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Implementation of a Multi-Word Compare-and-Swap Operation

without Garbage Collection
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SUMMARY  With the rapid increase in the number of CPU cores, soft-
ware that can utilize these many cores is required. A lock-free algorithm
based on compare-and-swap (CAS) operations is one of the concurrency
control methods to implement such multi-threading software. A multi-word
CAS (MwCAS) operation is an extension of a CAS operation to swap mul-
tiple words atomically. However, we noticed that the performance of the
existing MwCAS implementation is limited because of garbage collection
even if in a low-contention environment. To achieve high performance in
low-contention workloads, we propose a new MwCAS algorithm without
garbage collection. Experimental results show that our approach is three
to five times faster than implementation with garbage collection in low-
contention workloads. Moreover, the performance of the proposed method
is also superior in a high-contention environment.
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1. Introduction

With the rapid increase in the number of CPU cores, soft-
ware that can utilize these many cores is required. In
the case of databases, several transaction engines such as
Silo[1] and HyPer[2] and indexes such as Masstree [3],
ART [4], and P-Tree [5] have been proposed to improve per-
formance by utilizing multi-threads. These implementations
achieve excellent scalability with respect to the number of
cores and provide a baseline for the future software.

A lock-free algorithm [6], [7] is one of the concurrency
controls to implement such multi-threading software. Lock-
free algorithms often utilize a compare-and-swap (CAS) op-
eration, which compares the current value of a target mem-
ory address with a given expected value and then stores a
new value if and only if the two values are the same, to
reduce a conflict-inducing period. Because a CAS opera-
tion is usually prepared as a CPU instruction, carefully im-
plemented lock-free algorithms achieve high scalability by
multi-threads. In the case of indexes, Bw-tree [8], [9] and
BzTree [10] have been proposed as completely lock-free in-
dex structures.

A multi-word CAS (MwCAS) operation is an exten-
sion of a CAS operation that swaps multiple words*atomi-
cally [11]-[14]. Note that the target words are stored on dis-
joint memory addresses. Because it is difficult to imple-
ment a complex data structure with a lock-free feature, it
was expected that using MwCAS operations would simplify
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that task. However, the performance of a MwCAS opera-
tion decreases in a high-contention environment because its
conflict-inducing period is longer than that of a CAS oper-
ation. Since one of the main advantages of using CAS op-
erations is reduction of a conflict-inducing period, MwCAS
operations are not mainstream and are not currently imple-
mented as CPU instructions.

Wang et al. [15] and Arulraj et al. [10] re-examined and
used an MwCAS operation to implement lock-free indexes
in persistent memory. Compared with existing lock-free
data structures such as a lock-free queue [6] and deque [7],
lock-free indexes make a relatively low-contention environ-
ment. For example, in the case of a lock-free queue, en-
queue and dequeue operations always require access to the
same memory addresses (i.e., tail and head pointers), and
these addresses are directly accessed from a queue instance.
In contrast, the CAS target words of lock-free indexes are
distributed to each leaf node, and it is necessary to traverse
a tree structure from its root to access these leaf nodes. This
makes a relatively low-contention environment for MwCAS
operations, and Wang et al. [15] reported that their Bw-tree
implemented by an MwCAS operation performs compara-
bly to the original one [8].

However, we noticed that the performance of Wang
et al’s MwCAS implementation is limited because of
garbage collection even if used in a low-contention envi-
ronment. Their implementation is based on Harris et al.’s
CASN algorithm [11], which uses a MwCAS descriptor to
control each MwCAS operation. The memory space of Mw-
CAS descriptors are allocated dynamically and released in
garbage collection. Wang et al. prepared a pool of Mw-
CAS descriptors in advance to improve performance, but
its garbage collection also degrades both throughput and la-
tency. Consequently, its throughput of single-word CAS is
ten times smaller than that of a standard CAS operation.

To achieve high performance in a low-contention en-
vironment, we propose a new MwCAS algorithm without
garbage collection. We summarize our contributions as fol-
lows.

e We propose a new MwCAS algorithm and remove
garbage collection from its implementation. We im-
plement the proposed method as a C++ library™.

e The experimental results show that our approach is

*A word refers to data of a certain byte length, usually 8 bytes
in the current environment.
“*https://github.com/dbgroup-nagoya-u/mwcas
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three to five times faster than the implementation with
garbage collection in low-contention workloads. More-
over, the performance of the proposed method is also
superior in a high-contention environment.

e The experimental results suggest that the effect of
multi-threading assistance for complex lock-free data
structures is small. This indicates that we must recon-
sider the manner of structure modification in lock-free
indexes.

The rest of this paper is organized as follows. We
present related work in Sect. 2, and in Sect. 3 we introduce
the linearization strategy and Harris et al.’s CASN algo-
rithm as preliminaries. We explain the ideas of the pro-
posed method and a detailed algorithm in Sect.4. We eval-
uate the proposed method experimentally in Sect. 5, and we
conclude the paper in Sect. 6.

2. Related Work

There have been several previous studies on implementing
MwCAS operations [11]-[15].

Harris et al. [11] proposed the first practical algorithm
for implementing an MwCAS operation without special
hardware support, and it was used as a baseline in the sub-
sequent work. Because our algorithm is also based on the
Harris—Fraser—Pratt MwCAS algorithm, we explain the de-
tails later. Wang et al.[15] implemented a persistent Mw-
CAS (PMwCADS) library based on the Harris—Fraser—Pratt
algorithm to support MwCAS operations in persistent mem-
ory. Although their main contribution was persistency sup-
port of an MwCAS operation, their PMwWCAS library can
perform the original algorithm in volatile memory by setting
a compile option. Therefore, we use the PMwCAS library
as a comparison implementation in this paper.

Sundell [12] and Feldman et al.[13] proposed Mw-
CAS algorithms with wait-free features. However, because
their proposed methods are intended to be used in high-
contention workloads such as a lock-free deque, the di-
rection of improvement differs from that of the proposed
method; also, the experimental results of Sundell and Feld-
man et al. showed that their algorithms do not outperform
the Harris—Fraser—Pratt algorithm in a low-contention envi-
ronment.

Guerraoui et al. [14] proposed the AOPT algorithm to
reduce the number of CAS operations for each MwCAS op-
eration. The AOPT algorithm embeds an MwCAS descrip-
tor in target memory addresses, but does not reclaim it. This
approach achieves a k-word CAS operation with k + 1 CAS
operations in the ideal case (i.e., no conflicts occur), but it
increases the cost of reading actual values. That is, if a cer-
tain thread reads some embedded descriptor, it must refer
to the actual value by using the information in the descrip-
tor. Moreover, embedded descriptors must be reclaimed in
garbage collection, and reclamation of each descriptor re-
quires k CAS operations. This means that the AOPT al-
gorithm requires 2k + 1 CAS operations in total, while the
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proposed method can perform a k-word CAS operation with
2k CAS operations in the ideal case.

Although the performance of MwCAS operations de-
creases in high-contention workloads, Wang et al. [15] and
Arulraj et al.[10] proposed the new direction of using an
MwCAS operation with lock-free indexes. For example,
we implemented a lock-free queue by using our MwCAS
library as a test, but it is three to five times slower than
the implementation based on a standard CAS operation [6];
moreover, its throughput decreases as the number of threads
increases. On the other hand, Wang et al. reported that their
Bw-tree based on the PMwCAS library is comparable to
the original one [8], and Arulraj et al. implemented BzTree
by using the PMwCAS library and found that it outper-
formed Bw-tree. These results suggest that using MwCAS
operations in relatively low-contention workloads such as
lock-free indexes is useful for implementing practical multi-
threading software.

3. Preliminaries

In this section, we introduce a basic linearization strategy
for an MwCAS operation and Harris et al.’s CASN algo-
rithm [11]. We use an algorithm in Fig. 1 as a CAS oper-
ation to explain MwCAS algorithms. Note that herein and
in our implementation, we assume that all words are repre-
sented as 8-byte data, but our approach can be adopted with
different word lengths.

3.1 Linearization Strategy

To linearize MwCAS operations, we make the following as-
sumption.

Assumption 1. A set of all CAS candidate words W has a
total order relation <.

In other words, we assume that all target words can be sorted
in a unique order. This assumption can be easily achieved by
using logical memory addresses because logical addresses
(i.e., natural number) have a total order relation and each
word is assigned to one of them. However, we do not rec-
ommend using logical addresses. Since the logical address
of each word is determined at program execution, dynamic
sorting of words arises for each MwCAS operation. As such
dynamic sorting would degrade the entire performance, we
recommend constructing another logical order for each data

Input: addr
Input: expected
Input: desired
Output: word

1 word « aread word from addr

2 if word = expected then

3 L store desired into addr

// a target memory address
// an expected (old) value
// a desired (new) value

4 return word

Fig.1  An algorithm assumed herein to be a compare-and-swap (CAS)
operation.



948
wo: A
¢y} o
Thread wiy: B Thread
) (2)
A 3 wy: A B
ws 3
Embedded
Wa <— Embedding descriptors
Fig.2 Linearization based on embedding descriptors.
structure.

For example, we consider the case of BzTree[10].
BzTree is a lock-free extension of B*-tree and so has a tree
structure. In this case, we can easily order all the target
words by using the following rules.

1. If the target words are in different nodes and the nodes
are in different levels, we select words in the higher
node as previous ones.

2. If the target words are in different nodes and the nodes
are in the same level, we select words in the left node
as previous ones.

3. If the target words are in the same node, we order words
based on BzTree’s node layout.

Because this logical order is determined before program ex-
ecution, BzTree can maximize the performance of MwCAS
operations.

Once the target words are ordered, the idea of lineariza-
tion is less complicated. To swap multi-words atomically,
Harris et al’s CASN operation[11] embeds an MwCAS
descriptor in each word address and swaps them after all
the embedding has been completed (we describe the details
later). That is, if two MwCAS operations have the same tar-
get word, they try to embed their own descriptors in the same
memory address. Only one MwCAS operation can embed
its descriptor successfully because embedding is performed
by a CAS operation. This means that a winning MwCAS
operation will be executed before the others and all the Mw-
CAS operations are linearized in the same way.

Figure 2 shows an example of the linearization in Mw-
CAS operations. Threads A and B have the three-words
{wo, wy, w3} and {wy, w,, w3} as the MwCAS targets, respec-
tively. In Fig.2, we assume that the target words are ar-
ranged from top to bottom, and thus each MwCAS operation
embeds its descriptors in this order. Because threads A and
B have the same targets w, and wj3, they try to embed their
descriptors in w; after embedding their first word (i.e., wo
and wy, respectively). However, because they use a CAS op-
eration to embed their descriptors, only one thread (thread A
in the figure) can embed it successfully. The losing threads
(thread B in the figure) defer their MwCAS operations and
assist the embedded one (thread A’s MwCAS operation in
the figure). When any thread completes the embedded Mw-
CAS operation, the losing threads resume deferred embed-
ding to complete their MwCAS operations.

On the other hand, if Assumption 1 is unsatisfied, then
concurrent MwCAS operations may cause deadlock. In
the case of Fig.3, the target words are not linearized and
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Fig.3 Deadlock due to unsatisfied Assumption 1.

MwCAS status < status address

# of targets desired status

MwCAS targets[] (= UNDECIDED)
- target address target address
- expected value expected value

MwCAS desc. address

- desired value

(a) MwCAS descriptor (b) RDCSS descriptor

Fig.4  Descriptors introduced in [11].

threads A and B perform embedding in the orders of wy <
w; < ws and w; < w3 < wy, respectively. Threads A and
B successfully embed {wp, w,} and {w;, w3}, respectively,
but they find that the descriptors are already embedded in
their final target (w3 and w,, respectively). Consequently,
threads A and B try to assist each other’s MwCAS opera-
tions and cause deadlock.

3.2 CASN Algorithm

We introduce the original MwCAS algorithm briefly to ex-
plain the benefits of the proposed method. Harris et al.’s
CASN operation [11] is based on the above linearization
strategy with two types of descriptor: MwCAS and re-
stricted double-compare single-swap (RDCSS). MwCAS
descriptors are used to linearize MwCAS operations as de-
scribed above, and RDCSS descriptors assist the embedding
MwCAS descriptors in lock-free concurrency control. Fig-
ure 4 shows the layouts of MwCAS and RDCSS descriptors.

An MwCAS descriptor has three components: 1) Mw-
CAS operation status (SUCCEEDED, FAILED, or UNDE-
CIDED), 2) the number of MwCAS targets, and 3) infor-
mation about each MwCAS target (memory address and
expected/desired values). MwCAS status begins with UN-
DECIDED and becomes either SUCCEEDED if embedding
succeeds for every target or FAILED if any of the targets
have changed. An MwCAS target region is implemented
as a static array’, and thus the number of targets is stored
explicitly. Each MwCAS target is expressed as its memory
address, expected (i.e., currently stored) value, and desired
one. This information is used to swap each target in the
CASN operations.

An RDCSS descriptor has three components: 1) the
memory address of the corresponding status of an MwCAS

"We use a static array for the optimal performance. The maxi-
mum number of MwCAS targets is set by a compile option in our
implementation.
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Table1 Control bits and corresponding data.
Control bits  Stored data (remaining 62 bits)
00 an actual value
01 an RDCSS descriptor
10 an MwCAS descriptor

descriptor, 2) the expected MwCAS status (always UNDE-
CIDED), and 3) information for MwCAS descriptor embed-
ding’. As the name implies, an RDCSS operation performs
double-compare to swap a single word. In the case of the
CASN algorithm, an RDCSS operation compares both the
MwCAS status and the target address where an MwCAS
descriptor is to be embedded. First, an RDCSS operation
checks whether its target address has an expected value, and
if so its RDCSS descriptor is embedded there. Second, the
status of a corresponding MwCAS operation is checked, and
an RDCSS operation either embeds an MwCAS descriptor
in the target address if the status is UNDECIDED or re-
verts if the MwCAS operation is already SUCCEEDED or
FAILED.

Note that the CASN algorithm uses the last two bits in
each word to distinguish descriptors from actual values. Ta-
ble 1 lists the control bits and corresponding stored data.
Two zero bits mean that the target memory address con-
tains an actual (i.e., expected or desired) value, and thus any
thread can read its value and embed a descriptor for an RD-
CSS or MwCAS operation. If either bit is set to one, then
the target address already contains a descriptor and a concur-
rent MwCAS operation is being processed. In such a case,
the thread reads the remaining 62 bits and casts them in the
pointer of an MwCAS/RDCSS descriptor. Because each de-
scriptor has sufficient information to execute the same Mw-
CAS/RDCSS operation, a thread performs the embedded
operation to assist it.

4. MwCAS Algorithm without Garbage Collection

In this section, we begin by explaining the problems associ-
ated with Harris et al.’s CASN algorithm and ideas for con-
structing a practical implementation. We then describe the
proposed MwCAS algorithm and its read algorithm in de-
tail.

4.1 Problems with the CASN Algorithm

We can implement an MwCAS operation by using the
CASN algorithm [11], but there are two problems regard-
ing achieving high performance: 1) garbage collection and
2) redundant CAS operations.

First, the CASN algorithm requires garbage collec-
tion for MwCAS descriptors (and RDCSS descriptors with
naive implementations). Every descriptor is embedded in a
corresponding target address, and it may be read by other

"The addresses of an MwCAS descriptor and its status are the
same in Fig. 4, but this depends on the implementation.
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threads. That is, even if a certain MwCAS operation has
finished, any thread may access its descriptor. To prevent
threads from reading freed memory addresses, garbage col-
lection must be implemented. For instance, the PMwCAS li-
brary [15] uses epoch-based garbage collection in its imple-
mentation’. However, such garbage collection causes addi-
tional processes, such as the creation of epochs and the free-
ing of garbage descriptors, and this reduces the overall per-
formance of MwCAS operations in terms of both throughput
and latency.

Second, the CASN algorithm requires at least three
CAS operations to swap a single word. Even if there is no
concurrent MwCAS operation, the CASN algorithm must
embed both RDCSS and MwCAS descriptors. Because
CAS operations must be used for embedding, the maximum
throughput is limited even in a low-contention environment.
Moreover, if some MwCAS operations fail because of con-
currency issues, they must restore old values by using CAS
operations and restart from the embedding RDCSS descrip-
tors. This increases the total number of executed CAS oper-
ations and degrades the performance.

4.2 Findings for Improving MwCAS Implementation

These problems motivated us to implement an MwCAS al-
gorithm without garbage collection. To explain the idea of
excluding garbage collection, we first describe the multi-
threading assistance in lock-free algorithms in detail.

In lock-free algorithms, the assistance of a target op-
eration by multi-threads is adopted in many data structures,
such as Michael’s lock-free queue [6] and deque [7]. To re-
duce conflict-inducing periods, lock-free algorithms usually
allow some threads to read an intermediate state. If a cer-
tain thread reads an intermediate state, it first try to com-
plete the found state before processing its own operation. In
this paper, we refer to such completing intermediate states
by other threads as multi-threading assistance. For exam-
ple, in the case of a lock-free queue, some threads may read
an old (i.e., intermediate) tail node because two CAS op-
erations are required to complete an enqueue. An enqueue
operation swaps the (null) pointer in a current tail node for a
new tail address and then updates a tail pointer. If a certain
thread reads an old tail node, it tries to update a tail pointer
to the latest one, which is reachable from the old tail node,
and continues its own processing. Such multi-threading as-
sistance actively maintains queue consistency and improves
performance.

However, in the case of MwCAS operations, the per-
formance improvement by using multi-threading assistance
is questionable. The assistance in a lock-free queue is to
perform a CAS operation only once, whereas the CASN al-
gorithm requires multiple CAS operations to complete its
assistance. For example, we consider the case of Fig.5.
Threads A and B perform each three-word CAS operation,
and thread A has already embedded its descriptor and com-

"https://github.com/microsoft/pmwcas
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Fig.5 Wasteful assistance of an MwCAS operation.
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Fig.6  An MwCAS descriptor for the proposed method.

pleted swapping two words. Thread B is embedding its de-
scriptor, and it finds the descriptor of thread A in the embed-
ding of the last word. Thus, thread B performs CAS opera-
tions from the first word (i.e., wp) to assist thread A’s Mw-
CAS operation, but it must fail because these words have
been swapped already. Thread A probably swaps its last
word while thread B is wasting its time with such wasteful
swapping. Moreover, the latency of thread B’s MwCAS op-
eration increases because it is required to try to swap all the
words to finish its assistance.

Furthermore, the necessity to use garbage collection is
caused by multi-threading assistance. When a certain thread
assists any MwCAS operation, it must read a correspond-
ing descriptor to swap target data. In other words, if we do
not adopt multi-threading assistance, then there is no need
to read the descriptors themselves because we can use the
control bits to determine whether the descriptors are em-
bedded. This enables us to maintain MwCAS descriptors in
the rule of the RAII (resource acquisition is initialization)
technique [16] and remove garbage collection from our im-
plementation.

4.3 Proposed Algorithms

Based on these findings, we propose an MwCAS algorithm
without multi-threading assistance and garbage collection.
Figure 6 shows the layout of an MwCAS descriptor for the
proposed method. Our descriptor does not have the status of
a corresponding MwCAS operation because our algorithm
does not use an RDCSS operation and its descriptor. The
rest of the components are the same as those of the original
descriptor in Fig. 4. Note that our algorithm uses only one
bit as the control bit because we do not use RDCSS opera-
tions.

Figure 7 shows the proposed MwCAS algorithm,
which has two phases: embedding a descriptor (lines 3-9)
and completing an MwCAS operation (lines 10-14). First,
our algorithm embeds an MwCAS descriptor to reserve the
memory addresses of the target words. Unlike the CASN
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Input: desc // an MwCAS descriptor
Output: boolean // true if MwCAS succeeds
d_addr < a memory address of desc with a control bit
success « true
// Phase 1: embedding a descriptor
foreach r € desc do // t is an MwCAS target
do
‘ cur_w «— CAS(t.addr,t.expected, d_addr)

while cur_w is a descriptor
if cur_w # t.expected then

success «— false

break

[SEC

[ 7 )

// Phase 2: completing MwCAS
10 foreacht € desc do

11 if success = true then

12 ‘ CAS(t.addr,d_addr,t.desired)
13 else

14 L CAS(t.addr,d_addr,t.expected)

15 return success

Fig.7 MwCAS algorithm.

Input: addr
Output: word
do

// a target memory address

word « an atomically read word from addr
while word is a descriptor
return word

AW o o=

Fig.8  Algorithm to read a word from an MwCAS target address.

algorithm, the proposed method uses a spinlock to embed
a descriptor (lines 4-6). The algorithm reads the current
value of a target word (cur_w) as the result of a CAS opera-
tion (line 5). If there is another MwCAS descriptor in cur_w,
the algorithm retries embedding to wait for another MwCAS
operation to finish its processing. If cur_w is not any descrip-
tor, we check whether the value of cur_w is the expected one
(lines 7-9). If cur_w is not an expected value, the MwCAS
operation fails because other threads have already updated a
target word (line 8). Then, our algorithm completes its Mw-
CAS operation according to its status (lines 10-14). If all
the embedding has succeeded, we update the target words
to the desired values (lines 11-12). If any target words have
been modified by other threads, we reset those target words
to the expected (i.e., originally contained) values (lines 13—
14). Finally, the algorithm returns the status of whether the
MwCAS operation has succeeded (line 15).

Note that we also propose an algorithm in Fig. 8 to read
an MwCAS target field. When a certain memory address
is a target of MwCAS operations, a specific read operation
must be used because the memory address may contain an
MwCAS descriptor. Our read algorithm also uses a spinlock
to avoid reading any descriptor (lines 1-3). If a read word is
not a descriptor, the algorithm returns it as a result (line 4).

5. Experiments
In this section, we evaluate the proposed method by using

synthetic datasets. Table 2 summarizes the experimental en-
vironment.
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Table 2  Experimental environment.
Item Value
CPU Intel(R) Xeon(R) Gold 6258R (two sockets)
RAM DIMM DDR4 (Registered) 2933 MHz (16GB x 12)
(0N Ubuntu 20.04.2 LTS

Compiler GNU C++ ver. 9.3.0

We implemented the proposed method and a program
for benchmarking* in C++, and we developed the bench-
marking program for MwCAS operations with the following
features.

o It prepares one million words W as candidates for Mw-
CAS operations. All the words are 8-byte integers and
initialized by zeros. Note that all the words are dis-
tributed to all NUMA nodes for NUMA architecture.

o Each MwCAS operation selects the specified number
of words randomly. Note that we use a parameter « to
control the skew of the k-th word to be selected accord-
ing to Zipf’s law [17]:

1/k®

kia,|W|) = ———.
f( a,|W)) ZL‘/‘:Illl/na

(1)

o Every MwCAS operation reads the current value of
each target word and adds one atomically. If an Mw-
CAS operation fails, it continues its own processing un-
til it succeeds.

o It executes one billion MwCAS operations in total.
When it uses multiple threads for benchmarking, the
MwCAS operations are distributed to each thread
so that the numbers of executions are approximately
equal.

We ran the benchmarking program five times and mea-
sured the average throughput or latency. The following
graphs contain no error bars because the measurement re-
sults are sufficiently stable. Note that we used all the threads
(112 threads) to measure each latency and performed sam-
pling to compute percentile latency, and thus we use one and
ninety-nine percentile latency instead of the minimum and
maximum latency, respectively.

5.1 Performance Degradation Due to Garbage Collection

First, we demonstrate the improvement in performance by
removing garbage collection. To compare the proposed
method with implementations with garbage collection, we
use the PMwCAS library [15] and our implementation’ as
the reproduction of Harris et al.’s CASN algorithm [11] and
Guerraoui et al’s AOPT algorithm [14], respectively. In
the following, we use low-contention (¢ = 0) and high-
contention (&« = 1) workloads. Note that we omit cases in
which the number of target words is not two because the
results show a similar trend.

Thttps://github.com/dbgroup-nagoya-u/mwcas-benchmark
T https://github.com/dbgroup-nagoya-u/mwcas-aopt
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Figures 9 and 10 show the throughput and latency, re-
spectively, of double-word CAS in a low-contention work-
load. These results show that the proposed method is two
to three times faster than the existing MwCAS algorithms in
terms of both throughput and latency. In particular, all the
latency of the proposed method remains less than 1 us, while
those of the PMwCAS library and the AOPT algorithm ex-
ceed 2 and 4 us, respectively, despite the low-contention
workload. The PMwCAS library prepares a pool of Mw-
CAS descriptors to improve its performance, but garbage
collection is executed when all of them have been con-
sumed. Our implementation of the AOPT algorithm uses
expired descriptors in the background, but the reclamation
of embedded descriptors is performed in the foreground for
garbage collection. Such processing related to garbage col-
lection increases the tail percentile latency of the existing
methods and also degrades their throughput.

Figures 11 and 12 show the throughput and latency, re-
spectively, of double-word CAS in a high-contention work-
load. These results show that the performance of the
proposed method remains superior to those of the exist-
ing methods. In other words, there is no effect of multi-
threading assistance at all for MwCAS operations. In a high-
contention workload, because each thread selects the same
target word frequently, they also help each MwCAS opera-
tion to complete quickly. However, the experimental results
indicate that such multi-threading assistance does not pro-
vide a clear performance improvement but rather degrades
the overall performance because of the cost of garbage col-
lection.

T https://github.com/jemalloc/jemalloc
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Fig.12  Comparison with the existing methods on percentile latency of
double-word CAS in a high-contention workload.

5.2 Comparison with CAS Operation

We compare the proposed method with a single CAS oper-
ation (i.e., the std::atomic: :compare_exchange weak
function in C++) to evaluate the fundamental performance
of the proposed method. We continue to use the same
low/high-contention workloads in this experiment. Note
that we also show the results of the PMwCAS library but
omit their explanation because these trends are similar to
the previous ones.

Figures 13 and 14 show the throughput and latency, re-
spectively, of single-word CAS in a low-contention work-
load. Figure 13 shows that the proposed method is twice as
slow than a CAS operation. However, we consider these re-
sults to be reasonable because the proposed method requires
at least two CAS operations because of descriptor embed-
ding. Because Fig. 14 also shows that the percentile latency
of the proposed method is comparable to that of a CAS op-
eration, we conclude from these results that the proposed
method achieves approximately ideal performance in a low-
contention environment.

Figures 15 and 16 show the throughput and latency, re-
spectively, of single-word CAS in a high-contention work-
load. These results indicate that the proposed method be-
comes approximately ten times slower than a CAS opera-
tion with many threads in a high-contention environment.
This is the fundamental limitation of an MwCAS operation
based on descriptor embedding. The proposed method (and
the Harris—Fraser—Pratt CASN algorithm) embeds an Mw-
CAS descriptor to swap each word, and it increases the num-
ber of CAS conflicts. Consequently, the performance of the
proposed method becomes sensitive to skew.

Note that the AOPT algorithm outperforms the pro-
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Fig.16  Comparison with CAS operation on percentile latency of single-
word CAS in a high-contention workload.

posed method in the high-contention workload with single-
word CAS, but this result suggests that multi-threading as-
sistance for lock-free algorithms is only effective for quite
simple data structures. In the case of single-word CAS, the
multi-threading assistance of the AOPT algorithm is only
performed to update a current status of a certain MwCAS
descriptor. That is, if some threads find an UNDECIDED
descriptor, they try to update its status to SUCCEEDED
to assist the found MwCAS operation. This simple assis-
tance is similar to the multi-threading assistance in lock-
free queue and deque implementations. However, when we
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Fig.18 Ninety-nine percentile latency of multi-word CAS in a low-
contention workload.

swap two words by using MwCAS operations, Figs. 11 and
12 show that the AOPT algorithm is inferior to the proposed
method despite the high-contention workload. This suggests
that multi-threading assistance has no effect if it requires
complex procedures such as multiple CAS operations.

5.3 Effects of Parameters

We investigate the effects of two parameters: the number
of MwCAS targets and a skew parameter @. In this experi-
ment, we use all the threads to measure both throughput and
latency.

Figures 17 and 18 show the throughput and ninety-
nine percentile latency, respectively, of MwCAS with vari-
ous numbers of words in a low-contention workload. These
results show that the performance of the proposed method
deteriorates linearly as the number of words is increased.
These results are expected because the ideal (i.e., when no
conflicts occur) computation time of the proposed method is
linear with the number of target words.

Figures 19 and 20 show the throughput and ninety-nine
percentile latency, respectively, of double-word CAS with
various values of the skew parameter. These results show
that the performance of the proposed method remains with
low-contention workloads but decreases drastically when
there are many conflicts. The main cause of the performance
deterioration is the long execution period of MwCAS oper-
ations. Because an MwCAS operation requires all current
(i.e., expected) values of the target words as its input, a pro-
gram needs a preparation step before MwCAS execution.
Because every step (preparation, embedding a descriptor,
and completing an MwCAS operation) is a conflict-inducing
period, the performance is easily reduced by skew.
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Fig.19  Throughput of double-word CAS with various values of the skew
parameter.
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Fig.20  Ninety-nine percentile latency of double-word CAS with various
values of the skew parameter.

6. Conclusion

In this paper, we proposed an algorithm for an MwCAS
operation for low-contention workloads. In the proposed
algorithm, a spinlock is used to linearize concurrent Mw-
CAS operations, and garbage collection has been removed
from its implementation. The experimental results showed
that our approach improves both throughput and latency in
a low-contention environment and retains comparable per-
formance in a high-contention environment. Furthermore,
these results imply that multi-threading assistance has no ef-
fect on complicated lock-free algorithms in practice.

In future work, we intend to extend the proposed
method to persistency support such as PMwCAS [15] and
implement lock-free indexes by using our MwCAS library.
MwCAS operations have performance problems in a high-
contention environment, but they are useful for implement-
ing complex lock-free data structures. Because it is even
more difficult to implement such data structures in persis-
tent memory, persistency support will be a practical exten-
sion. We also intend to implement lock-free indexes such as
Bw-tree [8] and BzTree [10] to investigate their performance
in detail. Although the present experimental results showed
that multi-threading assistance has no effect on MwCAS op-
erations, the lock-free indexes also adopt multi-threading
assistance to perform their structure modification. Because
this may degrade performance, particularly with respect to
latency, we will investigate them by implementing such in-
dexes.
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