
272
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.2 FEBRUARY 2022

PAPER Special Section on Blockchain Systems and Applications

BlockCSDN: Towards Blockchain-Based Collaborative Intrusion
Detection in Software Defined Networking∗

Wenjuan LI†,††a), Yu WANG†b), Weizhi MENG†,†††c), Jin LI†d), Nonmembers, and Chunhua SU††††e), Member

SUMMARY To safeguard critical services and assets in a distributed
environment, collaborative intrusion detection systems (CIDSs) are usu-
ally adopted to share necessary data and information among various nodes,
and enhance the detection capability. For simplifying the network man-
agement, software defined networking (SDN) is an emerging platform that
decouples the controller plane from the data plane. Intuitively, SDN can
help lighten the management complexity in CIDSs, and a CIDS can pro-
tect the security of SDN. In practical implementation, trust management is
an important approach to help identify insider attacks (or malicious nodes)
in CIDSs, but the challenge is how to ensure the data integrity when eval-
uating the reputation of a node. Motivated by the recent development of
blockchain technology, in this work, we design BlockCSDN — a frame-
work of blockchain-based collaborative intrusion detection in SDN, and
take the challenge-based CIDS as a study. The experimental results under
both external and internal attacks indicate that using blockchain technology
can benefit the robustness and security of CIDSs and SDN.
key words: collaborative intrusion detection, blockchain technology, soft-
ware defined networking, insider attack, challenge-based trust manage-
ment

1. Introduction

To identify various cyber threats, intrusion detection sys-
tems (IDSs) are an important and essential security mech-
anism by monitoring a target system and network [8], [15].
Typically, an IDS can be categorized into either rule-based
or anomaly-based detection [32]. The former can detect
an unfavorable event via signature matching [22], while the
latter can figure out a malicious event by measuring the
similarity between current profile and the pre-defined pro-
file, i.e., building the profile via machine learning algo-
rithms [37].
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With the increasing architecture complexity of com-
puter networks, collaborative intrusion detection systems
(CIDSs) are believed to be a necessity, which enables the
data shared among all parties for detection enhancement.
For instance, Eskandari et al. [3] introduced Passban, an
IDS that can be deployed on cheap Internet of Things (IoT)
gateways and communicated with edge computing devices
against malicious traffic. However, due to the rapid growth
of IoT devices and the extension of cloud services, network
management would become a difficult and error-prone task.

As a solution, software defined networking (SDN) can
provide dynamic, automated and flexible network manage-
ment by separating the control plane from the data plane,
i.e., it can adjust network-wide traffic flow to meet practi-
cal needs [33]. The centralized controller allows administra-
tors to handle network assets and update network infrastruc-
ture in real-time. According to the IDC report, SDN market
would reach over $12 billion in 2022 [34]. In a SDN-based
CIDS, SDN can ease the management complexity of detec-
tion, while a CIDS can also help protect the security of SDN.
However, insider attacks are still a big threat, due to the dis-
tributed network infrastructure. An attacker can perform an
internal exploit by compromising one of the underlying de-
vices or Virtual Machines (VMs) [12]. In addition, insiders
can spread manipulated data to degrade the detection perfor-
mance, i.e., making faked flows to deceive SDN switches or
controllers [33].

To defeat insider attacks, trust management is an im-
portant solution to check the reputation of a node in CIDSs
or any other distributed environments. For instance, Liu et
al. [14] introduced a trust-based detection scheme using the
K-means classification algorithm to detect internal threats in
an IoT environment. For most current trust-based schemes,
it is still a challenge on how to ensure the integrity and au-
thenticity of shared data and information. With the advent
of blockchain technology, it can be a promising solution
to check the integrity of shared data among different nodes
without the need of a trusted third party [13].

Contributions. Motivated by the advantages of com-
bining SDN-based CIDSs with blockchain, we propose
BlockCSDN, a framework of blockchain-based collaborative
intrusion detection in SDN. The framework can examine the
integrity and the authenticity of exchanged data, which en-
ables improving the robustness of trust management against
insider attacks. The contributions of this work can be sum-
marized as below.
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• We first introduce a framework of blockchain-based
collaborative intrusion detection in SDN, named
BlockCSDN. The blockchain can examine the data in-
tegrity, figure out potentially malicious input, and en-
hance the robustness of establishing a trust relationship
among different nodes in CIDSs. If any malicious data
is found, the SDN controller can quickly inform all
participating nodes according to the information on the
chain.
• As a study, we consider a type of challenge-based

CIDS and detail the framework implementation. The
challenge-based trust management scheme measures
the reputation of a node by sending challenges, and de-
rives a trust value based on the received feedback.
• In the evaluation, we examine the scheme performance

in both a simulated and a real environment, under ex-
ternal and internal attacks. The experimental results
demonstrate the viability and the effectiveness of our
BlockCSDN.

The remaining parts of this work are organized as
follows. Section 2 introduces the related work regarding
SDN, blockchain and CIDSs. Section 3 describes our pro-
posed framework in detail and shows an example based on
challenge-based CIDS. Section 4 evaluates our framework
and analyzes the collected results. Finally, Sect. 5 concludes
this work.

2. Related Work

(1) Trust-Based CIDS.

Collaborative intrusion detection aims to enhance the detec-
tion performance by exchanging the required information
within a network system, but a big threat is insider attack,
where an attacker can exploit network vulnerabilities inside
the environment. For protection, building trust management
is believed to be one of the necessary approaches.

Fung et al. [4] presented a challenge-based CIDS by
sending a kind of message called challenge to examine
the reputation of other nodes. Li et al. [9] introduced a
sensitivity-based CIDS, which applies the notion of intru-
sion sensitivity for evaluating the detection sensitivity of a
detector. To automatically assign the value of sensitivity,
several machine learning classifiers can be used, like SVM
and KNN [16]. By highlighting the importance of expert
nodes, sensitivity-based CIDS can detect malicious nodes
in a fast way, like pollution attack [10]. Veeraiah and Kr-
ishna [28] designed a trust-aware fuzzy clustering and fuzzy
Naive Bayes system, by using several trust factors to predict
the trust value of a node, such as direct trust, indirect trust,
and the recent trust.

(2) Blockchain-Based CIDS.

Due to the potential merits of blockchain, many studies have
started exploring its usage in intrusion detection. An early
CIDS framework [2] was proposed through considering a
set of alarms as transactions in a blockchain. Then, CIDS

nodes can communicate and perform activities via consen-
sus protocols. A more detailed analysis was given by a re-
view [19], which discusses how to combine blockchain with
IDS/CIDS, and what are the main limitations. Blockchain
was believed to be helpful in the aspects of data sharing,
trust management and alarm exchange (ensuring integrity).

A type of anomaly-based CIDS was introduced by
Golomb et al. [5], which used blockchains to help enhance
the performance of anomaly detection. A blockchain- and
rule-based CIDS [11], [38] was then developed, which could
use blockchain to help build a verifiable rule database.
Meng et al. [23] focused on rule-based IDS, and de-
signed a blockchain-enabled single character frequency-
based matching scheme, which can build a verifiable
database of malicious payloads via blockchains. Hu et
al. [5] introduced a blockchain-based CIDS for multimicro-
grid systems, while they only used the blockchain to store
the final detection results. Kanth et al. [6] introduced an
Ethereum blockchain-based CIDS by leveraging pluggable
authentication modules.

(3) SDN-Based Intrusion Detection.

In SDN, Lamb and Heileman [7] presented a concept of
trust-based CIDS that interacts among host, switches, con-
trollers, repositories and applications. Yan et al. [40] in-
troduced a trust framework for SDN, using a reputation
management component to measure the trustworthiness of
others. A system of TruSDn was introduced by Paladi
and Gehrmann [30], which used Intel Software Guard Ex-
tensions (SGX) to enhance the trust in SDN. Meng et
al. [17] introduced a trust-based security mechanism based
on Bayesian inference to defeat insider attacks in a health-
care SDN environment. Their idea is to monitor the traf-
fic status and identify malicious actions. Zhang et al. [41]
explored the use of deep reinforcement learning to estab-
lish a trust relation for connected vehicles using SDN, i.e.,
the controller aims to communicate with vehicles at dis-
crete time steps. Li et al. [12] studied the performance of
challenge-based CIDS in SDN, and found its effectiveness
against insider attacks.

(4) Blockchain, SDN and CIDS.

In the literature, there are not many relevant studies re-
garding the combination of blockchain, SDN and CIDS.
Steichen et al. [36] presented an OpenFlow-based firewall
named ChainGuard, which could secure blockchain-based
SDN by detecting malicious events inside the network. A
snort-based CIDS was introduced by Ujjan et al. [31], which
used SDN to help enhance the detection performance.

The above studies combined SDN-based CIDS with
blockchain, whereas none of them considered a trust-based
CIDS. As aforementioned, trust management is an impor-
tant solution to protect computer networks against insider
attacks. In this work, we therefore aim to bridge this gap
and introduce a framework for blockchain- and trust-based
CIDS in SDN.
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3. Our Framework

Since each of SDN, blockchain, CIDS and trust manage-
ment can contribute to either network management or secu-
rity, the combination of them should be able to complement
each other.

3.1 BlockCSDN

Figure 1 depicts the framework of blockchain-based CIDS
in SDN, called BlockCSDN.

• CIDS. Each CIDS node can connect with each other
and exchange required data or information. A node can
contain several major components such as connection
component (for physical connection), collaboration
component (for information exchange), blockchain
component (for communicating with the chain), and
trust management component (for measuring nodes’
reputation). Based on the requirements, both rule-
based and anomaly-based detection approach can be
deployed in a node.
• Blockchain. A blockchain can be established and up-

dated via consensus protocol and smart contract agreed
among all CIDS nodes. The consensus can be extended
to SDN controller and applications. Based on the con-
crete schemes and requirements, various information
can be chained, e.g., alarms, rules, messages. Intu-
itively, the blockchain ensures the data integrity and
facilitates the information to be visible to other par-
ties. For example, all SDN planes can access the chain
for retrieving expected information. In practical usage,
privacy-preserving techniques can be used to protect
privacy.
• SDN. As introduced earlier, SDN has three layers (or

called planes): application layer, control layer and data
layer. The application layer can deploy customized
applications and security mechanisms. For example,
a trust management application can be deployed here
to guide the controller how to retrieve the information
from both the blockchain and CIDS, and then measure
the network status and a node’s reputation. The con-
troller layer can enforce the security policies and react

Fig. 1 BlockCSDN: the framework of blockchain-based CIDS in SDN.

to malicious nodes and traffic. A CIDS often works
at the data layer to detect various external or internal
attacks, and share the information with both the chain
and the controller.

Hence each of CIDS, blockchain and SDN can com-
plement and work with each other, i.e., the trust manage-
ment can be enhanced by retrieving information from the
chain, and the SDN controller can enforce the policies. The
framework can maintain the merits of SDN, blockchain and
trust-based CIDS.

• Data integrity. This refers to the reliability and trust-
worthiness of shared data. Due to the nature design
of blockchains, the chained data and information are
inherently resistent to the modification (e.g., edition,
deletion), as long as the data has been added to the
chain.
• Efficiency. The framework can ensure the quality of

information shared via consensus in the network and
measure the reputation of each participant. The SDN
controller can take actions immediately when mali-
cious traffic or behavior are detected.
• Dynamicity. Participants (e.g., customers) can config-

ure the software and applications on the controllers,
and easily enforce their demands (e.g., on-demand ser-
vices, access rules), without the need of understanding
the underlying devices in the data plane.
• Privacy. To protect participants’ privacy, the frame-

work allows to implement privacy-preserving schemes
and access control list. Therefore, the blockchain data
can only be visible to authorized parties, who need to
have credentials to recover the data and information.
• Scalability. The framework can scale to a large com-

puter network. This is because most CIDSs are scal-
able, and the SDN itself is developed to help handle
a large amount of network nodes. For blockchains,
scalability (e.g., a high transaction per second) can be
achieved by changing its consensus mechanism or ad-
justing some system parameters.
• Security. As the blockchain enables the integrity and

the trustworthiness of data, it is more difficult for
cyber-attackers to intrude the network and compromise
the in-between channel. With trust management, the
framework can be robust against insider attacks. When
a malicious node is identified, SDN controller can take
a quick response to mitigate the risk.

3.2 An Implementation Instance Based on Challenge-
Based CIDS

To implement the framework, in this work, we consider a
special kind of CIDS — challenge-based CIDS [4], [9], as
it can evaluate the trustworthiness of other nodes via chal-
lenges (a type of message). Figure 2 depicts how to realize
BlockCSDN with challenge-based CIDS.

Node expertise. Similar to previous studies [9], [12],



LI et al.: BLOCKCSDN: TOWARDS BLOCKCHAIN-BASED COLLABORATIVE INTRUSION DETECTION IN SOFTWARE DEFINED NETWORKING
275

Fig. 2 Implementation instance of BlockCSDN with challenge-based
CIDS.

this work considers three expert levels of a node: low (0.1),
medium (0.5) and high (0.95). A beta function is used to
model the expertise of an IDS node:

f (p′|α, β) = 1
B(α, β)

p′α−1(1 − p′) β−1

B(α, β) =
∫ 1

0
t α−1(1 − t) β−1dt

(1)

where p′ (∈ [0, 1]) indicates the probability of an attack
checked by the IDS. f (p′|α, β) indicates the probability that
a node with expertise level l responses with a value of p′ to
an attack of difficulty level of d (∈ [0, 1]). A bigger value of
l indicates a higher probability of correctly detecting an at-
tack and a bigger value of d indicates that an attack is more
difficult to find. The setting of α and β can refer to [4], [9]:

α = 1 +
l(1 − d)
d(1 − l)

r

β = 1 +
l(1 − d)
d(1 − l)

(1 − r)
(2)

where r ∈ {0, 1} indicates the expected output. For a fixed
level of detection difficulty, the node with a higher level of
expertise can achieve higher probability of correctly detect-
ing an attack.

Trust evaluation at nodes. To measure the trustwor-
thiness of a node, a testing node can send a challenge to
another node using a random generation process, and then
check its satisfaction level by comparing the received feed-
back with the expected feedback. We can derive the reputa-
tion of a node i according to node j as follows:

T j
i =

⎛⎜⎜⎜⎜⎜⎝ws

∑n
k=0 F j,i

k λ
tk∑n

k=0 λ
tk
− Ts

⎞⎟⎟⎟⎟⎟⎠ (1 − x)d + Ts (3)

where F j,i
k ∈ [0, 1] indicates the score of the received feed-

back k and n is the total number of feedback. λ is a forgetting
factor that assigns less weight to older feedback. ws means
a significant weight relying on the total number of received
feedback, if there is only a few feedback under a certain

minimum m, then ws =
∑n

k=0 λ
tk

m ; otherwise ws = 1. x is the
percentage of “don’t know” answers during a time period.
d is a positive incentive parameter to control the severity of
punishment to “don’t know” replies.

Satisfaction evaluation. The satisfaction level can be
measured based on an expected feedback (e ∈ [0, 1]) and an
actual received feedback (r ∈ [0, 1]). A function F (∈ [0, 1])
is built to reflect the satisfaction by measuring the differ-
ence between the received answer and the expected answer
as follows.

F = 1 −
(

e − r
max(c1e, 1 − e)

)c2

e > r (4)

F = 1 −
(

c1(r − e)
max(c1e, 1 − e)

)c2

e ≤ r (5)

where c1 controls the degree of penalty for wrong estimates
and c2 controls the sensitivity of estimation. This work sets
c1 = 1.5 and c2 = 1.

4. Evaluation

This work considers two experiments to study the perfor-
mance under a simulated and a real network environment,
respectively.

4.1 Experiment-1

We first established the SDN environment by means of
Open vSwitch [27] and POX controller [29], and then con-
structed a challenge-based CIDS with 55 nodes (based on
Snort [35]), which were randomly distributed in a 15 × 15
grid region. The challenge-based CIDS encourages nodes to
connect and share information like alarms with each other.
Each node maintains a partner list and the reputation of
newcomers would be Ts = 0.5.

For sending challenges, we suppose that each node can
send a challenge randomly to its partners with an average
rate of ε, according to the previous work [4], [9], [12]. Two
special request frequencies — low and high are adopted.
The request frequency of εl is low for a highly trusted or
highly untrusted node, since their feedback should be very
confident. On the other hand, the request frequency of
εh should be high for others with a trust value around the
threshold. The consortium blockchain was deployed in a
mid-end computer with Intel(R) Core (TM) i5-6300HQ Pro-
cessor, CPU 2.5 GHz and 500 GB storage. There is a need
for 2/3 nodes in the network to sign a block to be appended
to the blockchain. Table 1 summarizes the simulation pa-
rameters. To avoid performance bias, we repeat each exper-
iment for 10 times.

External attack. The purpose of this experiment is
to evaluate the framework performance against external at-
tacks such as flooding attack. We used NetScanTools [25] to
create packets and flood our environment, through randomly
manipulating the IP sources. Figure 3 shows the impact of
flooding attacks on the bandwidth between our framework



276
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.2 FEBRUARY 2022

Table 1 Experimental setup with simulation parameters.

Parameters Value Description

λ 0.9 Forgetting factor
εl 10/day Low request frequency
εh 20/day High request frequency
r 0.8 Trust threshold

Ts 0.5 Trust value for newcomers
m 10 Lower limit of received feedback
d 0.3 Severity of punishment

Fig. 3 The impact of flooding attacks on the bandwidth (Experiment-1).

and OpenFlow (normal condition), with 30 nodes and 55
nodes.

It is found that similar to previous work [1], the band-
width under OpenFlow was reduced very fast during the
flooding period. When the packet-in arrival rate achieved
at around 1200 packets/s and 1400 packets/s, the bandwidth
decreased to below 0.76 and 0.5, respectively. The network
function was compromised (the bandwidth is below 0.1)
when the packet-in arrival rate reached 2400 packets/s. In
the comparison, our framework could mitigate the negative
impact and maintain the bandwidth after a small decrease to
around 1.7. This is because our framework is able to figure
out malicious traffic and make a reaction quickly, through
SDN controllers and blockchain technology.

Insider attack. To examine the framework perfor-
mance against insider attacks, we randomly selected three
expert nodes to perform a betrayal attack, in which a trusted
node turns into a malicious one, i.e., delivering malicious
packets or sending fake alarms. During alarm aggregation,
our framework can examine the received alarms by leverag-
ing the chain, which have to be checked by other nodes.

Figures 4 and 5 demonstrate the average trust value of
malicious nodes and alarm aggregation errors under insider
attack, with 30 nodes and 55 nodes respectively. It is identi-
fied that our framework could detect malicious nodes faster
than the original challenge-based CIDS. This is because the
SDN controller can quickly take actions based on the policy
and emphasize the penalty on malicious events. On the other
hand, our framework could greatly reduce the alarm aggre-
gation errors to below 8%, as compared with over 20% for

Fig. 4 The average trust value of malicious nodes (Experiment-1).

Fig. 5 Alarm aggregation errors under insider attacks (Experiment-1).

the original scheme. The main reason is that our approach
utilizes blockchain technology to check any malicious con-
tent during the consensus process.

4.2 Experiment-2

In this experiment, we collaborated with an IT organization
to further explore and validate the performance of our sys-
tem in a real CIDN environment. There are a total of 60
nodes in the CIDN, while we randomly selected 35 of them
in our evaluation, based on the organization policy. A De-
militarized Zone (DMZ) was set between the Internet and
the internal environment, and Snort was deployed in each
node as IDS detector.

In addition, we adopted the same settings in Table 1,
and the consortium blockchain was deployed in a mid-end
computer with Intel(R) Core (TM) i5-6300HQ Processor,
CPU 2.5 GHz and 500 GB storage. There is a need for 2/3
nodes in the network to sign a block to be appended to the
blockchain.

External attack. Similar to Experiment-1, we used
the NetScanTools to launch the flooding attack, and Fig. 6
shows the impact of flooding attacks. It is seen that the
bandwidth decreased significantly under OpenFlow during
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Fig. 6 The impact of flooding attacks in the real environment
(Experiment-2).

Fig. 7 The average trust value of malicious nodes (Experiment-2).

the flooding attack, while our system can maintain the band-
width over 2 Mb/s. The results validated that OpenFlow-
based environment would be compromised when the packet-
in arrival rate reached 3000, and that our system could mit-
igate the impact of flooding attack, due to the involvement
of SDN controllers and blockchain.

Insider attack. Similarly, we chosen three expert
nodes in a random manner and launched a betrayal attack.
We have the following observations.

• Figure 7 presents the average trust value of malicious
nodes in the real environment. It is observed that our
approach could identify malicious nodes quickly and
reduce the reputation sharply. This validates the effec-
tiveness of SDN when enforcing the policies and rules.
• Figure 8 depicts the errors caused during alarm aggre-

gation. It is found that our framework could control
both error rates below 7.5%, as compared with 25% in
the original challenge-based scheme.

Our results validate the use of blockchain in figuring
out untruthful alarms, and our approach could provide much
better performance than the original scheme.

Fig. 8 Alarm aggregation errors under insider attacks (Experiment-2).

4.3 Discussion

Our experimental results are positive in a practical environ-
ment, some more properties and features could be consid-
ered.

• Communication workload. To make all components
and parties collaborated with each other, our frame-
work may cause some additional communication load
to each CIDS node and the whole network environ-
ment. This is an important topic that can be explored
in our future study.
• Advanced attack evaluation. This work mainly con-

siders some intuitive attacks to test the viability of our
framework. One of our future directions is to explore
the framework performance against advanced external
and internal attacks. Furthermore, we plan to provide
a large comparison with similar approaches and plat-
forms.
• Privacy issue. Due to the GDPR enforcement in Eu-

rope, privacy issue has received much more attention.
For example, an IDS may monitor the whole environ-
ment and collect as much information as possible to
identify malicious events. How to ensure the proper
usage of such collected information should be consid-
ered in future.

5. Conclusion

In this work, we advocate the advantage by combining
blockchain, SDN and CIDS, and then design a general
framework of blockchain-based collaborative intrusion de-
tection in SDN, shortly BlockCSDN. We show an imple-
mentation instance with challenge-based CIDS, and per-
formed two experiments to investigate its performance in a
simulated and a real network environment, respectively. The
experimental results demonstrate the viability and the effec-
tiveness of our approach in defeating insider attacks, main-
taining network bandwidth and enhancing the robustness of
alarm aggregation.
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