional federated learning (FL) and CMFL, the re-
sults supported our work and showed the effectiveness of
our system.

Our main contributions are summarized as follows:

1. A novel layer-based communication efficient federated
learning system with privacy protection was proposed.
Our system can shorten the communication time and
reduce the amount of data transferred by the parame-
ter selection process. Moreover, it can enhance users’
privacy by applying local differential privacy.

2. We designed a layer-based parameter selection algo-
rithm based on CMFL. It is more fine-grained than the
one size fits all method in CMFL, and it could signif-
icantly reduce the update data size of each client, thus
accelerating the whole training process. What is more,
the uploaded parts of local models are different for each
client due to the above process. We also designed layer-
based AVG algorithm for global aggregation.

3. Performance evaluation was performed via simulation
experiments of our system in both IID and non-IID
scenarios. We tested on MNIST, Fashion-MNIST, and
CIFAR-10 datasets and analyzed the results carefully.

We structured the reminders as follows: In Sect. 2, we
discuss related researches. Section 3 presents the overall

system design. Section 4 presents the parameter selection
and privacy protection mechanisms and related algorithms.
In Sect. 5, we conduct experiments on both IID and non-IID
data to evaluate our system. Moreover, in Sect. 6, we give
the conclusion.

2. Related Works

2.1 Federated Learning

Google Input Method uses federated learning to do the next
word prediction [5] and also to do the emoji-prediction [6].
BrainTorrent was proposed to train convolutional neural net-
works on medical pictures without gathering the privacy-
sensitive medical data [7]. Similarly, a federated learn-
ing framework was proposed for securely accessing and
meta-analyzing any biomedical data by investigating brain
structural relationships [8]. In financial fields, a federated
learning-based method was proposed to collaboratively train
a shared prediction model for credit risk management [9].

2.2 Communication Cost in Federated Learning

In [10], they explored Deep gradient compression technol-
ogy. In [11], they proposed FedCS to select clients based
on their resource conditions while in [3], they proposed
Communication-Mitigated Federated Learning (CMFL) to
do clients selection.
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2.3 Privacy Preservation in Federated Learning

Although federated learning has avoided the sharing of
clients’ raw data, other uploaded data such as model weights
or gradients may still lead to privacy leaks [12]. Practical
Private Aggregation in Federated Learning with Local Dif-
ferential Privacy (LDP-FL) was proposed in [13]. Similarly,
LDP-Fed was present to solve the problem of applying lo-
cal differential privacy in federated learning model which
consists of high dimensional, continuous values with high
precision [14].

2.4 Training on Non-IID Data

Training on non-IID data will raise challenges both in data
modeling and convergence analyzing of the training proce-
dures [15]. In [16], they discussed the convergence guar-
antee on non-IID data with the assumption of uniformly
bounded gradients. In addition, a data-sharing strategy was
proposed to create a small subset of globally shared data to
improve training performance with heterogeneous data [17].

3. System Design

We describe the models and design of our system in this sec-
tion. To begin with, we will introduce the threat model in
our system. In addition, specific modules of the server and
the client will be discussed, functions and the workflow be-
tween them will also be declared. Specific to the algorithms
of averaging, parameter selection, and privacy preservation,
will be introduced in detail in Sect. 4.

3.1 Threat Model

The membership inference attack in federated learning
could be mounted by an adversary who attempts to infer
whether a specific piece of data is part of the training set
of either a specific or any client [18]. In reality, the central
server could also be an adversary to reveal private informa-
tion through parameter updates, and we consider that both
server and clients are untrustworthy.

3.2 Modules in the System

There is a parameter server located in the cloud in our sys-
tem, and there are n clients participating in training. The
client means mobile devices, which could be smartphones,
computers, IoT devices, and so on. As Fig. 2 illustrates, the
system could be divided into two sides, the client side and
the server side.

On the client side, each client mainly has three mod-
ules, namely trainer, selector, and protector. Trainer is the
first module and the head of the workflow on mobile de-
vices. It is responsible for training local models with local
data and maintaining the models. After that, the local model

Fig. 2 System design

will be sent to selector. Selector is responsible for layer-
based parameter selection. Then, the selected layers of the
model will be passed to protector. Protector will perturb
the data and then send local updates (selected and processed
part of local model) to the parameter server.

On the server side, there is one key module called ag-
gregator. The aggregator will weighted average the local up-
dates received from clients to generate a new global model
and then send it back to all clients to update their local mod-
els.

4. Algorithms Design

Here we will firstly introduce the Layer-based AVG algo-
rithm. And then we will focus on the parameter selection
and privacy preservation algorithms. The principally used
symbols were listed with the notations in Table 1.

4.1 Layer-Based AVG Algorithm

Due to the distributed nature and low bandwidth among mo-
bile clients, the amount of data transmitted and the commu-
nication delay could cause huge communication overhead,
which could be a bottleneck in federated training [19]. In
[2], FedAVG was proposed. It allows clients to communi-
cate with the server after training for several rounds locally.
Based on this, we designed Layer-based AVG algorithm.

In the beginning, we randomly select m clients to par-
ticipant in this epoch. Each client will train their local mod-
els with their own data by gradient descent. wi(t) means the
whole local model of client i at epoch t.

As Algorithm 2 illustrates, each client will train their
local models for k rounds. After that, the training result wi(t)
will be regarded as the input of parameter selection.

Later, each client will perform layer-based parameter
selection to select the parameters for global averaging and
generate w′i(t). Moreover, they will do data perturbation to
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Table 1 Variables and symbols

m The number of participants in each epoch.
k Each client trains their local models for k rounds

in each epoch.
wi(t) Local model of client i at epoch t.
w′i (t) The selected part of model of client i at epoch t.
w̃′i (t) The model after data perturbation on w′i (t).
w̃′i j(t) Layer j of the perturbed model w̃′i (t).
w j(t) Layer j of the global model in epoch t.
|Di | The total number of training samples of client i.
L j(t) The set consists of the clients who have selected

layer j for global aggregation at epoch t.

Algorithm 1 Layer-based AVG
1: Initialize all clients’ local models with w0

2: for epoch t = 1, 2, . . . ,T do
3: Randomly select m clients
4: for each client i ∈ [m] in parallel do
5: Local Update(wi(t − 1))
6: w′i (t)← Layer-based Parameter Selection(wi(t))
7: w̃′i (t)← Data Perturbation(w′i (t))
8: end for
9: for each layer j of model in parallel do

10: w j(t)←
∑

i∈L j(t) |Di |w̃′i j(t)∑
i∈L j(t) |Di |

11: end for
12: w(t)← combine each layer’s parameters w j(t)
13: for each client i ∈ [n] in parallel do
14: wi(t)← w(t)
15: end for
16: end for

Algorithm 2 Local Update
1: Input: wi(t − 1), k
2: Initialize variable c with hyperparameter k
3: c = k
4: while c > 0 do
5: wi(t − 1)← wi(t − 1) − η∇Fi(wi(t − 1))
6: c = c − 1
7: end while
8: return wi(t − 1)

protect privacy and generate w̃′i(t) to transfer.
After gathering all clients’ updates, a new global model

will be generated at the server. As line 9 of Algorithm 1 de-
notes, the weighted averaging is also performed in a layer
sight instead of the whole model. It can be easily extended
from the traditional parameter averaging method in feder-
ated learning. Finally, the parameter server will send it back
to all clients to update their local models for the next epoch
of training.

4.2 Layer-Based Parameter Selection Algorithm

This section will explain the design of layer-based parame-
ter selection and the difference between our method and that
in Communication-Mitigated Federated Learning (CMFL).

Convolution neural network (CNN) could be divided
into mainly convolutional layers (CONV), pooling layers

Algorithm 3 Layer-based Parameter Selection
1: Input: wi(t), A(t)
2: for each layer j in model wi(t) in parallel do
3: Calculate r(wi j(t), w j(t)) by following Eq. (3)
4: if r(wi j(t), w j(t)) > A(t) then
5: Layer j is selected for global aggregation
6: Add i into Lj(t)
7: end if
8: end for
9: w′i (t)← Selected layers

10: return w′i (t)

(POOL), activation layers (ReLU) and fully connected lay-
ers (FC), etc [20]–[22]. We designed our layer-based param-
eter selection method based on this structure.

We designed layer-based parameter selection based on
the method in Communication-Mitigated Federated Learn-
ing (CMFL) [3]. In CMFL, they performed selection by
checking the relevance of the local and global model [3].
Next, we will explain the difference between our method
and the existing one.

In CMFL system, they simply compared the whole lo-
cal model with the global model by Eq. (1) and (2).

r(w, w̄) =
1
N

N∑
k

I(sgn(ek), sgn(ēk)) (1)

I(sgn(ek), sgn(ēk)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if ek and ēk are of

the same sign

0, otherwise

(2)

w and w̄ denote the global model and local model while
ek means the element k of the model. A(t) is the fine-
tuned threshold. There are N elements in total. From the
equations, we can see that it is a one size fit all method
in CMFL, and it has to be decided whether to transmit the
whole model. However, different layers of neural network
models have different characters and differ in relevance and
training performance. In order to verify our idea, we did ver-
ification experiments on MNIST with Eq. (1) which showed
that for the parameters of different layers, the relevance be-
tween them and the corresponding layer of the global model
is also different. So it is necessary to evaluate the relevance
in a layer sight.

Compared with that, our layer-based method uses
Eq. (3) to check the relevance.

r(w j, w̄ j) =
1
Nj

N j∑
k

I(sgn(ek), sgn(ēk)) (3)

Similarly, w j and w̄ j mean the layer j of global model
and local model while ek means the element k of this layer.
Nj denotes the number of elements in layer y. And our layer-
based parameter selection has the following advantages.

1. We can check the relevance between local model and
global model in a more fine-grained way as Eq. (3) il-
lustrates. Besides, the simulation results in Sect. 5 also
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Algorithm 4 Data Perturbation
1: Input: w′i (t), function l(x)
2: for each element e ∈ w′i (t) do
3: ẽ← l(e)
4: Replace e as ẽ
5: end for
6: Then, we have
7: w̃′i (t)← w′i (t)
8: return w̃′i (t)

pointed that our layer-based method could reach better
performance.

2. Our layer-based method can significantly reduce the
communication time by selecting several layers to up-
load instead of the whole local model.

3. Our method can improve the stability of the federated
learning system. Selecting part of the local model to
transmit and perturb could reduce computing overhead
and thus can effectively reduce power consumption,
which is very meaningful for mobile devices.

4.3 Data Perturbation Algorithm

Generally, differential privacy and local differential privacy
(LDP) differ in definition and whether the noise is added
locally on the client side or the server side [13]. LDP has
been applied in privacy-preserving data collection by many
companies to deal with the inference attacks against shared
model parameters [14].

Definition 1: (ε-LDP). Where ε > 0, a randomized algo-
rithm l satisfies ε-local differential privacy, if and only if for
any inputs e1, e2 in the finite universe of possible values for
user data e, for any possible output s, we have:

Pr[l(e1) = s]
Pr[l(e2) = s]

≤ eε (4)

In LDP settings, users upload their perturbed data
which is guaranteed to protect x from inference attacks in-
stead of the original data. According to the definition, a
lower ε can guarantee a higher level of privacy.

As Algorithm 4 illustrates, we do data perturbation
on the selected parameters on the client side by applying
Laplace mechanism, which is a general method for preserv-
ing ε-LDP [23]. In line 3 of Algorithm 4, e is the value of
the element in w′i(t). Function l(x) is defined as follows:

l(x) = x + Lap(Δs/ε) (5)

where Δs
ε

is the scale parameter, Δs is the local sensitivity of
clients, and Lap(·) is the Laplace distribution.

5. Experiments

We evaluated our system on three non-IID datasets, namely
MNIST, Fashion-MNIST, and CIFAR-10. We detailed the
settings of our experiments, then evaluated the performance
according to the results.

5.1 Settings

We compared our system with Communication-Mitigated
Federated Learning (CMFL) and traditional federated learn-
ing, which is considered the baseline. To simplify the de-
scription, we call the above our system, CMFL, and FL.

We assume one parameter server and 100 clients partic-
ipating in the Conventional Neural Network (CNN) training
process. In order to control the variables to compare the per-
formance of the system, we specify that the number of ran-
domly selected clients during the training process is 70, and
it will not change. Moreover, the default value of k in Algo-
rithm 2 is one unless we specify it. Also, we applied LDP
to both conventional federated learning system and CMFL.
The data perturbation setting is the same as that in our sys-
tem. For simplicity, LDP is included by default when we
mention CMFL or FL. We use ε = 10 when we compare
the performance of the above three systems for privacy con-
cerns. According to our test in previous work [1], the thresh-
olds we chose for experiments on MNIST, Fashion-MNIST,
and CIFAR-10 are 0.75, 0.65, and 0.4. Then, we use these
thresholds to perform the following experiments.

The datasets and models we used are as follows:

1. MNIST dataset is comprised of 10-class handwritten
digits. We consider a CNN model with two convolution
layers. The shape of the first one is 26 × 26, and it has
32 output channels. The second one is 24 × 24 with
64 output channels. After that, there is a 12 × 12 max
pooling layer with 64 output channels.

2. Fashion-MNIST has the same data size and format as
MNIST [24]. Here we train the same CNN model on
Fashion-MNIST.

3. CIFAR-10 has 50000 training images, and 10000 test-
ing images [25]. We train a CNN model with four con-
volution layers. The first one is 32×32 while the second
one is 30× 30 with the same 32 output channels. Then,
there is a 15 × 15 max pooling layer with 32 output
channels. The third convolution layer is 15 × 15 while
the fourth is 13× 13 with the same 64 output channels.
After that, there is a 6 × 6 max pooling layer with 64
output channels.

Our system was evaluated on different non-IID levels
of three datasets. For the non-IID settings, we introduce the
variable a. When a = 1.0, it denotes that each client has
only one type of data. And a = 0.7 means 70% data of each
client belong to one class, and the remaining data belong
to other classes. When a = 0, the data is independent and
identically distributed.

Finally, we explored the existing solutions to non-IID
problem in federated learning, and conducted experiments
through the pre-training model method proposed in [17].

5.2 Results on Non-IID Training

The three datasets all consist of 10 classes of data. The
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Fig. 3 Accuracy versus non-IID level.

Table 2 Accuracy versus non-IID level a among different federated
learning systems.

a=0 a=0.3 a=0.7 a=1

Our system 0.8502 0.7630 0.3527 0.1100
CMFL 0.8356 0.7206 0.3223 0.1002
FL 0.8213 0.7497 0.4232 0.1101

model we trained is to infer which category the input im-
age belongs to. And accuracy refers to the correct rate of
inference on the test set.

Figure 3 compares the impact of different non-IID lev-
els on three datasets. We tested on conventional FL and
noted the accuracy of the model after training for 50 epochs.
No matter which dataset, the accuracy of our system will
decrease as the non-IID level increases and the downward
trend of accuracy is getting faster and faster.

a = 0 denotes that the data of each client is indepen-
dent and identically distributed. In our datasets settings, it
means each client has ten classes of data. The accuracy of
the model is relatively high compared with other non-IID
levels. When a = 1, it is almost unable to train. The ac-
curacy is approximately equal to 0.1, which is close to ran-
domly selecting.

In Table 2, we tested our system, CMFL and FL on
Fashion-MNIST at the same time. Similarly, the result after
training for 2000 seconds shows that they all have the same
trend.

The performance of the above three systems drops
sharply with the increase of a, and they even reach the point
where it is unable to train when a = 1. We can see that non-
IID is quite a challenge in federated learning and could do
great harm to existing systems. Despite this, our system still
got better performance in the seniors that a = 0 and a = 0.3.
It reached an accuracy of 0.8502 and 0.763, while CMFL
got 0.8356 and0.7206. That is because our system has a
more fine-grained layer-based parameter selection method,
and thus saved the communication time and reach a higher
accuracy after training for the same time.

Fig. 4 Performance comparison for whether the model is pre-trained on
IID data.

With the growth of non-IID levels, the performance gap
between these systems will gradually narrow and is even in-
ferior to traditional federated learning. When completely in-
dependent and identically distributed, the accuracy of these
systems is almost the same. The data distribution is too un-
even, systems’ performance is greatly affected, and the mod-
els’ training may proceed in an unexpected direction so that
it cannot fit well in the continuous training process.

We can clearly see that non-IID is quite a challenge
in federated learning and could do great harm to existing
systems. We will next try the pre-trained model method in
our system.

5.3 Non-IID Training with Pre-Trained Model

In [17], they proposed a strategy for non-IID training by cre-
ating a globally shared small subset of data to generate a
pre-train model. Here we applied this method to our sys-
tem.

To start with, we need to gather a globally shared
dataset. Here we let each client share 10% data to gener-
ate an IID subset. In real life, there are various ways to
construct an auxiliary dataset. For example, interconnected
smart devices in the house can share some data while pro-
tecting privacy. Another example is that clients who trust
each other can share some data. Moreover, a large amount
of data is swapped between heterogeneous sensors and de-
vices every moment as mentioned in [26].

It is also possible to make a dataset more reasonably
based on each person’s data distribution. Here we will not
go deep but focusing on the performance of the pre-trained
method in our system.

We tested on three datasets with the non-IID level a =
0.6. To conduct the pre-trained process, we kept fitting the
model on the auxiliary dataset for ten epochs. After that,
we used it to initialize the local models of all clients. And
then, the federated learning process started and repeated for
50 epochs.

As Fig. 4 shows, training with a pre-trained model
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could always reach a better performance on non-IID data.
When the dataset is more challenging to train, the im-
provement of the pre-training model method is more sig-
nificant. The accuracy on CIFAR-10 is about two times
higher than that without the pre-trained process, while it
improved around 14% and 36% accuracy on MNIST and
Fashion-MNIST, respectively.

6. Conclusion

Communication cost and non-IID data have brought signifi-
cant challenges in federated learning. In this paper, we pre-
sented layer-based communication-efficient federated learn-
ing with privacy preservation. We designed a layer-based
parameter selection method and the layer-based AVG al-
gorithm, which have significantly reduced the communica-
tion cost according to the experiment result. What is more,
we also applied local differential privacy to enhance privacy
protection. Finally, we performed experiments in the non-
IID scenario and tested with a pre-trained model method to
show the effectiveness of our system.

In future work, we will explore more reasonable pa-
rameter selection methods, mainly the setting of thresh-
olds. We will explore more adaptable threshold determina-
tion methods that can change autonomously with the train-
ing process and effects. Moreover, differential privacy is
essentially a trade-off between security and training effects.
How to make better trade-offs to apply to a broader range of
scenarios is also the content of our follow-up research.
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