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Gradient Corrected Approximation for Binary Neural Networks
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SUMMARY  Binary neural networks (BNNs), where both activations
and weights are radically quantized to be {—1, +1}, can massively acceler-
ate the run-time performance of convolution neural networks (CNNs) for
edge devices, by computation complexity reduction and memory footprint
saving. However, the non-differentiable binarizing function used in BNNs,
makes the binarized models hard to be optimized, and introduces signifi-
cant performance degradation than the full-precision models. Many previ-
ous works managed to correct the backward gradient of binarizing function
with various improved versions of straight-through estimation (STE), or in
a gradual approximate approach, but the gradient suppression problem was
not analyzed and handled. Thus, we propose a novel gradient corrected ap-
proximation (GCA) method to match the discrepancy between binarizing
function and backward gradient in a gradual and stable way. Our work has
two primary contributions: The first is to approximate the backward gradi-
ent of binarizing function using a simple leaky-steep function with variable
window size. The second is to correct the gradient approximation by stan-
dardizing the backward gradient propagated through binarizing function.
Experiment results show that the proposed method outperforms the base-
line by 1.5% Top-1 accuracy on ImageNet dataset without introducing extra
computation cost.

key words: binary neural network, deep learning, gradient approximation,
fine-tuning

1. Introduction

In decades, Deep Convolutional Neural Networks (CNNs)
has privileged in domain of computer vision and revolution-
ized massive complicated applications including image clas-
sification, face detection and recognition, object segmenta-
tion. For higher accuracy, researchers tend to design CNNs
more complex with intensive computational cost and mem-
ory footprint requirement. While cloud servers equipped
with GPUs can effectively handle the training and inference
of such models, deploying them to resource-constrained
ultra-low-power edge devices[1] is still challenging. To
address the challenge, numerous research efforts includ-
ing light-weight architecture design, compression, quantiza-
tion [2], have been proposed to reduce complexity of CNNss,
seeking for an efficient tradeoff between computation cost
and prediction accuracy. As a radical case of quantization,
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binary neural networks (BNNs) [3] have attracted increasing
attention due to its beneficial properties, of which both acti-
vations and weights are quantized to {—1, +1}. Further, sig-
nificant run-time performance improvement can be achieved
by replacing expensive convolutional operations with effi-
cient bit operations such as xnor and popcount.

However, in backward propagation, the discontinuous
and non-differentiable binarizing function used in BNN,
makes the binarized models hard to be optimized, and in-
troduces significant performance degradation than the full-
precision models. Many previous works [4] managed to cor-
rect the backward gradient mismatch of binarizing function
with various improved static binarizing function originat-
ing from straight-through estimation (STE), or in a gradual
approximate approach. The static approaches diminish the
gradient of outliers and exist inevitable gradient mismatch.
The gradual approximate [5], [6] approach suppresses the
gradient during the process of approximation and makes the
information capacity of backward gradient collapsed.

To handle the above problems, we propose a gradi-
ent corrected approximation method to match the discrep-
ancy between binarizing function and backward gradient in
a gradual and stable way. Our work has two primary contri-
butions:

(1) A simple leaky-steep function with a variable window
size is proposed to approximate the backward gradi-
ent of binarizing function, which is efficient to approx-
imate binarizing function in a gradual approach, and
prevents the gradient diminish of outliers.

(2) Backward gradients are standardized to correct the gra-
dient approximation, which guarantees the information
capacity of gradients is stable during the process of
gradual approximation.

Our approximation method is verified with Bi-Real [7]
as baseline. Experiment results show that the proposed
method outperforms the baseline by 1.5% accuracy on
ImageNet2012 dataset and 2.23% accuracy on CIFAR-10
dataset without introducing extra computation cost.

2. Proposed Method

2.1 Revising BNNs and Gradient Approximation Func-
tions

BNNs is CNNs of which activations and weights are in
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Fig.1  The binarization process of the basic block in our baseline.
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Fig.2 Typical STE-modified static gradient approximation functions
and schematic process of the gradual approximate approach.

binary presentations. The basic block of our baseline is
presented in Fig. 1, where indicates the input activations
a, € Rewrhi weights w, € Reocikiki output activations
z, € R%Wo'ho Note that a,, w,, z, are full-precision ten-
sors, ap, wp are binarized tensors, @ € R and 8 € R are
scaling factors of weights and input activations. As proved
by previous works [8], the optimal solution of binarized esti-
mation for full-precision activations or weights are obtained
through a sign function. Thus, the binarization process of
a, and w, expressed as (1) and (2), and scale factors are ex-
tracted as (3).

While batch normalization (BN) layer succeeds con-
volutional layer in the baseline, (a - ) item of (4) can be
discarded. The remain hamper to optimize BNNs lies on
the gradient approximation of sign function, of which the
actual derivative function is an impulse function that only
has a non-zero value at O and is hard to be optimized. Tra-
ditionally, the backward gradient of sign function simply
employs a hardtanh function as the straight-through esti-
mation (STE), which introducing large discrepancy. Thus,
multiple differentiable gradient approximation functions [4]
have been proposed to correct this gradient mismatch in a
static way. However, previous works [9] demonstrate that
higher reverse ratio is favourable at the start of training, and
lower reverse ratio in sequence. Gradual approximate ap-
proaches [5], [6] emerge to be superior to static approaches.

2.2 Leaky-Steep Gradual Approximation
As illustrated in Fig.2, the typical STE-modified approxi-

mation functions perform worse, because of both the gra-
dient vanish of outliers from the blocked region (BR) on
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Fig.3  The illustrations and formulas of leaky-steep function and its
derivative function.

the edge, and inevitable gradient mismatch in the central
straight-through region (SR). To handle the issue, a leaky-
steep gradual approximation method is proposed. The
leakysteep function and its derivative function can be ex-
pressed as (5) (6) and be illustrated in Fig. 3.

Where LS represents the leakysteep function, k repre-
sents the leaky gradient of BR, and s represents the halved
window size of SR. k is a fixed variable which has been
searched in a collection of {0.0, 0.005, 0.01, 0.02, 0.03}.

In order to gradually approximate the gradient of sign
function, s is a control variable varying during the training
process, which is decreasing in a cosine manner. The run-
time value of s can be expressed as:

N star — h
s = max{ =2 cos n-w +1),e; (1)

2 total_epoches
where S g4, and € represents the halved window size ini-
tially and finally, which is set to be 5.0 and 0.1 in our ex-
periment. This setting is efficient to straight through all the

gradients including outliers in the beginning and effectively
minimize the gradient mismatch at last.

2.3  Backward Gradient Correction

Despite leaky-steep gradual approximate benefits gradient
reservation of outliers, eminent gradient suppression along
decreasing of s, impedes optimization process, which also
exits in the typical gradual approximation approaches [5],
[6].

The forward and backward process of binarization and
convolution can be formulated as:
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where a € R are input float-point activations, w €
Reockiki are binary weights fitting Bernoulli distribution
with candidate set {—%, +%} and p = 0.5, y € ReWolo
are output float-point activations, f is the binarizing func-
tion adopting simplified leaky-steep function with k = 0.0.
We assume w and f(a) conform to an identical and indepen-
dent distribution. As the convolutional operations of feature
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Fig.4 (a) Illustration of gradients’ distribution after propagated through
LS’. (b) Suppression ratio of standard deviation o of gradients after back-
propagated through a leaky-steep function.

maps and weights fitting Bernoulli distribution generate out-
put feature maps fitting Normal distribution, the variance of
yi during forward process and the variance of a; during back-
ward process can be deduced as:

c
var(y) = )" {var (wij) -var(f(a;)} = vara;) ~ (10)
=1
c c
var(a;) = var( ij < Z var ij
Jj=1 j=1
= var(y’) (11)

They demonstrate that the activations’ variance during
forward process retained, while their gradients during back-
ward process suppressed. We verify this issue by back-
propagating gradients which consistent with normal dis-
tributed through a window-size-variable leaky-steep func-
tion. We define the suppression ratio (SR) of variance to in-
dicate the information capacity decrease of back-propagated
gradient:

£(s) = var(grad)/var(LS ,f(’s(grad)) (12)

As illustrated in Fig. 4, significant gradient suppression
exits when window size s is large or small. Large s slows
down the convergence of training while retains outliers’ gra-
dient, and small s introduces speedy gradient vanish while
better approximates the sign function. This huge fluctuation
of gradients margin also impedes tune of hyper-parameters.

In order to handle gradient suppression problem of
gradual approaches, we manage to retain the variance of gra-
dients backpropagated through leaky-steep function. Thus,
gradients in the SR are scaled to compensate the gradient
suppression, while gradients in the BR multiply k as back-
propagation algorithm required. This process can be formu-
lated as follows:

|Aiesrlp + |Awenrlp |% 'AiESRllz + |k - Aiesrli (13)

N B N
where 7y represents scaling factor of weights/activations in
SR, N is the total number of items. Then, y can be deduced:

y:s-\/1+

(1 - k) |Acarlp

(14)
|Aiesrln
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Further, moving average per-channel is applied to
smooth out 7y, to avoid the fluctuation introduced by outliers.
The final formula of vy is expressed as follows:

y=6xy+(1=0)*You (15)

where 0 represents the average factor and adopts 0.9 in our
experiments. After correcting the gradients, it’s possible for
leaky-step function to search the optimal decay trend of win-
dow size stably in a wider range.

3. Experimental Details

In this section, we first raise an ablation study with Bi-
Real20 on CIFAR-10 dataset in order to search for the opti-
mal hyperparameters including initial halved windows size
S stare and leaky gradient of blocked region k. Furthermore,
we evaluate the accuracy improvement by the proposed gra-
dient corrected approximation method with Bi-Reall8 on
ImageNet 2012 dataset.

Algorithm 1: Training Flow of BNNs using the Gradient Corrected
Approximation.

Input: A minibatch of inputs and targets.
Output: The largest element in the set.

Forward propagation:
1 Compute binary weights and input activations:
Aip=sign(Ai,), Wip=sign((Wi- u(Wir))/ 6(Wi))/sqrt(C)
2 Compute output activations:
Ziy=popcount(xnor(Ai,n, Wis)), Arv1,=Act(BN(Zi+ Air)
Backward propagation:

3 Calculate halved window size s using (7)

4 Calculate gradients of weights/activations per-layers
in sequential using (6)

§  Correct gradients using (15)
6 Update gradients

The training flow of BNNss using gradient corrected ap-
proximation is illustrated in Algorithm 1. The forward prop-
agation process first binarizes weights and input activations,
then computes output activations. Minor differences are in-
troduced in this stage. First, W, is normalized before bina-
rization and divided with square root of input/output chan-
nels C after binarization forcing binarized weight approxi-
mate Bernoulli distribution with variance of layers unified
to 1/C, which is convenient for the hyperparameters search,
without introducing extra computation cost during the in-
ference. Second, scale factors of W, and A, are discarded,
because BN layer can effectively merge them. The back-
ward propagation adopts our gradient corrected approxima-
tion method, where the halved windows size per-epoch is
extracted firstly, then the corrected gradients layer-by-layer
are calculated. Finally, gradients are updated.

4. Ablation Studies

Ablation studies are evaluated with Bi-Real20 on CIFAR-
10 dataset. The model adopts kaiming initialization and
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Table 1  Top-1 accuracy results of Bi-Real20 with variable leaky gradi-
ent k of BR. The best result is shown in bold face. All the accuracy is
averaged over 4 experiments with random weight initialization.

Bi-Real20 / CIFAR-10, with S, =5.0
k 0.0 0.005 0.01 0.02 0.03

Accuracy 86.17 86.48 8624  86.01 8555
(mean+std)%  +039 027  +032 +£028 +0.19

Table2  Top-1 accuracy results of Bi-Real20 baseline and improved ver-
sions with variable initial halved window size S y,,s. The best result is
shown in bold face.

Bi-Real20 / CIFAR-10, with £=0.005

Sstart 2 3 4 5 6 7 8  Dbaseline
Top-1 Acc % 86.13 86.45 86.36 86.48 86.32 85.87 8542 84.25

trains from scratch. The training flow runs for 400 epochs
with 128 batch-size. Optimization process applies SGD
optimizer with momentum=0.9, weight decay=10"*, initial
learning rate=0.1, and cosine learning rate decay.

Firstly, we conduct a series of preliminary experiments
aimed at determining the optimal value of the leaky gradi-
ent of blocked region k varies a collection of {0.0, 0.005,
0.01, 0.02, 0.03}, while the value of initial halved windows
size S g 18 fixed to be 5.0, which is effective to straight-
through the gradients of all weights and activations initially.
Each experiment repeats four times with random weight ini-
tialization (seed=0), and the accuracy results are averaged.
The accuracy results represent in Table 1, which indicate
that larger k introduces smaller variance of the accuracy, be-
cause of reservation of gradients in BR. However, oversized
k makes the mismatch of gradient considerable at the end
stage, which introduces significant gradient error backprop-
agated through basic blocks of the baseline. Thus, the ab-
lation study demonstrates that 0.05 is a favorable value of
k.

Secondly, the decay trend of the halved window size s
is investigated. On account of the cosine decay function ap-
plied to schedule the decay trend of s, initial halved window
size S 4 impacts the convergence. Undersized S g4, Will
make block region enlarged earlier and impede the conver-
gence at start stage. Oversized S y,,, Will delay the matching
of gradients at end stage. Thus S ., is thoroughly searched
in collection of {8, 7, 6, 5, 4, 3, 2}. While W, mostly are
distributed in range (—4, +4), and A, vary in range (-1, +1),
this searching scope is effective to cover.

As Fig. 5 and Table 2 demonstrated, the improved ver-
sion with GCA outperforms the Bi-Real20 baseline without
GCA over 2.23% accuracy. Furthermore, the accuracy of
Bi-Real20 with GCA is not sensitive to the value of initial
halved window size S g

Then, we extends the evaluation to a larger image clas-
sification dataset ImageNet containing 1.2 M training sam-
ples and 50,000 validation samples. The training configura-
tions are the same as Bi-Real20/CIFAR- 10, except Bi-Reall8
is selected as the baseline, training epoch sets 160, and input
images are cropped to be 224 as references required. S sq
equals 5.0 and k adopts 0.005. The model trains on 4 Nvidia
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Fig.5 (a) Training loss curve and (b) validating accuracy curve during
training. Bi-Real20 baseline without GCA and improved versions with
GCA varying Sgare in collection of {8, 7, 6, 5, 4, 3, 2} are evaluated.

Table3  Accuracy comparison with SOTA BNNs on ImageNet. The best
result is shown in bold face.
model Top-1 Acc % Top-5 Acc %
XNOR [8] 51.2 73.0
BNN Plus [4] 53.0 72.6
Impro. Bi-Real [10] 57.1 80.2
Bi-Reall8 [7] 56.4 79.5
Ours w/o GCA 56.8 79.9
Ours w/ GCA 57.9 80.6

RTX2080Ti GPUs with a total batch size of 128. Table 3
shows a number of SOTA BNNs. We can observe that, Bi-
Reall8 without correcting gradients, which gradual approx-
imate the sign function with the leakysteep function, outper-
forms the Bi-Real18 by 0.4%. Furthermore, Bi-Reall8 with
GCA boost accuracy improvement to 1.5%.

5. Conclusions

In this letter, we propose a novel gradient corrected approxi-
mation method to match the discrepancy between binarizing
function and backward gradient in a gradual and stable way,
which contains a leaky-steep function to prevent the gradi-
ent diminish of outliers and gradients correcting to stabi-
lize the gradual approximation. After applying GCA meth-
ods, Bi-Real20 network gains 2.23% accuracy on CIFAR-10
dataset, and Bi-Reall8 network gains 1.5% accuracy on Im-
agenet2012 dataset. Our work provides a method to narrow
the performance gap between BNNs and its full-precision
counterparts, which is beneficial for CNNs’ deployment on
low-power edge devices.
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