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Does Student-Submission Allocation Affect Peer Assessment
Accuracy?
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SUMMARY Peer assessment in education has pedagogical benefits and
is a promising method for grading a large number of submissions. At
the same time, student reliability has been regarded as a problem; conse-
quently, various methods of estimating highly reliable grades from scores
given by multiple students have been proposed. Under most of the exist-
ing methods, a nonadaptive allocation pattern, which performs allocation
in advance, is assumed. In this study, we analyze the effect of student-
submission allocation on score estimation in peer assessment under a non-
adaptive allocation setting. We examine three types of nonadaptive alloca-
tion methods, random allocation, circular allocation and group allocation,
which are considered the commonly used approaches among the existing
nonadaptive peer assessment methods. Through simulation experiments,
we show that circular allocation and group allocation tend to yield lower
accuracy than random allocation. Then, we utilize this result to improve
the existing adaptive allocation method, which performs allocation and as-
sessment in parallel and tends to make similar allocation result to circular
allocation. We propose the method to replace part of the allocation with
random allocation, and show that the method is effective through experi-
ments.
key words: peer assessment, statistical models, MOOCs

1. Introduction

Recently, online education platforms such as massive open
online courses (MOOCs), in which a larger number of stu-
dents participate in a single online class than in a conven-
tional offline class, have become popular. For such large
classes, peer assessment is a promising method for review-
ing open-ended assignments, such as design problems and
essays, which are difficult to review in an automated man-
ner [1], [2]. In peer assessment, the number of submissions a
student reviews does not depend on the total number of stu-
dents because a large number of students review the work
of other students instead of these reviews being performed
by a small number of teachers or TAs. In other words, peer
assessment offers scalability in such scenarios.

However, peer assessment has a problem of low relia-
bility because it relies on students’ reviews. Therefore, in
peer assessment, a reviewing criterion called a rubric is of-
ten used, and a single student’s submission is reviewed by
multiple other students [3], [4]. In addition, methods of us-
ing statistical models to estimate a single reliable score by
combining the scores given by multiple students have been
proposed [1], [2], [5], [6]. However, the related studies have
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not focused on student-submission allocation, which could
affect the score estimation.

In this study, we analyze the effect of nonadaptive
student-submission allocation, which performs allocation in
advance, on score estimation in peer assessment. Note that
we assume each student’s reviewing ability is unknown and
there is no information other than the scores given by each
student.

For the analysis, we focus on nonadaptive student-
submission allocation patterns that satisfy the following
conditions:

1. A student cannot grade his or her own submission.
2. A student cannot grade the same submission twice.
3. Each student reviews the same total number of submis-

sions, and each submission is reviewed by the same
total number of students.

We call these conditions the basic principles of student-
submission allocation. Note that we refer to the number
of submissions a student reviews as the “reviewing num-
ber” and to the number of students who review a submission
as the “reviewed number”. The first and second of the ba-
sic principles are obvious. The third is generally applied to
avoid unfairness in the reviewing number and the reviewed
number among the students.

We analyze three allocation methods: random alloca-
tion, circular allocation, and group allocation. These alloca-
tion methods are depicted in Fig. 1. Each node represents a
student; the left side of each bipartite graph represents the
reviewers, and the right side represents the reviewees. Note
that nodes to which the same ID is assigned on the left side
and the right side represent the same student. Each edge
drawn from a reviewer to a reviewee represents a student-
submission allocation. For example, in Fig. 1 (a), the stu-
dent with ID 1 reviews the submissions of the students with
ID 4 and ID 5. In Fig. 1, each student’s reviewing number
and reviewed number are 2, satisfying the third condition
described above.

Figure 1 (a) illustrates random allocation. Random al-
location is a method of simply allocating students to sub-
missions randomly while satisfying the above conditions.

Figure 1 (b) illustrates circular allocation. Circular al-
location is a method in which a certain order relation is as-
signed to the students (in this case, an order relation based
on ID), and each student is allocated to review the submis-
sions of the next k students, where k is the reviewing num-
ber. In this figure, the student with ID 1 reviews the submis-
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Fig. 1 Allocation patterns.

sions of the students with ID 2 and ID 3, the student with ID
2 reviews the submissions of the students with ID 3 and ID
4, and so on. This allocation method can easily satisfy the
basic principles and is often used in actual peer assessment.

Figure 1 (c) illustrates group allocation. In group al-
location, the students are divided into several sets, and
student-submission allocations are generated within each
set. In this figure, six students are divided into two sets of
three students each, and allocation is performed within each
of these sets. This method is also often applied to satisfy
the basic principles. More specifically, if each student’s re-
viewing number (and reviewed number) is k, the students
are first divided into sets, each of which consists of k + 1
students. Then, the basic principles can be achieved by allo-
cating each student to all submissions other than his or her
own within his or her assigned group. In addition, group
allocation is often used in an effort to divide a class in con-
sideration of the students’ profiles [7]. Note that, in practical
cases, we cannot standardize the scores of students who be-
long to different groups [8]. In this study, we analyze the
accuracy of group allocation method while avoiding score
standardization among groups, and focus on showing that
the accuracy of score estimation deteriorates as the number
of people per group decreases due to group division.

In the experiments, we applied the above allocation
methods to artificial data and real data and applied a typ-
ical score estimation method proposed by Piech et al. [1].
Then, we compared the allocation methods using the root
mean square error (RMSE) as the evaluation index. Our ex-
perimental results show that circular allocation and group
allocation tend to yield lower accuracy than random alloca-
tion.

In addition, using the above analysis result, we propose
methods to improve accuracy for the existing adaptive allo-
cation method, called RRB [9], which performs allocation
and assessment in parallel and tends to make similar alloca-
tion result to circular allocation. In RRB allocation, an index
called RR imbalance is used as an index of the inequality of
the number of reviews. We propose a method that considers

the trade-off between peer assessment accuracy and RR im-
balance. The RRB allocation algorithm is an adaptive algo-
rithm referring to students’ reviewing order. The proposed
method replaces the RRB allocation algorithm with a ran-
dom allocation at specified intervals. In this study, we con-
duct experiments to confirm the usefulness of the proposed
method using artificial reviewing order data and real review-
ing order data. We perform the evaluation of the proposed
method while changing the frequency of random allocation.
As a result, it is confirmed that the peer assessment accu-
racy can be improved without impairing the RR imbalance
by making a small substitution to the random allocation.

The remainder of this paper is organized as follows.
Section 2 describes related work. In Sect. 3, we show the ex-
perimental results of the effect of student-submission alloca-
tion on score estimation. In Sect. 4, we propose the method
for improving the existing adaptive allocation pattern and
show its effectiveness. Finally, we conclude this work and
suggest future work in Sect. 5.

2. Related Work

This section describes existing research on score estimation
in peer assessment and on student-submission allocation.

2.1 Methods of Score Estimation in Peer Assessment

Early on, only a few studies were conducted in attempts
to improve the accuracy of score estimation in peer assess-
ment [10], but following a study by Piech et al. [1], an in-
creasing number of such studies have emerged. Piech et
al. proposed several statistical score estimation methods for
peer assessment data. They first proposed a basic statis-
tical method (PG1) and then extended PG1 to a method
that exploits the estimation results for different assignments
(PG2). In addition, they extended PG1 to a method based
on the hypothesis that there is a correlation between a stu-
dent’s reviewing ability and the score of that student’s own
submission (PG3). Subsequently, Mi et al. proposed PG4
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and PG5, which extend the relationship between a student’s
reviewing ability and the student’s own score to a proba-
bilistic relationship [11]. In the above studies, the score
estimation methods are based on absolute evaluation, but
methods based on relative evaluation have also been pro-
posed [5], [6], [12], [13]. Research on relative evaluation
has been motivated by the hypothesis that relative evaluation
is easier for humans than absolute evaluation. Other similar
studies include research involving matrix factorization [14]
and work inspired by PageRank [15]. These studies were in-
fluenced by quality control research in the context of crowd-
sourcing [16]–[18]. Most of the above methods focus on the
state of the reviewers for combining the scores by reviewers.
In educational research fields, item response models, which
focus on the reviewees, are often utilized to analyze grad-
ing results. Some item response models that incorporate the
reviewer’s parameters and apply to peer assessment results
have been proposed [19]–[21].

There are also studies that have used data other than
the score data to improve the accuracy of score estimation.
For example, Chan et al. used data on students’ social con-
nections [22], and Sunahase et al. proposed a method using
corrected parts in submissions [2]. In addition, a score es-
timation method for small private online courses (SPOCs),
in which online lessons and offline lessons are conducted in
parallel, is also under discussion [23].

2.2 Allocation Methods for Peer Assessment

In this section, we first focus on research that has considered
the relationship between student-submission allocation and
score estimation in peer assessment. Then, we mention the
existing method that we improve in this study.

Marsico et al. examined whether the topology of the
student-submission allocation graph affects score estimation
in peer assessment and addressed research questions similar
to those of our study [24]. However, Marsico et al. used a
simple Bayesian-network-based model based on scores as-
sessed by teachers [25] and analyzed the effect of propaga-
tion based on teachers’ scores in the student-submission al-
location graph. By contrast, we examine the accuracy of
estimation for a general score estimation method [1], which
does not assume scoring by teachers.

Chan et al. proposed a method of adaptively allocat-
ing students to submissions while sequentially estimating
scores based on the strong assumption that each student’s
reviewing ability is known in advance [26]. Our research as-
sumes that each student’s reviewing ability is unknown and
analyzes the relationship between student-submission allo-
cation and score estimation in a batch estimation setting.

In this research, we improve the existing allocation
method called RRB [9], which makes similar allocation
result to circular allocation. The RRB allocation algo-
rithm solves the imbalance in the number of reviews due
to dropouts. We show the details in Sect. 4.1.

3. Analysis of the Effect of Student-Submission Alloca-
tion on Score Estimation

We analyze the effects of three types of student-submission
allocation on score estimation. This section first describes
the three student-submission allocation algorithms consid-
ered: random allocation, circular allocation, and group al-
location. Then, we introduce the existing score estimation
method applied in our experiments. Finally, we describe the
experiments. We first show the experimental results for the
artificial dataset, and then we present the results for the real
dataset. Note that since the size of the real dataset is small,
the experimental results for the real dataset are less reliable
than the results for the artificial dataset. The reason why we
utilize the small dataset is described in Sect. 3.4.1.

3.1 Allocation Algorithms

This study focuses on student-submission allocation pat-
terns that satisfy the basic principles described in Sect. 1.
The number of students is n, and the reviewing number and
reviewed number are both k (< n). We consider a set of stu-
dents V = {v1, . . . , vn}. Additionally, we consider a graph
with the student set V as the node set, where the set of di-
rected edges of this graph is denoted by E. Note that a di-
rected edge (vi, v j) indicates that student vi is allocated to
review student v j’s submission. The following algorithms
take as input a student set V and a reviewing number (re-
viewed number) k and output an edge set E that represents
the student-submission allocations.

3.1.1 Random Allocation

The random allocation algorithm (algorithm 1) generates al-
locations that satisfy the basic principles randomly. Note
that since the candidates to which a given student vi can be
allocated change during the sequential allocation process,
they are managed by the variable C(vi). Specifically, given
a Graph G(V, E), C(vi) is the set of students, excluding vi
him- or herself, to whom submissions vi have not yet been

Algorithm 1 Random Allocation Algorithm
INPUT: V = {v1, . . . , vn} � a set of n students
INPUT: k � reviewing (reviewed) number
OUTPUT: E � student-submission allocations
1: E ← {}
2: for i← 1 to n do
3: Initialize C(vi)
4: for t ← 1 to k do
5: if C(vi) is empty then
6: go to 1
7: end if
8: v j is selected from C(vi) at random
9: E ← E ∪ {(vi, v j)}

10: Update C(vi)
11: end for
12: end for
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Algorithm 2 Circular Allocation Algorithm
INPUT: V = {v1, . . . , vn} � a set of n students
INPUT: k � reviewing (reviewed) number
OUTPUT: E � student-submission allocations
1: E ← {}
2: for i← 1 to n do
3: for j← 1 to k do
4: E ← E ∪ {(vi, v((i+ j) mod n))}
5: end for
6: end for

Algorithm 3 Group Allocation Algorithm
INPUT: V = {v1, . . . , vn} � a set of n students
INPUT: k � reviewing (reviewed) number
INPUT: d � number of groups
OUTPUT: E � student-submission allocations
1: E ← {}
2: l← n/d � group size
3: for i← 1 to d do
4: V′ ← {v(l·(i−1)+1), . . . , vl·i}
5: E ← E ∪ RandomAllocationAlgorithm(V′, k)
6: end for

allocated and whose submissions have been assigned to be
reviewed by fewer than k students each, as follows:

C(vi) = {v j|v j � vi, (vi, v j) � E,N(v j) < k}
Here, N(v j) represents the number of students who are re-
viewing the submission of vi.

Due to greedy allocation, the candidate set C(vi) may
be empty. For example, when vn is being assigned to sub-
missions and the only candidate submission that is not al-
ready being reviewed by vn is the submission of vn him- or
herself, C(vn) becomes empty. In this case, this algorithm
terminates, as shown in the fifth line, and the allocation pro-
cess repeats from the beginning.

3.1.2 Circular Allocation

The circular allocation algorithm (algorithm 2) allocates a
given student to the submissions of students with adjacent
IDs.

This algorithm differs from the random allocation al-
gorithm in that the output is fixed to one type.

3.1.3 Group Allocation

The group allocation algorithm (algorithm 3) divides stu-
dents into several groups and then performs random alloca-
tion in each group. In the following algorithm, the number
of groups is represented by d. Note that the group allocation
algorithm considers only cases in which n/d is an integer for
simplicity.

If d and k are set such that n/d = k + 1, an algorithm
that satisfies the basic principles can be easily realized in a
manner similar to the circular allocation algorithm.

3.2 Estimation Method

In this study, we focus on the statistical estimation model
known as PG1 [1]. As mentioned in Sect. 2, various score
estimation methods have been proposed, but there are skep-
tical claims that there is actually little difference in accuracy
among these methods [27]. Similar discussions have been
taking place recently with respect to crowdsourcing, which
is a field that is adjacent to peer assessment [28]. Therefore,
in this study, we utilize PG1, which is a basic and represen-
tative method, instead of a more complicated and advanced
method. The details of PG1 are as follows:

(Reliability) τv ∼ G (α0, β0)

(Bias) bv ∼ N
(
0,

1
η0

)

(True score) su ∼ N
(
μ0,

1
γ0

)

(Observed score) zvu ∼ N
(
su + bv,

1
τv

)

G is a gamma distribution with fixed hyperparameters
α0 and β0, while η0 and γ0 are the hyperparameters for the
priors over the biases and true scores, respectively. N means
a normal distribution. τv represents the reliability of student
v, and bv represents the bias of student v. su represents the
true score of the submission created by student u, and zvu rep-
resents the score of the submission of student u as reviewed
by student v. We estimate τv, bv, and su in accordance with
this model given each student’s reviewing scores zvu.

In the estimation process performed in this study,
Gibbs sampling was used, with α0, β0, η0, and γ0 all set
to 1. The number of iterations was 3,000, and the first 1000
iterations were used for burn-in. PyMC3 was used for the
implementation.

3.3 Experiment on the Artificial Dataset

We first explain the artificial dataset used in our experi-
ments. Then, we give an experimental overview and com-
pare the results obtained with the above three algorithms.

3.3.1 Artificial Dataset

For the artificial dataset, we consider a five-level evaluation,
which is a typical situation of assessment, and generate ar-
tificial data from the last formula in Sect. 3.2. τv was gener-
ated as a uniform random number from 1 to 2, bv was gener-
ated as a uniform random number from −1 to 1, and su was
generated as a uniform random number from 1 to 5. Then,
zvu was generated in accordance with the fourth equation of
the PG1 model. Note that the range of su was set to 1 to 5 to
consider a five-level evaluation. In addition, we set τv and bv
such that zvu would vary within approximately one level be-
low or above su. For each simulation, we generated 500 data
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Table 1 RMSE results and their sample standard deviation on the artificial dataset + random alloca-
tion simulation

n PG1(3) PG1(5) PG1(10) avg(3) avg(5) avg(10) PG1/avg(3) PG1/avg(5) PG1/avg(10)

5 0.475 ± 0.169 0.498 ± 0.169 0.967 ± 0.198
10 0.484 ± 0.120 0.373 ± 0.102 0.514 ± 0.118 0.399 ± 0.103 0.948 ± 0.144 0.945 ± 0.162
20 0.482 ± 0.084 0.368 ± 0.065 0.261 ± 0.056 0.521 ± 0.086 0.404 ± 0.070 0.283 ± 0.056 0.930 ± 0.103 0.919 ± 0.130 0.928 ± 0.126
50 0.481 ± 0.052 0.365 ± 0.039 0.250 ± 0.030 0.522 ± 0.055 0.406 ± 0.043 0.288 ± 0.032 0.924 ± 0.067 0.901 ± 0.083 0.869 ± 0.082

100 0.483 ± 0.036 0.362 ± 0.029 0.246 ± 0.020 0.525 ± 0.039 0.406 ± 0.030 0.288 ± 0.022 0.921 ± 0.043 0.892 ± 0.058 0.856 ± 0.063
1000 0.484 ± 0.011 0.362 ± 0.009 0.241 ± 0.006 0.527 ± 0.012 0.408 ± 0.010 0.288 ± 0.007 0.918 ± 0.014 0.887 ± 0.020 0.836 ± 0.020

Table 2 RMSE results and their sample standard deviation on the artificial dataset + circular alloca-
tion simulation

n PG1(3) PG1(5) PG1(10) avg(3) avg(5) avg(10) PG1/avg(3) PG1/avg(5) PG1/avg(10)

5 0.487 ± 0.180 0.513 ± 0.177 0.959 ± 0.199
10 0.483 ± 0.113 0.375 ± 0.103 0.515 ± 0.122 0.397 ± 0.100 0.949 ± 0.137 0.953 ± 0.159
20 0.490 ± 0.084 0.380 ± 0.074 0.263 ± 0.054 0.521 ± 0.085 0.401 ± 0.075 0.283 ± 0.059 0.944 ± 0.092 0.958 ± 0.145 0.938 ± 0.135
50 0.500 ± 0.054 0.383 ± 0.047 0.262 ± 0.034 0.528 ± 0.054 0.406 ± 0.049 0.288 ± 0.040 0.948 ± 0.056 0.947 ± 0.085 0.920 ± 0.116

100 0.498 ± 0.038 0.386 ± 0.033 0.263 ± 0.025 0.525 ± 0.037 0.408 ± 0.032 0.288 ± 0.027 0.949 ± 0.038 0.947 ± 0.060 0.917 ± 0.079
1000 0.500 ± 0.012 0.386 ± 0.011 0.263 ± 0.008 0.528 ± 0.013 0.409 ± 0.011 0.288 ± 0.009 0.947 ± 0.012 0.945 ± 0.019 0.911 ± 0.027

subsets in accordance with the specified number of students
n, reviewing number k, and allocation algorithm.

3.3.2 Experimental Overview

In this section, we first compare random allocation and cir-
cular allocation and then compare random allocation and
group allocation. The simulation results for the artificial
dataset are shown in Tables 1 and 2. In these experiments,
we performed 500 simulations and obtained the average
RMSEs of the estimated values while varying the number
of students n, the reviewing number k, and the allocation
pattern as follows: random allocation (Table 1) or circular
allocation (Table 2).

The reason why we did not explicitly perform group
allocation is as follows. Group allocation is an allocation
method in which the student set is divided into small groups
and then random allocation is performed in each group.
Therefore, when there are two sets of allocations with the
same reviewing number, but one has a larger total number
of students than the other, the one can be interpreted as ran-
dom allocation, while the other can be interpreted as group
allocation. Accordingly, in this study, to evaluate the per-
formance of group allocation, we used the results of random
allocation with a small number of students instead of results
obtained explicitly through group allocation.

Now, let us explain how to read the experimental result
tables using Table 1 as an example. The leftmost column
represents the number of students n, and each row represents
the results obtained using data generated under the assump-
tion of n students. The second to fourth columns (PG1(k),
k = 3, 5, 10) show the average and standard deviation on
RMSEs of the estimated values when PG1 is applied to the
generated 500 subsets of data. The values in the second col-
umn (PG1(3)) are the results for a reviewing number of 3,
the values in the third column (PG1(5)) correspond to k = 5,
and the values in the fourth column (PG1(10)) correspond
to k = 10.

The fifth to seventh columns (avg(k)) show the aver-

age and standard deviation on RMSEs of the simple average
(ŝu =

∑
v zvu/k). These three columns similarly present the

results for k = 3, 5, 10.
The 8th to 10th columns (PG1/avg(k)) show the aver-

age and standard deviation of the values obtained by divid-
ing the RMSE obtained with PG1 by the RMSE obtained
through simple averaging for the 500 data subsets. The rea-
son why we derive not only the average RMSE value of PG1
(PG1(k)) but also the average value of the ratio between the
RMSEs of PG1 and simple averaging is as follows. When
artificial data generated from the same distribution are used,
the expected RMSE value of the simple average is indepen-
dent of n. However, as seen from the avg(k) columns in
Table 1, the RMSE value is smaller when n is smaller. We
consider that sampling error occurred due to the use of the
RMSE, and therefore, we need to normalize out this effect.

First, we will compare random allocation and circular
allocation on artificial data based on Tables 1 and 2. Next,
we will compare random allocation and group allocation us-
ing Table 1.

3.3.3 Random Allocation vs. Circular Allocation

As seen by comparing the values in the corresponding cells
in the PG1/avg columns of Tables 1 and 2, the values in Ta-
ble 1 are smaller in most cases. In particular, as n increases,
the difference becomes larger. This finding indicates that
random allocation is superior to circular allocation.

The cause of this difference in performance might be
explained in the following manner. When we ignore the di-
rection of edges in the allocation graph, the distances be-
tween nodes in the circular allocation graphs generally tend
to be larger than the distances between nodes in the random
allocation graphs. Since the PG1 model can be interpreted
as recursively using adjacent values in the allocation graph
at the time of estimation, it is difficult to use information
from distant nodes for estimation. Thus, the greater the dis-
tance between nodes is, the more adversely the estimation
may be affected.
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Table 3 RMSE results and their sample standard deviations on the real dataset + random allocation
simulation

n PG1(3) PG1(5) PG1(7) avg(3) avg(5) avg(7) PG1/avg(3) PG1/avg(5) PG1/avg(7)

4 1.555 ± 0.486 1.467 ± 0.474 1.080 ± 0.168
6 1.547 ± 0.401 1.349 ± 0.401 1.466 ± 0.385 1.231 ± 0.322 1.066 ± 0.123 1.105 ± 0.172
8 1.582 ± 0.366 1.392 ± 0.318 1.299 ± 0.308 1.493 ± 0.347 1.276 ± 0.273 1.175 ± 0.253 1.066 ± 0.105 1.096 ± 0.142 1.108 ± 0.129
10 1.565 ± 0.339 1.394 ± 0.286 1.258 ± 0.249 1.496 ± 0.327 1.283 ± 0.252 1.153 ± 0.222 1.050 ± 0.097 1.092 ± 0.122 1.096 ± 0.128

3.3.4 Random Allocation vs. Group Allocation

We compare random allocation and group allocation based
on Table 1. As seen from Table 1, the larger n is, the smaller
the values of PG1/avg, indicating that random allocation
without division of the students is superior to group allo-
cation. Considering the recursive estimation method of the
PG1 model, the available information increases as the value
of n increases; hence, PG1 may function more effectively as
a result.

3.4 Experiment on the Real Dataset

We explain the real dataset and then show the experimental
results. The real dataset used in our experiment is small, so
the results for the real dataset are less reliable than those for
the artificial dataset. Note that we did not compare random
allocation with circular allocation using the real dataset.
This is because when the number of students n is small
(e.g., n = 5 or 10), considering the simulation results for the
artificial dataset, there is no significant difference between
random allocation and circular allocation (see the results in
Sect. 3.3.3).

3.4.1 Real Dataset

For the real data, we used an open word pair similarity
dataset [29] whose true score is the gold standard score re-
ported by Miller et al. [30]. Although this dataset was col-
lected in the context of crowdsourcing research, the situa-
tion in which low-skilled workers review multiple tasks is
similar to a peer assessment setting; therefore, it seems rea-
sonable to use it in this experiment. In this dataset, workers
can be interpreted as reviewers, and tasks can be interpreted
as submissions. Note that the set of reviewers and the set of
reviewees who created the submissions are not the same in
this case, but this does not pose a problem for PG1 because
this estimation method does not assume that the reviewer set
and the reviewee set are the same.

In addition, this dataset consists of a total of 300 scores
assigned to all 30 tasks by 10 workers. The data size is
small, but the allocation graph is very dense. When perform-
ing a simulation using the real dataset, restoration extraction
was performed 500 times from the data such that the spec-
ified n and k were satisfied. Therefore, it was desirable for
the allocation graph of the original dataset to be tightly con-
nected, but it was difficult to create a large amount of data
with such an allocation graph. Hence, we considered the
word pair similarity dataset to be suitable for our purposes,

though the size of the dataset is small.

3.4.2 Random Allocation vs. Group Allocation

We perform a comparison between random allocation and
group allocation on the real dataset. The results of the sim-
ulation are shown in Table 3. The approach for reading the
table is the same as in the simulation on the artificial dataset.
We consider the cases of n = 4, 6, 8, 10 and k = 3, 5, 7. The
performance of PG1 is inferior to the performance of the
simple average because the data are too few, but the ratio be-
tween PG1 and the simple average decreases as n increases.
Therefore, it is suggested that random allocation is superior
to group allocation based on this dataset.

All of the experimental results suggest that random al-
location is superior to both circular allocation and group al-
location.

4. Improving the Accuracy for the Existing Adaptive
Allocation Pattern

In this section, we propose a method to improve the accu-
racy for the existing adaptive allocation pattern, which is
called RRB [9], based on the observation that random allo-
cation is superior to circular allocation.

4.1 RRB Algorithm

The RRB allocation algorithm is an adaptive allocation
method to solve the imbalance in the number of reviews due
to dropouts [9]. In the RRB allocation algorithm, students
request to review a submission; then, a submission is allo-
cated to the requesting student. Note that the submission of
the student who contributes the most at each point in time,
that is, the submission of the student whose difference be-
tween his or her reviewing number and reviewed number is
the largest, is allocated with priority.

Let a student performing the i-th request under the
adaptive allocation approach be xi ∈ V . A submission by
a student yi(� xi) ∈ V is allocated to xi before a student xi+1

can request a submission. This allocation is represented by
a directed edge from xi to yi. In the graph Gi, let the set of
students whose submissions are allocated to student v ∈ V
be Ni(v) and N̄i(v) = V \ {Ni(v) ∪ {v}}; then, yi+1 ∈ N̄i(xi+1).
The reviewing number (outdegree) of student v in graph Gi

is defined as δ+i (v)(= |Ni(v)|), and the reviewed number (in-
degree) is defined as δ−i (v). The RRB algorithm determines
yi+1 according to the following formula. Note that yi+1 is
selected randomly when multiple candidates exist.



894
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.5 MAY 2022

yi+1 ∈ arg max
v∈N̄i(xi+1)

(δ+i (v) − δ−i (v))

The RRB algorithm adopts a greedy approach to re-
duce the difference between the reviewing number and the
reviewed number, which is called RR imbalance. When the
t-th allocation is finished, RR imbalance It(V) can be calcu-
lated by the following equation:

It(V) =
∑
v∈V
|δ+t (v) − δ−t (v)|

It is proven that RR imbalance can be limited to a cer-
tain amount when using the RRB algorithm. However, this
allocation method does not take into account the effect on
the peer assessment accuracy. We point out that the RRB
algorithm may have an adverse effect on peer assessment
accuracy.

When students review multiple submissions, students
often review them collectively. Therefore, when applying
the RRB algorithm to practical settings, students are ex-
pected to make requests continuously.

We consider an extreme situation where all students
request submissions in succession. At this time, student-
submission allocation is as shown in Fig. 2. Note that each
node represents a student, and each edge represents the al-
location from the reviewer to the reviewee. Additionally,
in this figure, it is assumed that the students request three
submissions in succession in the clockwise order from the
student with ID 1.

First, before the student with ID 1 requests submis-
sions, the difference between the reviewing number and re-
viewed number of all the students is 0, so three submissions
of other students are randomly allocated to the student with
ID 1. In this figure, we omit the nodes that are selected ran-
domly in the RRB algorithm. In addition, we assume the
submissions of students with IDs 1-6 are not subject to ran-
dom allocation. Subsequently, when the student with ID 2
requests the submission, the difference between the review-
ing number and the reviewed number of the student with ID
1 is the largest (= 3), so the submission of the student with
ID 1 is allocated first to the student with ID 2, and then two
other submissions are randomly allocated. The student with
ID 3 is allocated to the submissions of ID 1 and ID 2 first,
and then one submission is randomly allocated. The student
with ID 4 is allocated to the submissions of ID 1, ID 2 and

Fig. 2 Circular allocation-like example where RRB is applied.

ID 3 with priority. Then, after the student with ID 4, the
requesting student is allocated to the three submissions of
students who request immediately before him- or herself.

In Sect. 3.3, it is pointed out that the allocation method
called circular allocation has an adverse effect on peer as-
sessment accuracy. Circular allocation is a method that as-
signs a certain order relation to students and allocates the
next k students’ submissions to students, where k is the re-
viewing number. The allocation in Fig. 2 is equal to the cir-
cular allocation except for students with IDs 1-3. Therefore,
it is considered that the allocation in Fig. 2 also has an ad-
verse effect on peer assessment accuracy.

4.2 Proposed Method

The proposed method is shown in algorithm 4. Here, V is a
student set, S is a student’s reviewing order, and h is an inter-
val of random allocation. At every h request, the allocation
in the RRB algorithm is replaced with random allocation.

4.3 Experiment

In this experiment, we utilize the reviewing order based on
the real data and the artificial reviewing order and create the
student-submission allocation using the proposed method
while changing the interval h of random allocation. We first
describe the details of the real reviewing order and the ar-
tificial reviewing order and then describe the experimental
results.

4.3.1 Reviewing Order

In this experiment, we use the data published by Can-
vas Network†. Specifically, we utilize those data whose
class ID is 770000832960949 and whose assignment ID is
770000832930436 (denoted as real data 1) and those data
whose class ID is 770000832945340 and assignment ID is
770000832960431 (denoted as real data 2). We construct
the reviewing order using real data based on the time when
the comments were created. Figure 3 shows examples of

Algorithm 4 RRB algorithm with partially random alloca-
tion
INPUT: V = {v1, . . . , vn} � a set of n students
INPUT: S = 〈vi1 , . . . , vim 〉 � reviewing order
INPUT: h � an interval of random allocation
OUTPUT: E � student-submission allocation
1: E ← {}
2: for l← 1 to m do
3: if l mod h == 0 then
4: v j is selected from V \ {vil } at random
5: else
6: v j is selected according to RRB algorithm
7: end if
8: E ← E ∪ {(vil , v j)}
9: end for

†https://dataverse.harvard.edu/dataset.xhtml?persistentId
=doi:10.7910/DVN/XB2TLU
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Fig. 3 A part of a real reviewing order.

Fig. 4 A part of the artificial reviewing order.

extracting part of the real reviewing order.
Each node in Fig. 3 represents a student who reviews a

submission, and nodes of the same color represent the same
student. Real reviewing orders shown in Fig. 3 are both ex-
amples in which students tend to review submissions col-
lectively. Most of the requests are continuous in Fig. 3 (a),
but the requests are alternated in Fig. 3 (b). Such an order in
Fig. 3 (b) can occur when the number of students who make
requests at a specific time is large. This situation occurs fre-
quently in environments with a large number of participants,
such as MOOCs. In this study, the following two artificial
orders are created to consider two extreme cases.

The first artificial reviewing order is a sequence in
which each student requests k times consecutively, assum-
ing that the reviewing number is k (Fig. 4 (a)). Another ar-
tificial reviewing order consists of the steps described in al-
gorithm 5. Figure 4 (b) shows the example of the reviewing
order and how the algorithm works. With this algorithm,
except for the first and last k(k − 1)/2 students, the students
in the set {vi, . . . , vi+k−1}(i = 1, . . . , n − k + 1) are shuffled,
and the submissions are reviewed in order. This algorithm
generates a sequence as shown in Fig. 4(b), which can be
regarded as an extreme case of the order in which students
review alternately.

4.3.2 Experimental Results

We present experimental results for the artificial reviewing
order, and then we show the results for the real reviewing
order. For each reviewing order, we demonstrate the RR
imbalance and estimation accuracy when using the proposed
adaptive allocation method while changing an interval h of
random allocation. We show the estimation accuracy based

Algorithm 5 Create artificial order in which students review
alternately
INPUT: V = {v1, . . . , vn} � a set of n students
INPUT: k � reviewing number
OUTPUT: S � reviewing order
1: S ← 〈〉
2: for i← 1 to k − 1 do
3: S .append(shu f f le(〈v1, . . . , vi〉))
4: end for
5: for i← 1 to n − k + 1 do
6: S .append(shu f f le(〈vi, . . . , vi+k−1〉))
7: end for
8: for i← n − k + 2 to n do
9: S .append(shu f f le(〈vi, . . . , vn〉))

10: end for

on the same setting in the previous section.
The results are shown in Fig. 5, 6 and 7. Each horizon-

tal axis indicates a parameter h-rate that adjusts the size of
an interval h of random allocation. Note that h = 
n · h-
rate�, when n is the number of students. For example, if
n = 36 and h-rate = 0.2, then h = 7. When h is larger than
the length of the reviewing order, our proposed algorithm is
equal to the RRB algorithm. Therefore, we represent the re-
sults of applying the RRB algorithm in the rightmost area in
each figure. The vertical axis indicates the PG1/avg and RR
imbalance, with the blue bar representing PG1/avg and the
green bar representing the RR imbalance. Small values are
preferable for both PG1/avg and RR imbalance.

First, we describe the results when using artificial data.
Figures 5 and 6 show the results when the number of stu-
dents n = 100 and n = 1000, and all the reviewing numbers
are given by k = 5. In addition, each subfigure (a) shows
the results with the order in which students review contin-
uously, and each subfigure (b) shows the results with the
order in which students review alternately.

In most cases, the RR imbalance decreases and
PG1/avg increases as the h-rate increases, that is, the results
of our proposed algorithm approach those of the RRB algo-
rithm. In addition, the peer assessment accuracy (PG1/avg)
is improved without impairing the RR imbalance by mak-
ing a small substitution to the random allocation in some
cases. For example, in Fig. 5, the RR imbalance when the
h-rate is 0.5 is almost the same as that when using RRB, but
the PG1/avg when the h-rate is 0.5 is lower than that when
using RRB.

In each subfigure (a), except when the h-rate is 0.1, the
values of the RR imbalance are similar. However, in each
subfigure (b), the RR imbalance when the h-rate is 0.2 is
clearly larger than that when the h-rate is 0.5. Therefore,
when we focus on the RR imbalance, the proposed method
is considered to be more effective for the order in which stu-
dents review continuously than for the order in which stu-
dents review alternately. On the other hand, when we focus
on the values of PG1/avg, it is difficult to find an obvious dif-
ference between the two experimental results in each figure,
but both results show the same tendency in that the PG1/avg
increases as the h-rate increases.
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Fig. 5 Experimental results with the artificial reviewing order (n = 100, k = 5).

Fig. 6 Experimental results with the artificial reviewing order (n = 1000, k = 5).

Fig. 7 Experimental results with the real reviewing order.

In addition, we describe the experimental results when
using real data (see Fig. 7). Real data 2 shows a similar ten-
dency to the result when using artificial data, but real data 1
shows almost no change in estimation accuracy even if the
h-rate changes. This suggests that the student-submission
allocation on real data 1 created by the RRB algorithm con-
tains enough randomness of allocation. This is because real
data 1 has a large number of students, and the reviewing re-
quests at a specific time are more crowded than the case in
which algorithm 5 is used.

Through this experiment, we demonstrate that the peer
assessment accuracy can be improved without impairing the
RR imbalance by making a small substitution to the random
allocation. How to set an interval h of random allocation
appropriately is our future work.

5. Conclusion

In this study, we analyze the relationships between student-
submission allocation and the accuracy of score estimation.

We reveal the fact that circular allocation and group alloca-
tion, both of which are often used in peer assessment, have
detrimental effects on the estimation results when using a
typical statistical score estimation method. Then, we pro-
pose methods to improve the accuracy of score estimation
for adaptive allocation methods. The proposed methods re-
place part of the allocation with random allocation. This
study asserts the usefulness of the proposed method through
simulation. Since this study offers only experimental results,
we plan to further consider this issue from a theoretical per-
spective in the future.
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