
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.9 SEPTEMBER 2022
1557

PAPER

LiNeS Cloud: A Web-Based Hands-On System for Network
Security Classes with Intuitive and Seamless Operability and
Light-Weight Responsiveness∗

Yuichiro TATEIWA†a), Senior Member

SUMMARY We consider network security exercises where students
construct virtual networks with User-mode Linux (UML) virtual machines
and then execute attack and defense activities on these networks. In an
older version of the exercise system, the students accessed the desktop
screens of the remote servers running UMLs with Windows applications
and then built networks by executing UML commands. However, perform-
ing the exercises remotely (e.g., due to the COVID-19 pandemic) resulted
in difficulties due to factors such as the dependency of the work environ-
ment on specific operating systems, narrow-band networks, as well as is-
sues in providing support for configuring UMLs. In this paper, a novel
web-based hands-on system with intuitive and seamless operability and
lightweight responsiveness is proposed in order to allow performing the
considered exercises while avoiding the mentioned shortcomings. The sys-
tem provides web pages for editing device layouts and cable connections by
mouse operations intuitively, web pages connecting to UML terminals, and
web pages for operating X clients running on UMLs. We carried out ex-
periments for evaluating the proposed system on the usability, system per-
formance, and quality of experience. The subjects offered positive assess-
ments on the operability and no negative assessments on the responsive-
ness. As for command inputs in terminals, the response time was shorter
and the traffic was much smaller in comparison with the older system. Fur-
thermore, the exercises using nano required at least 16 kbps bandwidth and
ones using wireshark required at least 2048 kbps bandwidth.
key words: network security, e-learning, virtual machine

1. Introduction

The network security exercise that we considered consist
of two phases bellow. In both phases, the students repeat
constructing networks, executing tools, observing networks,
and reconfiguring networks.

1. The students confirm the roles of network devices and
the effects of tools for attack, diagnostic and so on by
experiments. For example, they build vulnerable net-
works as experimental environments, and then attack
the networks by executing attack tools. Next, they de-
tect the attacks by analyzing system logs with moni-
toring tools. And finally, they place firewalls to the
networks in order to defend them from attacks.

2. The students consider the relationship between the ser-
vice provision and use, the attacks, and the defenses.

Manuscript received November 24, 2021.
Manuscript revised March 25, 2022.
Manuscript publicized June 8, 2022.
†The author is with Nagoya Institute of Technology, Nagoya-

shi, 466–8555 Japan.
∗This is a paper on system development.

a) E-mail: tateiwa@nitech.ac.jp
DOI: 10.1587/transinf.2021EDK0006

They devise stories in which the network administra-
tors and crackers appear, and afterwards, successful at-
tacks and defenses occur, followed by the need to ex-
periment with the attacks or defenses in their networks.
The following example of the stories consists of two
characters and two attacks. A stupid administrator adds
a server with initial password to a network. After a pe-
riod of hours, a cracker successfully intrudes the server
by password cracking, and then he/she attacks another
server from the first server by Dos attack.

User-mode Linux [1] (UML) is a program that runs
on Linux and virtualizes a Linux computer and within it,
uml switch is a tool that works like a switching hub. By
connecting the network interfaces of UMLs to a uml switch,
a virtual network can be realized on their host computer.
Since UML has been developed for a long time (we con-
firmed a version published in 2001), it can be used for net-
work security exercises using security holes that have been
discovered over a long period of time. Furthermore, since
UML is also free to use, it is easy to be adopted in schools.

In the older version of the exercise system, the students
started vSphere Client [2] on Windows personal computers
(PCs) in a laboratory and operated the desktop screen of De-
bian Linux 3.1 running on remote servers with the applica-
tion. Figure 1 shows a virtual network that connects a client
and a server to a switching hub, where the windows of the
client and server are used as their own terminals. The vir-
tual devices are created and connected by executing UML
commands on the Debian Linux terminals.

However, this exercise environment has some short-
comings, as follows.

1. During the COVID-19 pandemic, the importance of
having all participants, students, and instructors in the
same room or facility has dramatically decreased. In
particular, this exercises should be carried on while the
students are at home and not in a lab. However, this
seems to be difficult as setting up an effective work en-
vironment at home raises challenges such as the ones
listed below.

• The operating systems (OSs) that the students
have access to through their PCs and tablets may
not be Windows, so some of them might not be
able to use the application vSphere Client.

Copyright c⃝ 2022 The Institute of Electronics, Information and Communication Engineers



1558
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.9 SEPTEMBER 2022

Fig. 1 Older version of the exercise system.

• Some students might have internet access via
narrow-band networks that may cause difficul-
ties in operating the desktop screens generated by
screen transfer.
• Poor communication with students by phone or

e-mail could cause difficulties for instructors and
assistants in supporting them during the construc-
tion of the exercise environment.

2. Causes such as the following ones could prevent the
students from working on the exercises efficiently.

• Since it is difficult to distinguish between termi-
nals, they may mistakenly operate a host terminal
or another UML terminal instead of the desired
UML terminal.
• The network topologies of virtual networks are

implemented by executing UML commands. The
students may fail to build their virtual networks
quickly and accurately because of difficulties in
designing the command arguments and even due
to typos.
• The students may fail to remember the network

topologies correctly, which could result in unin-
tended tasks. For example, the students find how
to defense attacks with firewalls through trial and
errors. In this work, they place/remove firewalls
to/from various places in their networks. Some
students might doubly place firewalls to the simi-
lar places.

3. Since security holes are plugged as they are discov-
ered, older OSs and tools may be required for the ex-
ercises, depending on the attacks we want the students
to practice. Moreover, newer monitoring tools tend to
be equipped with more features and easier to use UIs.
Additionally, it is desirable for the students to select
tools used for experiments in the second phase of the
considered exercise from the whole tools of the first

phase. For these reasons, we would like to build vir-
tual networks consisting of various versions of UML.
However, the following reasons might prevent this.

• There are cases that the OS running UML (here-
inafter called the host OS) is determined by the
UML version: we confirmed that some newer host
OSs were not able to run older UMLs and vice
versa. Therefore, it is difficult to build virtual net-
works consisting of various versions of UMLs in
a single host OS.
• UMLs and uml switches are not equipped with

functions enabling exclusive connections between
them while running on different host computers.

We proposed a web-based hands-on system LiNeS
Cloud using UML with intuitive and seamless operations
and light-weight responsiveness [3]. This novel system has
the following features.

• It builds virtual networks on remote servers and pro-
vides dynamic web pages for operating the networks.
In addition, both text transfer and screen transfer are
differently employed for communication between the
user interfaces (UIs) and the servers. Consequently, the
students can use the exercise environment comfortably
and easily through browsers (this solves problem (1)).
• It provides dynamic web pages where the students can

edit the topologies of the virtual networks by mouse
operations. Furthermore, UML terminals are mapped
to the networks drawn on the web pages. They enable
the students to intuitively form virtual networks (this
solves problem (2)).
• It builds overlay networks implemented by tunnels that

can forward Ethernet frames between virtual devices
running on various remote servers. This enables the
implementation of virtual networks that contain vari-
ous versions of UMLs (this solves problem (3)).

We proposed the design and implementation of the sys-
tem in [3], described its use in our classes in [4], and dis-
cussed the response time, communication traffic, and user
questionnaire of the system in [5]. In this paper, we dis-
cuss the quality of experience (QoE) in responsiveness for
the network speed between the UIs and the remote servers,
in addition to the contents in [3] and [5].

2. Related Work

NetPowerLab [6] provides virtual networks to learners, in-
cluding virtual devices implemented by UMLs on remote
servers. The learners can edit the network topologies intu-
itively by mouse operations, and they can use the terminals
of the virtual devices through web UIs. However, NetPower-
Lab is not suitable for the exercises considered in this work
because the learners cannot use X clients in the virtual de-
vices and cannot build virtual networks composed of various
versions of UMLs.

V-Lab [7], CloudLab [8], and ThoTh Lab [9] provide



TATEIWA: LINES CLOUD: A WEB-BASED HANDS-ON SYSTEM FOR NETWORK SECURITY CLASSES
1559

learners with virtual networks on remote servers. Concern-
ing virtual devices, Xen is used in V-Lab, Xen and Docker
in CloudLab, and QEmu in ThoTh Lab. First, the learn-
ers define network topologies and virtual device configu-
ration on web pages and then register these into the sys-
tems. Then, the systems build virtual networks based on
the provided definitions. Finally, the learners select virtual
networks and operate the virtual devices via web pages in V-
Lab and ThoTh Lab, and via SSH clients and X servers, pre-
pared and configured by themselves, in CloudLab. However,
the learners cannot efficiently repeat processes of chang-
ing the topologies and operating the devices because the
processes are divided into three phases: defining network
topologies and configuration of the virtual devices, creating
virtual networks based on the definitions, and operating the
virtual devices. For this reason, they are not suitable for
the considered exercises, which can require the students to
change their network topologies as we mentioned in the first
paragraph of Sect. 1.

CyTrONE [10] provides a cyber range training environ-
ment whose network devices are implemented using Ker-
nel Virtual Machine (KVM) [11] and Amazon Web Ser-
vices (AWS) [12]. Before exercises, instructors input the
definition of virtual networks and security incidents into
CyTrONE. In exercises, students access to virtual devices
via SSH or VNC clients. Furthermore, the environment vi-
sualizes network topologies and basic states of devices on
web browsers. However, CyTrONE is not suitable for the
exercises considered in this work because the environment
is not equipped with the functions that students edit network
topologies seamlessly in exercise.

3. Basic Technology

3.1 User-Mode Linux

UML is a program that runs on Linux and virtualizes a
Linux computer. When a UML kernel program (a Linux
binary file) is executed with the file path of a root file sys-
tem, the corresponding UML instance is created. Even non-
root users in the host OS can get administrative privileges in

Table 1 Summary of the network security exercises

Chapter Tasks Objectives
Network con-
struction

• Build networks with servers, clients, switching hubs,
routers, and firewalls

• Can design settings for basic services and apply them to
servers

• Can explain the concept of application protocols
• Can analyze system logs in ordinary use

Attacks • Attack networks by executing tools (DoS/DDoS, password
cracking, packet sniffing, backdoors, buffer overflow, session
hijacking, root hacking)

• Observe the state and logs of the victim machines and net-
works

• Can explain the mechanisms of the attacks
• Can detect the attacks by analyzing the state and logs of ma-

chines and networks

Defense • Filter packets with iptables • Can explain the mechanisms of firewalls
• Can design appropriate rule-sets for satisfying the require-

ments
• Can set up iptables

Cracker pro-
gramming

• Create vulnerable programs
• Create cracking programs for the vulnerability
• Create patch programs for the vulnerability

• Can design secure programs
• Can find vulnerable codes in programs
• Can fix the codes

UML instances and are allowed to install software and pro-
vide services. In addition, new devices can be attached with-
out duplicating root file systems (i.e., immediately) because
the changes from the original root file systems are saved into
other files.

3.2 TAP and Bridge

TAP is a virtual network interface in Linux that can handle
Ethernet frames. UML internal applications can send and
receive Ethernet frames to and from the outside of the UML
through the TAP instance that is generated on the host OS
and connected to a UML internal network interface (e.g.,
eth0).

Bridge is a virtual network interface in Linux that for-
wards Ethernet frames like a network switch. Multiple TAPs
can be connected to a single Bridge. By connecting TAPs
connected to UMLs to a Bridge, a virtual network can be
formed as if the UMLs were connected to a network switch.
The network settings in each UML do not interfere with net-
work settings in the host OS and other UMLs.

3.3 Tunneling

Some tunneling technologies can transfer Ethernet frames
between devices connected with tunnels (hereinafter re-
ferred to as Ethernet tunnels). When connecting a device
to another one with a new tunnel, a virtual network inter-
face (hereinafter referred to as a tunnel interface) is created
in each device. Ethernet frames are exchanged through the
tunnel interfaces. Therefore, by connecting a TAP or Bridge
in a host to a tunnel interface, Ethernet frames can be for-
warded to the TAP or Bridge connected to the tunnel inter-
face in another host, thus enabling the exchange of Ethernet
frames between UMLs and Bridges in different hosts.

4. Exercise Overview

In the considered exercises, students are requested to solve
problems in the textbooks for achieving the objectives stated
in Table 1. For example, the students exercise defenses



1560
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.9 SEPTEMBER 2022

against DoS attacks with firewalls, as follows.

1. They construct the networks specified in the textbooks.
The textbooks define the network topology (A client
and a server are connected to a switching hub) and de-
fine settings of the devices.

2. They make sure that users of the clients can use the web
services on the servers with telnet clients.

3. They add the devices for attacks (hereinafter referred to
as black hats) to the networks and execute DoS attacks
from the devices to the servers.

4. They make sure that users of the clients cannot use the
web services on the servers with telnet clients.

5. They make sure that the servers are suffering DoS at-
tacks by executing the netstat command on the servers.

6. They add firewalls to the networks and set the firewalls
so as to filter packets from the black hats.

7. They make sure that users of the clients can use the web
services on the servers with telnet clients.

5. System Design

5.1 Overview

We used UMLs to implement servers, clients, routers, and
firewalls and Bridges to implement switching hubs.

In the system overview presented in Fig. 2, the simula-
tion servers accept remote operations from the configuration
server and implement virtual networks by employing virtual
devices. The configuration server provides web pages for
editing the connections among virtual devices (hereinafter
referred to as topology pages), web pages for input/output
with UML terminals (hereinafter referred to as terminal
pages), and web pages for input/output with UML X clients
(hereinafter referred to as X pages). The relay server en-
ables the exchange of Ethernet frames between the tunnel
interfaces of two simulation servers by connecting the tun-
nel interfaces of the Ethernet tunnels connecting themselves
to the simulation servers using Bridges. The terminal server
relays the input and output between the terminal pages and
the UML terminals. The X forwarding server accepts draw-
ing requests from UML X clients and draws the output on
the X pages. The student can manage virtual networks with

Fig. 2 System overview.

Windows, Mac, Android, and IOS web browsers.
While the host OS for UML depends on the UML ver-

sion, instructors might want to adopt older versions of UML
for exercises. This means that UMLs may be run on OSs
with security holes due to expiration of support. Exposing
severs with such OSs to the Internet is dangerous on system
operation. On the other hand, a newer OS is more secure
and efficient for developing and providing Web UIs. There-
fore, in the considered system design, we distinguish UML
host computers (i.e., simulation servers) from other server
computers and block the simulation servers from accepting
connections from the Internet.

5.2 Topology Page

Topology pages display network topologies, some settings
and states of virtual devices, and accept user input for them.
To improve their responsiveness, the pages cache a part of
data and make responses against a part of user input based
on the cache (i.e., such input is not processed in the config-
uration server). Some examples of such responses are the
verification for the combination of connectable devices and
the calculation for drawing data updated by moving virtual
device icons (the latter is reflected in the server at regular
intervals).

The pages draw network topologies with svg elements
of html5. Document Object Model enables users to edit the
drawings by mouse operations. In the system, the students
place, remove, move, boot, and halt devices and connect and
disconnect cables between devices by mouse operations.

The pages achieve asynchronous request/response
communications to the configuration server without page
transitions using XMLHttpRequests. They send user opera-
tions as requests to the configuration server and then receive
the processing results as responses. For example, when a
student moves a device on a topology page, the browser
sends its request to the configuration server and accepts the
input from the student without waiting for responses. This
implementation enables the students to move to other edit-
ing tasks which are not affected by the result of moving the
device.

5.3 Configuration Server

The configuration server receives requests sent from topol-
ogy pages, processes them as shown in Table 2, and then
returns responses. The ledger in the table is managed by
this server, and the operations in the relay server and the
simulation servers are remotely executed.

The runnable kernel version of UMLs depends on the
OS of the simulation servers. In addition, due to the re-
source limitation of the server computers, a single computer
has no capacity for running all UMLs for the students at the
same time. Therefore, the configuration server assigns the
UMLs to different simulation servers based on the types of
devices used by the students. Virtual networks consisting
of UMLs and Bridges running on a simulation server are



TATEIWA: LINES CLOUD: A WEB-BASED HANDS-ON SYSTEM FOR NETWORK SECURITY CLASSES
1561

formed by connecting UML TAPs to Bridges. Virtual net-
works of UMLs and Bridges running on different servers are
formed by connecting UML TAPs to Bridges with Ethernet
tunnels.

Table 2 Request processing in simulation servers.

Request Processes
Assigning a UML The server registers the UML in the ledger, generates a unique TAP name and the TAP instance in a

simulation server.
Assigning a switch The server registers the switch in the ledger, generates a unique Bridge name and the Bridge instance in a

simulation server.
Connecting a cable The server registers the cable in the ledger and processes based on the simulation servers running the

devices connected by the cable. If the devices run on a single simulation server, the configuration server
connects the UML TAP to the Bridge. Otherwise, it constructs an Ethernet tunnel from each simulation
server to the relay server, and it either connects the tunnel interface and the UML TAP to a Bridge or
connects the tunnel interface to a Bridge, and then it connects the tunnel interfaces to a Bridge on the
relay server.

Removing a UML The server deletes the UML TAP on the simulation server and unregisters the UML from the ledger.
Removing a switch The server deletes the Bridge on the simulation server and unregisters the switch from the ledger.
Disconnecting a ca-
ble

If the devices connected to the cable are running on a single simulation server, the configuration server
deletes the UML TAP from the Bridge. Otherwise, the configuration server deletes either the tunnel
interface and the UML TAP from the Bridge, or the tunnel interface from the Bridge on each simulation
server, deletes the tunnel interfaces from the Bridge on the relay server, and then deletes the cable from
the ledger.

Moving a device The server updates the ledger.
Booting a device The server executes the commands, either to start the UML instance or to set the Bridge instance to UP

state in the simulation server, and updates the ledger.
Halting a device The server executes the commands either to terminate the UML instance or to set the Bridge instance to

DOWN state in the simulation server, and updates the ledger.

Fig. 3 Example of web pages for managing networks.

6. Prototype System

The configuration server is implemented with node.js [13],
the topology pages are implemented with javascript,
jquery [17], ajax, SVG.js [15], the terminal pages are im-



1562
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.9 SEPTEMBER 2022

plemented with Xterm.js [18], the terminal server is imple-
mented with socket.io [16], the remote command reception
in the simulated servers is implemented with openssh [14],
the Ethernet tunnels are implemented with vtun [19], and
the X forwarding server and X pages are implemented with
Xvfb [20] and xpra [21].

Figure 3 shows examples of clients in Google Chrome
for Mac, namely a topology page, a terminal page, and an
X page sorted from the top. After selecting a device from
the available icons (1), clicking on the area (2) will draw
the selected device. The window (3) displays the property
of the device cli and the terminal area at the bottom draws
a UML terminal running on a simulation server and accepts
keyboard input. Clicking the button (4) displays the window
(5) that shows the X window manager of the device cli. In
window (5), the browser (X client) started in the device cli is
displayed. Furthermore, the icons representing the devices
in the area (2) can be moved by mouse dragging.

7. Questionnaire Survey

We carried out an experiment for evaluating usability and
performance of the proposed system. There were 11 sub-
jects in total, three of whom had already used the older ver-
sion of the exercise system (Fig. 1) in the considered exer-
cise and two of these three subjects had been teaching as-
sistants in the exercise using the older version. In the ex-
periment, the subjects solved exercise problems described
in next sub-section with the proposed system and then an-
swered a questionnaire.

7.1 Exercise Problems

In the exercise problems, the subjects execute the basic work
in the considered exercise. Each exercise problem contains
some of the elements listed below, depending on the objec-
tives of the exercise. Some elements are concretized by val-
ues (e.g., set the IP address of server A to 192.168.0.1) or
by conditions (e.g., determine the IP address of server A at
network address 192.168.0.0/24). In the exercise problem
shown in Fig. 4, the network topology that the subjects must
build is shown at the beginning, and an example of how to
set subnet masks and IP addresses is given in step 1.

• Network topologies that must be built
• Subnet masks and IP addresses that must be assigned
• Communications that must be established
• Examples of building procedure (e.g., file edit and

command execution)

The subjects solve the exercise problems by the follow-
ing operations.

• Placement and removal of servers, clients, switches,
routers, and firewalls; connection and disconnection of
cables in topology pages.
• Execution of Linux commands in terminal pages.
• Execution of wireshark [25] in X pages.

Fig. 4 Example of the exercise problems.

7.2 Questionnaire

The questionnaire consists of free comment sections for
asking good points and points that should be improved on
the proposed system. The subjects have to write one or
more comments on each point. We extracted the comments
closely related to the system features from the collected ones
on each point, and then categorized them by the target of
evaluation. Table 3 shows the summaries of comments in
each category.

The comment 1 indicates that at least three subjects
were easily able to exercise with the PCs and networks in
their home. As for the reason behind this observation, they
cited the accessibility using browsers. It can be said that the
feature 1 of the proposed system is useful for the exercise.

The comment 2 is related to the visualization of net-
work topologies on the topology pages (e.g., the area (2) in
Fig. 3). Additionally, we received an interesting comment
“The visualization will be able to help me to discover mis-
takes made by students.” from a participating teaching assis-
tant experiencer. This is because he/she supported students
using the older version (Fig. 1) that did not display devices
and connections in networks explicitly when he/she was a
teaching assistant. The comment 3 means a positive eval-
uation for editing operations of network topologies in the
topology pages (e.g., the area (1) and (2) in Fig. 3). Fur-
thermore, we received a positive comment “I was able to
build networks with fewer mistakes in shorter time by us-
ing the topology pages than by executing commands in the
older version.” from a subject using the older version. The
functions satisfying the comment 4 are in our future plan.
We will satisfy No.5 in future by implementing functions
for preventing the windows from being hidden as well as
possible. For example, while keeping the window size for
topology pages so small as to showing network topologies
(e.g., the area (2) in Fig. 3), the functions display new win-



TATEIWA: LINES CLOUD: A WEB-BASED HANDS-ON SYSTEM FOR NETWORK SECURITY CLASSES
1563

Table 3 Questionnaire result

No. Summary of comments Count
1 It was nice to be able to use the system at home easily. 3
2 It was nice to be able to see cable connections and

power status of the devices at a glance.
9

3 I was able to do placement/removal of devices and
connection/disconnection of cables by mouse operation
easily.

5

4 I hope that the system provides right-click context
menu to operate networks, too.

2

5 I would like to find the windows of the terminal pages
and the X pages more quickly.

3

6 I hope that the system displays IP addresses and subnet
masks on the editor.

1

dows in the created blank area.
The feature 2 of the proposed system was highly eval-

uated in the comments 2 and 3. Furthermore, while the im-
provement requests (No.4 and 5) accept the feature 2, the
different approaches such as the operations in the older ver-
sion of the exercise system were not proposed by the sub-
jects. Additionally, while the subjects requested the func-
tions for finding windows more quickly (No.5), they did not
request the improvements caused by mis-selection of win-
dows. This indicates that the feature 2 solved problem (2).

While the function in the comment 6 can help students
to proceed the exercise efficiently by using its output for
the communication parameters, we regard displaying IP ad-
dresses and subnet masks by command execution as a part of
the exercise needed for beginners. We would like to imple-
ment it together with the function that can toggle it between
enabled or disabled depending on the progress of students.

The subjects exercised in their homes or the rooms of
our university on their own time. Therefore, we divided the
time periods in which the subjects were expected to exer-
cise into four categories (8:00-12:00, 12:00-16:00, 16:00-
20:00, and 20:00-24:00), and asked the subjects to measure
network speed from their clients to the exercise server on
their own timing in each category. As a result, the minimum
download speed in the measurement was 3.64 Mbps, and
the minimum upload speed was 8.11 Mbps. The measure-
ment result and the questionnaire result suggest that using
the proposed system at the network speeds does not leave
the students frustrated.

8. Performance Measurement

8.1 Measurement Environment

The outline of the network presented in Fig. 5 is described
below. The performance of the proposed system was mea-
sured in this network. The exercise server in the figure
works as a hypervisor of virtual machines and employs the
network shown in Fig. 6.

• Exercise server

CPU Ryzen 9 3900X
Memory 128 GB

Fig. 5 Experiment network

Fig. 6 Network in the exercise server.

Hypervisor VMware ESXi-7.0

• Older exercise server

CPU Intel Xeon E3113 3.00 GHz
Memory 24 GB
Hypervisor VMware ESXi-5.0

• Exercise client

CPU Intel Core i5-7200U 2.50 GHz
Memory 8 GB
OS Windows 10 Pro
Browser Google Chrome 95.0.4638.54
vSphere Client vSphere Client 5.0.0.37933

• Network between the exercise client, the exercise
server, and the older exercise server

Specification Gigabit Ethernet

8.2 Response Time

After accessing the topology page in the exercise server
(Fig. 5) by the browser running on the exercise client, the
experimenter measured the response time (in seconds) spent
for the operations (Table 4). The cable (local) implements
connections of virtual devices running on a single simula-
tion server, while the cable (remote) implements connec-
tions of devices running on different simulation servers. The
experimenter measures the period with a stopwatch from
starting the operations to noticing responses. The response
times for booting the client and server start from giving
the command to boot and end on displaying the head of
OS startup messages on their terminal pages. The response
times for halting the client and server start from giving the
command to halt and end on displaying the tail of the OS
stop message. The response times for placing and remov-
ing devices start from giving the commands in the area (2)



1564
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.9 SEPTEMBER 2022

of Fig. 3 and end on confirming results. For example, after
selecting a device or cable in the area (1) of Fig. 3, the mea-
surement is started when the mouse is clicked in the area (2)

Table 4 Response time for operations

Object type Placement Removal Boot Halt
Client 3 5 1 9
Server 1 2 1 9
Switch 1 2 1 1

Cable (local) 1 1 - -
Cable (remote) 7 5 - -

Table 5 Measurement result

No. Operation Section Traffic
(bytes)

Time
(sec.)

1 Press enter key in terminal of
proposed system

W-T 412 0.012

T-S 478 0.011
2 Press enter key in terminal of

older version
W-O 13252 0.076

3 Press enter key in terminal of
QEMU

W-T 8409 0.083

4 Display man page in terminal
of proposed system

W-T 1383 0.178

T-S 3366 0.177
5 Display man page in terminal

of older version
W-O 116177 0.203

6 Display man page in terminal
of QEMU

W-T 36885 0.598

7 Place client W-C 5744 2.750
C-S &
C-X

15992 2.686

8 Remove client W-C 3779 3.928
C-S &
C-X

23784 2.870

9 Boot client W-C 1338 0.439
W-T 6453 0.051
C-S 1338 0.429
T-S N/A N/A

10 Halt client W-C 2222 8.184
C-S 3672 8.182

11 Place switch W-C 5645 0.435
C-S 7702 0.380

12 Remove switch W-C 3842 1.058
C-S 7942 0.388

13 Boot switch W-C 1054 0.399
C-S 7702 0.383

14 Halt switch W-C 1113 0.419
T-S 7776 0.388

15 Place server W-C 5857 0.839
C-S 7958 0.774

16 Remove server W-C 3842 0.801
C-S 15694 0.754

17 Connect cable (local) W-C 8931 1.081
C-S 7800 0.390

18 Disconnect cable (local) W-C 5792 0.506
C-S 7734 0.400

19 Connect cable (remote) W-C 9434 7.094
C-S &
C-R

86350 6.550

R-S 10230 6.164
20 Disconnect cable (remote) W-C 5792 4.291

C-S &
C-R

85772 4.209

R-S 0 0

and it ends when the corresponding icons are displayed.
Although the client and the server are implemented us-

ing UMLs, the time spent for placement and removal dif-
fers greatly. The reason for this is that the processing of
the client involves setting up the X window system on the
X forwarding server. The placement and removal of cables
(remote) take more time than those of cables (local) because
tunnels are built between the relay server and the simulation
servers.

8.3 Traffic

We measured the communication traffic and time for the op-
erations shown in Table 5. The measurement sections are
described by “client”-“server” format. The roles are re-
placed by the exercise client and the older exercise server
(denoted by W and O) in Fig. 5 and the initial letters in Fig. 6
(Configuration, Terminal, X forwarding, Relay, Simulation,
and QEMU). Tcpdump used for the measurement runs on
the clients.

The measurements 1 - 6 evaluate the responsiveness
of terminals in the proposed system by comparing to the
other systems. In the measurements 2 and 5, the experi-
menter carries out the operations on the older exercise server
through vSphere Client running on the exercise client. In the
measurements 3 and 6, the experimenter executes the opera-
tions on QEMU 2.11.1 running on the QEMU host through
VNC Viewer 6.21.118 of Real VNC running on the exercise
client. The measurements 1 - 3 start when tcpdump running
on the clients captures the first packet sent by pressing the
enter key in the state of displaying a prompt on the termi-
nals like Fig. 7, and they end when the tcpdump captures the
packet storing the tail letter of next prompt. The measure-
ments 4 - 6 start when tcpdump captures the first packet sent
by pressing the enter key after typing ‘man man’ on the ter-
minals, and they end when the tcpdump captures the final
packet used for displaying manual pages of man. The re-
sult indicates that the amounts of the packets captured in the
proposed system are fewer and the times while the packets
were captured in the proposed system are shorter than those
of the other systems. We consider that the reason is that the
contents of the terminal in the proposed system are text for-
mat, while the one in the other systems are image format.

Fig. 7 Terminal in QEmu



TATEIWA: LINES CLOUD: A WEB-BASED HANDS-ON SYSTEM FOR NETWORK SECURITY CLASSES
1565

Therefore, we conclude that the narrower the bandwidth of
the network is, more lightly the proposed system works than
the other systems do.

The measurements 7 - 20 evaluate system performance
of the proposed system. The section ‘T-S’ of No.9 has
no values because the experimenter was failure to estimate
the packets storing the head of OS startup messages due to
encryption of the payloads. Because the boot and halt of
servers work in a similar way to those of the clients, we de-
scribe only those of clients in the table (No.9 and 10). There
is no traffic (the section ‘R-S’ in No.20) between the relay
server and the simulation servers because the tunnel client
processes are terminated by the ’SIGKILL’ signals without
negotiations to the tunnel servers. The traffic generated by
each operation in the section “W-C” is nearly lighter than
one generated by pressing enter key in the other systems.
This fact introduces that the proposed system is able to pro-
vide the exercise environment where students configure net-
works by command line, not X window applications, even
in the networks as poor as the other systems are not able to
do it adequately.

9. Quality of Experience Assessment

9.1 Assessment Method

We carried out the experiment in which sixteen subjects

Fig. 8 Network for QoE assessment.

Table 6 Operations in QoE assessment

ID Summary
A Operations for network topology

1. A subject creates the network topology similar to one shown
in the area (2) of Fig. 3.

2. The subject opens the property of each device and then boots
them.

B Operations in terminal

1. A subject opens the specified file in the terminal page of the
server with the nano editor [23].

2. The subject changes the specified words written in the second
page of the file.

C Operations in X window system

1. A subject starts xterm [24] in an X page.
2. The subject performs steps 1 and 2 of operation B in the ter-

minal.
D Operations for wireshark [25] in X window system

1. A subject starts wireshark in an X page.
2. The subject starts to capture packets with the wireshark. The

captured packets are listed on the area (1) in Fig. 9.
3. The subject stops capturing packets when capturing more than

2000 packets.
4. The subject selects the packet of No. 100 and confirms its size

displayed in the area (2).
5. The subject selects the packet of No. 1000 and confirms its

size.

evaluated the responsiveness of the system by the double-
stimulus impairment scale (DSIS) method [22]. In the ex-
periment, each of the subjects accessed to the server from
the client shown in Fig. 8, and the subject evaluated respon-
siveness for each of the operations shown in Table 6 as fol-
lows:

1. The subject performed an operation without bandwidth
limitation.

2. The subject performed the same operation with band-
width limitation.

3. The subject assessed the degree of deterioration of the
responsiveness in step 2 based on that in step 1 using
the following five-grade impairment scale: 5 - imper-

Fig. 9 Wireshark for operation D.

Fig. 10 MOS of responsiveness evaluation for topology operations.



1566
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.9 SEPTEMBER 2022

ceptible, 4 - perceptible but not annoying, 3 - slightly
annoying, 2 - annoying, 1 - very annoying.

4. The subject answered the degree of acceptance of the
responsiveness for the operation in step 2 using the fol-
lowing five-point Likert scale: 5 - very much, 4 - a lot,
3 - somewhat, 2 - not much, 1 - not at all.

The operations in Table 6 are typical in the exercise and
cause various responses from the system: X windows are re-
freshed on scrolling and clicking by mouse operations and
on viewing execution of monitoring tools; terminals are re-
freshed on moving a cursor, inputting letters, and transiting
pages by keyboard input.

9.2 Experimental Results

In Fig. 10, the x-axis stands for upstream and downstream
bandwidth of the network, and the y-axis stands for the
mean opinion score (MOS), and the error bars show a 95%
confidence interval. We see from Figs. 10(a) and 10(b) that
the exercises in which students configure networks by com-
mand line, not X window applications, requires at least 16
kbps bandwidth and more than 32 kbps for comfortable.
From Fig. 10(c), it can be said that the operations which
cause refreshing views with low rate require at least 128
kbps bandwidth and more than 256 kbps for comfortable.
On the other hand, Fig. 10(d) indicates that the operations
causing high-rate refreshing require at least 2048 kbps band-
width and more than 5120 kbps for comfortable.

10. Conclusion

We proposed a novel network security exercise environment
for students meant to efficiently use UML networks run-
ning on remote servers. It implements virtual networks by
connecting UMLs running on a single server with Linux
Bridges, and connecting UMLs running on different servers
with Linux Bridges and Ethernet tunnels. The students man-
age the networks via web pages for editing the connections
among virtual devices, for input and output with UML ter-
minals, and for input and output with UML X clients.

We carried out three evaluation experiments. In the first
one, we asked the subjects for comments on the usability of
the proposed system after carrying out a simple exercise. In
the second experiment, we measured the response time and
traffic for the main operations as system performance. Be-
cause the traffic is mostly small, it is expected that users not
really notice the deterioration in responsiveness even while
accessing to the servers through narrow band networks. In
the third experiment, we evaluated quality of experience
(QoE) of the responsiveness of the system on various net-
work bandwidth. The result of the experiment showed that
the exercises using nano in the terminal pages required at
least 16 kbps bandwidth and ones using wireshark in the X
pages required at least 2048 kbps bandwidth.

Future work includes the improvements of the oper-
ability pointed out by the subjects. In addition, we have a

plan to implement functions for collecting operation history
of users in order to do learning analytics. Especially, high
accuracy analytics are expected because the function will
be able to collect input operations on terminals character by
character.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 20K12108. The authors thank Professor Yutaka
Ishibashi for technical advice on QoE assessment.

References

[1] J. Dike, User Mode Linux, Pearson, 2006.
[2] VMware, vSphere Single Host Managemen, https://docs.vmware.

com/en/VMware-vSphere/5.5/com.vmware.vsphere.hostclient.doc/
GUID-52A4C8B5-04F9-4571-9AC3-4FBED2DD9215.html, 2019.

[3] Y. Tateiwa, “Development of web-based hands-on system for net-
work security classes with intuitive and seamless operability and
light-weight responsiveness,” IPSJ SIG Technical Report, vol.2021-
CLE-33, no.11, pp.1–6, March 2021 (in Japanese).

[4] Y. Tateiwa and N. Iguchi, “Hands-on laboratories for network ad-
ministration exercises based on virtual machine technology,” The
Journal of the Institute of Electronics, Information and Communica-
tion Engineers, vol.104, no.8, pp.872–878, Aug. 2021 (in Japanese).

[5] Y. Tateiwa, “Evaluation of web-based hands-on system for network
security classes with intuitive and seamless operability and light-
weight responsiveness,” IEICE Technical Report, vol.121, no.294,
pp.1–6, Dec. 2021 (in Japanese).

[6] N. Iguchi, “Development of a self-study and testing function for Net-
PowerLab, an IP networking practice system,” Int. J. Space-Based
and Situated Computing, vol.4, no.3/4, pp.175–183, 2014.

[7] L. Xu, D. Huang, and W.-T. Tsa, “Cloud-based virtual laboratory for
network security education,” IEEE Trans. Education, vol.57, no.3,
pp.145–150, Aug. 2014.

[8] CloudLab, https://www.cloudlab.us/, accessed Nov. 1, 2021.
[9] ThoTh Lab, https://www.thothlab.com/, accessed Nov. 1, 2021.

[10] R. Beuran, D. Tang, C. Pham, K. Chinen, Y. Tan, and Y.
Shinoda, “Integrated Framework for Hands-on Cybersecurity Train-
ing: CyTrONE, Computers & Security,” vol.78, pp.24–35, 2018.

[11] KVM, http://www.linux-kvm.org/page/Main Page, accessed March
23, 2022.

[12] Cloud Computing Services - Amazon Web Services (AWS),
https://aws.amazon.com/, accessed March 23, 2022.

[13] Node.js, https://nodejs.org/en/, accessed Nov. 1, 2021.
[14] OpenSSH, https://www.openssh.com, accessed Nov. 1, 2021.
[15] SVG.js v3.0 - Home, https://svgjs.dev/docs/3.0/, accessed Nov. 1,

2021.
[16] Socket.IO, https://socket.io/, accessed Nov. 1, 2021.
[17] jQuery, https://jquery.com/, accessed Nov. 1, 2021.
[18] Xterm.js, https://xtermjs.org/, accessed Nov. 1, 2021.
[19] VTunVirtual Tonnels over TCP/IP networks, http://vtun.sourceforge.

net, accessed Nov. 1, 2021.
[20] XVFB, https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.

xhtml, accessed Nov. 1, 2021.
[21] xpra home page, https://xpra.org, accessed Nov. 1, 2021.
[22] ITU-R Recommendation BT.500-13, “Methodology for the subjec-

tive assessment of the quality of television pictures,” Jan. 2012.
[23] The GNU nano homepage, https://nano-editor.org/, accessed March

18, 2022.
[24] XTERM - Terminal emulator for the X Window System,

https://invisible-island.net/xterm/, accessed March 18, 2022.
[25] Wireshark Go Deep., https://www.wireshark.org/, accessed March

18, 2022.

http://dx.doi.org/10.1504/ijssc.2014.066034
http://dx.doi.org/10.1504/ijssc.2014.066034
http://dx.doi.org/10.1504/ijssc.2014.066034
http://dx.doi.org/10.1109/TE.2013.2282285
http://dx.doi.org/10.1109/TE.2013.2282285
http://dx.doi.org/10.1109/TE.2013.2282285
http://dx.doi.org/10.1016/j.cose.2018.06.001
http://dx.doi.org/10.1016/j.cose.2018.06.001
http://dx.doi.org/10.1016/j.cose.2018.06.001


TATEIWA: LINES CLOUD: A WEB-BASED HANDS-ON SYSTEM FOR NETWORK SECURITY CLASSES
1567

Yuichiro Tateiwa received his Ph.D. in In-
formation Science from Nagoya University in
2008. He is interested in utilizing virtual ma-
chine technology for education.


