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Unsupervised Building Damage Identification Using Post-Event
Optical Imagery and Variational Autoencoder

Daming LIN†, Jie WANG††, Nonmembers, and Yundong LI†††a), Member

SUMMARY Rapid building damage identification plays a vital role in
rescue operations when disasters strike, especially when rescue resources
are limited. In the past years, supervised machine learning has made con-
siderable progress in building damage identification. However, the usage
of supervised machine learning remains challenging due to the following
facts: 1) the massive samples from the current damage imagery are diffi-
cult to be labeled and thus cannot satisfy the training requirement of deep
learning, and 2) the similarity between partially damaged and undamaged
buildings is high, hindering accurate classification. Leveraging the abun-
dant samples of auxiliary domains, domain adaptation aims to transfer a
classifier trained by historical damage imagery to the current task. How-
ever, traditional domain adaptation approaches do not fully consider the
category-specific information during feature adaptation, which might cause
negative transfer. To address this issue, we propose a novel domain adapta-
tion framework that individually aligns each category of the target domain
to that of the source domain. Our method combines the variational autoen-
coder (VAE) and the Gaussian mixture model (GMM). First, the GMM is
established to characterize the distribution of the source domain. Then, the
VAE is constructed to extract the feature of the target domain. Finally, the
Kullback–Leibler (KL) divergence is minimized to force the feature of the
target domain to observe the GMM of the source domain. Two damage
detection tasks using post-earthquake and post-hurricane imageries are uti-
lized to verify the effectiveness of our method. Experiments show that the
proposed method obtains improvements of 4.4% and 9.5%, respectively,
compared with the conventional method.
key words: building damage identification, feature alignment, deep learn-
ing, domain adaptation

1. Introduction

In the past years, disasters have caused huge life losses and
property damages worldwide. Thus, timely rescue oper-
ations are vital to mitigating damages. Building damage
assessment can provide supportive information to facilitate
rescue tasks. Damage assessment is traditionally conducted
through ground survey, which is labor-intensive. Recently,
the automatic interpretation of remote sensing data using
machine learning has attracted significant attention.

Supervised machine learning algorithms, such as
SVM [1] and KNN [2], have been investigated for build-
ing damage detection. Recently, deep learning has been

Manuscript received April 2, 2021.
Manuscript revised May 27, 2021.
Manuscript publicized July 20, 2021.
†The author is with Research Institute of Highway, Ministry of

Transport, Beijing, 100088, Beijing, China.
††The author is with School of Civil Engineering, North China

University of Technology, Beijing, 100144, China.
†††The author is with School of Information Science and Tech-

nology, North China University of Technology, Beijing, 100144,
China.

a) E-mail: liyundong@ncut.edu.cn (Corresponding author)
DOI: 10.1587/transinf.2021EDL8034

dominating various computer vision tasks, such as remote
sensing classification [3], defect detection [4], etc. Conse-
quently, deep learning was introduced into the area of build-
ing damage assessment. Vetrivel et al. proposed a damage
identification method using convolutional neural networks
(CNNs) and oblique aerial images, resulting in a classifi-
cation accuracy of 91% [5]. Notably, many labeled samples
are needed to train deep networks. However, generating suf-
ficient samples from post-event images is difficult [6]. Li
et al. proposed a semi-supervised method based on CNNs
for post-hurricane damage detection, in which pre-training
was used to decrease the requirement of labeled samples [6].
Some unsupervised learning techniques were also investi-
gated. Li et al. proposed an unsupervised method to de-
tect roof holes of rural area buildings from UAV images [7].
Moya et al. proposed a logistic regression based unsuper-
vised learning model to identify collapsed buildings using
satellite imagery [8].

As a branch of transfer learning, domain adaptation
(DA) aims to transfer a classifier trained by samples of the
source domain to the classification task of the target domain.
Most DA methods pursue domain-invariant via minimiz-
ing the maximum mean discrepancy (MMD) or adversar-
ial training using adversarial generative networks (GANs).
MMD-based DA methods utilize MMD loss to reduce the
distribution discrepancy between the features of the source
and target domains. In the calculation of MMD loss, both
source and target features are considered as holistic repre-
sentations of the domains, while category-specific features
are not fully considered. GAN-based methods use adver-
sarial training to align the features of the source and target
domains. The input feature is judged by the discriminator as
either a source or target feature during adversarial training,
while category-specific information is ignored. The lack of
category-specific information during adaptation might cause
mode collapse [9]. Mode collapse confuses the classifica-
tion boundary, which leads to negative transfer. This issue
should be given more attention when DA is applied to build-
ing damage detection because the image similarity of some
categories is high, as illustrated in Figs. 2 and 3.

It is difficult to collect sufficient samples in the after-
math of disasters, which hinders the application of deep
learning technology. Although DA provides a solution to
reuse samples from different disaster scenes, it remains chal-
lenging due to that the conventional DA methods do not
fully consider the category-level feature adaptation. Our
motivation is to develop a novel DA framework which can
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Fig. 1 Overview of our DA method which consists of three stages: pre-training, adaptation and refer-
ence. For conciseness, predictions of mean and standard variation are skipped in the reference stage.

conduct category-level feature alignment for complex im-
age classification, such as building damage assessment. In-
spired by Kingma’s work [10], we use the variational au-
toencoder (VAE) to estimate the distribution of the target
domain. Meanwhile, the feature of each category is aligned
with the corresponding category of the source domain via
minimizing the KL divergence between the mixed Gaussian
distributions of the two domains.

This research has two contributions. First, we pro-
pose a novel DA framework that combines the VAE and
the GMM. Our DA algorithm can implement category-level
alignment between the source and target domains. Second,
we construct a building damage detection method based on
the proposed algorithm using pose-event optical imageries.

The remainder of this letter is organized as follows.
Section 2 describes our algorithm. Section 3 presents the
experimental results. Section 4 discusses the method. Sec-
tion 5 concludes this study.

2. Methodology

Our DA algorithm is shown in Fig. 1. The algorithm consists
of three stages: pre-training, adaptation, and reference.

2.1 Pre-Training

The source domain networks consist of an encoder and a
classifier, which are trained in a supervised way using la-
beled samples. The inputs are 200 × 200 images. Encoder 1
utilizes Resnet50 networks as the basebone. zs refers to the
feature of the source domain produced by Encoder 1. The
dimension of the feature vector is 2048. The feature vectors
are then fed into a classifier in which softmax is used to pre-
dict the category of each sample. Encoder 1 and Classifier
C are trained together using cross-entropy error, defined as
Eq. (1).

Lsrc = cls loss = E(xs,ys)∼(Xs,Ys)[C(E1(xs), ys)] (1)

where C is the source domain classifier, E1 is Encoder 1,

xs is the source domain sample, and ys is the label. Af-
ter training Encoder 1 and Classifier C, the GMM is esti-
mated based on the feature extracted by Encoder 1. GMM
includes three parameters: mean μs, standard variation σs,
and π. π = p(c) is the categorical distribution representing
the probability of each category c. The number of Gaussian
components equals the number of categories.

2.2 Adaptation

VAE is a generative model, which can generate samples
from a specific probability distribution. In this work, we use
the VAE to extract the feature of the target domain and force
the feature’s distribution to approximate that of the source
domain. From the perspective of generative model, the dis-
tribution of the source domain is used as a prior probability
of the target domain.

The VAE of Fig. 1 includes Encoder 2 and a decoder.
Encoder 2 has the same structure as Encoder 1. Encoder 2
is initialized by the weights of Encoder 1. Similarly, we use
mixed Gaussian distributions to describe the feature space
of the target domain. The Gaussian distribution parameters,
namely, mean μt and standard variation σt, are predicted by
Encoder 2, which is shown in Fig. 1. The feature of the tar-
get domain is conditioned on mean and standard variation
using reparameterization, which is defined as Eq. (2).

zt = μt + σtε (2)

where ε ∼ N(0, 1) is a standard Gaussian distribution.
We use KL divergence to measure the discrepancy be-

tween the distributions of the source and target domains,
which is defined as Eq. (3).

KL loss = DKL(q(zt, c|xt)||p(zs, c)) (3)

c denotes the category of the mixed Gaussian distributions.
p(zs, c) is the joint probability distribution of the source do-
main. q(zt, c|xt) can be factorized into q(zt |xt) and q(c|xt)
according to mean-field theory. Then, KL loss is further
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factorized as Eq. (4).

KL loss = −Eq(zt ,c|xt)[logp(zs|c) + logp(c)

− logq(zt |xt) − logq(c|xt)] (4)

In Eq. (4), p(zs|c) and p(c) can be obtained from the GMM
of the source domain, q(zt |xt) is predicted by Encoder 2.
q(c|xt) is the probability of the target sample belongs to cat-
egory c. q(c|xt) is unknown because the samples of the tar-
get domain have no labels. To solve this issue, we adopt a
mechanism called pseudo label in which the softmax output
of Classifier C is used as q(c|xt). Thus, the KL loss can be
calculated. Refer to [11] for details.

In addition to the KL loss, the mean square error is
used to reconstruct the target samples. rec loss is defined as
Eq. (5).

rec loss =
1
n

n∑

i=1

‖xt − D(E2(xt))‖2 (5)

where E2 stands for Encoder 2, and D is the decoder. Fi-
nally, the optimization objective of the adaptation process is
defined as Eq. (6).

Ltgt = rec loss + KL loss (6)

After training the VAE, Encoder E2 and Classifier C
are used for the damage detection task in the reference
stage. Notably, Classifier C is reused because it remains un-
changed during the adaptation stage, decreasing the training
complexity.

3. Experimental Results

In the experiments, the samples of the target domain have
no labels. Consequently, the damage detection task is car-
ried out in an unsupervised manner. Our method is com-
pared with some typical DA approaches. Baseline: a CNN
classifier trained with only the data of the source domain.
DAN [12]: DAN is a MMD-based method in which multiple
task-specific layers are used to align features. ADRF [13]:
ADRF is also a MMD-based domain adaptation method,
which was proposed for the building damage detection of
post-hurricane images. ADDA [14]: ADDA is a GAN-
based method which can align features. NO KL: KL loss is
removed from Eq. (6), the autoencoder is trained only using
the reconstruction error.

We implement the code with Pytorch 0.4.1. The GMM
estimation is implemented with the Python Sklearn toolkit.
The computer is equipped with Nvidia GTX1080TI to ac-
celerate computation.

3.1 Post-Earthquake Datasets

In this study, the remote sensing images of the Haiti dis-
aster make up the source domain, while the target domain
includes images of Yushu earthquake. The images of the
Haiti disaster can be found at www.haiti-patrimoine.org.

Fig. 2 Examples of datasets Haiti and Yushu. The first row denotes sam-
ples of Haiti dataset, the second row denotes Yushu dataset. The first and
second columns indicate samples of undamaged buildings, the third and
fourth are samples of partially damaged buildings.

Table 1 Comparison of classification results.

Images were segmented into many cells using the super-
pixel method before training. Each cell was resized to a
patch of 200 × 200. After pre-processing, 4800 samples of
the Haiti earthquake and 4800 samples of the Yushu earth-
quake were obtained. Some examples are shown in Fig. 2.
The similarity between the partially damaged and undam-
aged buildings is high.

In this experiment, the samples are classified into three
categories: undamaged, damaged, and others. The learning
rates are set to 1e-4 and 1e-5 in the pre-training and adap-
tation stages, respectively. The SGD algorithm is used to
optimize the networks. The classification results are shown
in Table 1. Clearly, our method obtains the highest scores.
Compared with ADDA, our method obtains accuracy im-
provements of 4.4%.

3.2 Post-Hurricane Datasets

The proposed algorithm is further validated using the post-
hurricane datasets of the 2012 Sandy and 2017 Irma hurri-
canes. Dataset Sandy is used as the source domain, while
dataset Irma is used as the target domain. Both domains
have 5000 samples with a size of 200 × 200. Some of the
samples are shown in Fig. 3, which suggests that the simi-
larity between categories is high.

The learning rate is set to 1e-4 in the pre-training stage
and 1e-6 in the adaptation stage. The SGD optimizer with a
momentum of 0.9 is used to update the network weights.
The classification results are shown in Table 1 and indi-
cate that our algorithm significantly outperforms the bench-
marks. An improvement of 9.5% is obtained compared with
the ADDA method. The experimental results without KL
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Fig. 3 Examples of datasets Sandy and Irma. The first row denotes sam-
ples of Sandy dataset, the second row denotes images of Irma dataset. The
first and second columns indicate samples of undamaged buildings, the
third and fourth are the samples of damaged buildings.

Fig. 4 Visualization of feature space. (a) and (c) are features of baseline
for Yushu and Irma datasets, respectively. (b) and (d) are features of our
method for Yushu and Irma datasets.

loss are also shown in Table 1. The performance deterio-
rates significantly without the KL constraint, proving that
KL divergence minimization can reduce the cross-domain
discrepancy.

4. Discussions

Separating damaged buildings from undamaged buildings is
challenging due to the high similarity in image characteris-
tics. To this end, we individually align each category via
minimizing the KL loss to increase the inter-class distance
in the feature space. Figure 4 visualizes the feature distribu-
tions of the target domain before and after adaptation. The
features of most of the samples are more compact than those
of the baselines. This effect can be attributed to the train-
ing strategy in which each category of the target domain is
aligned with a specific Gaussian distribution in the source
domain. In addition, the inter-class distances between cate-
gories are enlarged after adaptation, particularly for the task
of Sandy->Irma. Notably, some outliers can be observed
after adaptation, suggesting that these hard samples are dif-
ferent from those of the source domain.

5. Conclusion

Building damage assessment can help search teams during
rescue operations when disasters strike. In this study, we
present a novel DA framework to address the issue of insuf-
ficient category-specific information during feature adapta-
tion. Our work is inspired by the VAE, which is used for
reducing the cross-domain discrepancy via minimizing the
KL divergence between two domains.

Two damage detection tasks using post-earthquake and
post-hurricane datasets were investigated to validate the ef-
fectiveness of our method. The experimental results reveal
that our method outperforms the state-of-the-art approaches.
We also found that the outliers shown in Fig. 4 are difficult
to be classified. In the future, we will investigate how to
handle these difficult samples.
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