
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.11 NOVEMBER 2021
2011

LETTER

Usage Log-Based Testing of Embedded Software and Identification
of Dependencies among Environmental Components

Sooyong JEONG†a), Member, Sungdeok CHA††, and Woo Jin LEE†b), Nonmembers

SUMMARY Embedded software often interacts with multiple inputs
from various sensors whose dependency is often complex or partially
known to developers. With incomplete information on dependency, test-
ing is likely to be insufficient in detecting errors. We propose a method to
enhance testing coverage of embedded software by identifying subtle and
often neglected dependencies using information contained in usage log.
Usage log, traditionally used primarily for investigative purpose follow-
ing accidents, can also make useful contribution during testing of embed-
ded software. Our approach relies on first individually developing behav-
ioral model for each environmental input, performing compositional anal-
ysis while identifying feasible but untested dependencies from usage log,
and generating additional test cases that correspond to untested or insuf-
ficiently tested dependencies. Experimental evaluation was performed on
an Android application named Gravity Screen as well as an Arduino-based
wearable glove app. Whereas conventional CTM-based testing technique
achieved average branch coverage of 26% and 68% on these applications,
respectively, proposed technique achieved 100% coverage in both.
key words: embedded software testing, environmental modeling, test cov-
erage

1. Introduction

Testing of embedded software is well-known to be time-
consuming and technically challenging in that multiple sen-
sors often continuously feed inputs to software and that
feedback control from actuators has an impact on sub-
sequent inputs. Developers generate test cases based on
known dependency relations, and Siegl [12] proposed how
to perform dependency analysis on input/output elements.
Embedded software testing techniques sometimes rely on
unrealistic assumptions that inputs are independent of each
other, and Classification Tree Method (CTM) [1] is such an
example. Unfortunately, test cases generated based on such
assumptions are often insufficient to achieve adequate qual-
ity assurance [11], and the difficulty of testing grows signif-
icantly if there are more dependencies to consider.

Two recent crashes of Boeing 737 Max 8 aircrafts [3]
offer important lessons to learn. It appears that, when devel-
oping software for Maneuvering Characteristics Augmenta-
tion System (MCAS) system, Boeing did not fully under-
stand or analyze complex dependencies among AoA (Angle

Manuscript received April 23, 2021.
Manuscript revised July 1, 2021.
Manuscript publicized July 28, 2021.
†The authors are with Kyungpook National University, Daegu,

41566 South Korea.
††The author is with Korea University, Seoul, 02841 South

Korea.
a) E-mail: kyo1363@naver.com
b) E-mail: woojin@knu.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2021EDL8042

of Attack) sensor malfunctions, stall warnings, movement
of the fuselage, and pilot’s flight decisions. In addition to
several hundred lives lost in the crashes, MCAS design flaw
is estimated to have caused Boeing more than $20 billion in
cost.

While exhaustive testing is ideal, especially when ap-
plied to safety-critical software, it is well-known to be im-
practical. As a practical alternative, we propose to use
usage log to identify dependency relations that are either
untested or insufficiently tested in embedded software. Us-
age log is analogous to data collected by black boxes (or
data recorders) often installed in aircrafts and vehicles. It
has been traditionally used primarily for investigative pur-
pose when analyzing what caused accidents.

One might argue that it is perhaps unrealistic to expect
that usage log is available while software is being devel-
oped. One could also argue that usage log may not contain
relevant and accurate enough information to enable detec-
tion of potential errors in the System Under Test (SUT).

Perhaps one might confuse the roles of usage and test
logs. The former is not to determine if SUT successfully
delivers the expected functionality. Rather, it is a collection
of data that represent environmental inputs SUT is expected
to work under. Therefore, usage log does not require the
presence of expected output from SUT. It is important to
understand that usage log need not be generated from SUT
itself. If SUT is an enhancement on existing systems, us-
age log collected from an earlier system is often adequate.
Logs collected from competing products can also be used if
sensor inputs are compatible.

Figure 1 illustrates how the proposed approach works.
First, we develop a preliminary model on behavior of
each environmental component (e.g., sensor or input) based
on existing information on SUT or developer’s domain-
knowledge (i.e., step A). If sensor input has values in multi-
ple dimensions (e.g., accelerometer sensor inputs in x, y, and
z axes), behavioral models could be developed separately.

Preliminary model might be imperfect in that some
states or transitions are missing or incorrect. Using the tech-
nique published in [4], each model is first analyzed individ-
ually to ensure its correctness and completeness. Usage log
contains information on time-triggered sensor inputs to em-
bedded software, and it may reveal states or transitions that
are incorrect or currently missing but feasible. (See [4] for
further details.) This step results in obtaining individually
complete and correct state models of environmental compo-
nents, but dependency relations among environmental com-

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers

2012
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.11 NOVEMBER 2021

Fig. 1 The workflow of the proposed method

ponents have not been analyzed.
Brute-force compositional analysis is likely to result in

state and transition explosion for embedded software inter-
acting with multiple sensors and actuators. Therefore, we
use information included in usage log to identify depen-
dencies that are highly unlikely to occur in deployment and
therefore safe to ignore in testing.

An important contribution of this paper is that usage
log is highly useful in performing systematic dependency
analysis and that usage log is an effective source in improv-
ing coverage and adequacy of existing test cases. Missing
or insufficiently tested dependencies among environmental
components can be identified and additional tests generated.

This paper is organized as follows. Section 2 describes
each step of the proposed approach in greater detail using an
illustrative example. Section 3 discusses the performance
of our technique when applied to a wearable glove based
on Arduino, and an Android application Gravity Screen [5].
When evaluated on hypothetical software errors seeded into
software using mutation technique, our technique demon-
strated superior performance when compared against the
widely used CTM testing technique. Section 4 concludes
the paper.

2. Usage Log-Based Testing and Identification of De-
pendencies among Environmental Components

2.1 Preliminary Behavioral Model of Individual Environ-
mental Component

In order to perform systematic testing of embedded soft-
ware, it is necessary to develop correct and complete en-
vironmental model that capture both behavior of each com-
ponent (e.g., sensor) and dependencies among them. Devel-
opment of a global state model may appear attractive, such
effort is likely to be too complex and error-prone. As an
alternative, we propose to develop a state model for each
environmental component in isolation. During this process,
some states and transitions that are known to be irrelevant
(or indistinguishable) in terms of interaction with other com-
ponents may become simplified (e.g., masked). For exam-

Fig. 2 State model of individual environmental component and its mask-
ing of irrelevant guard conditions and transitions

ple, in the case of accelerometer used by Gravity Screen
app [5], detailed and accurate behavior model of y axis input
is shown in Fig. 2 (a). Behavioral model could be simplified
if Gravity Screen app requires different response to inputs
only around the threshold value of 6. Masking process may
also remove irrelevant guard conditions in the model. For
example, guard condition unrelated to y (e.g., z > 8.8) is
removed.

If usage log mapping onto preliminary model detect
missing transitions, they are added so that complete and cor-
rect behavioral model for each environmental component is
obtained.

2.2 Compositional Analysis and Dependency Identifica-
tion

Once the behavior of the individual model is validated and
simplified, compositional models are automatically gener-
ated by applying a Cartesian product of the state models.
While compositional models include all of theoretically pos-
sible and exhaustive combinations of cases, some states and
transitions are infeasible when deployed.

Usage log reflects the characteristics of sensor inputs
the SUT is expected to encounter in deployment, and it pro-
vides useful insight on how size and complexity of compo-
sitional model can be reduced. See Fig. 3 (a) on how time-
triggered usage log collected at t0 through t4 are mapped
to the compositional model derived from individual models
shown in Fig. 2 (b). Composite state y2z2 was automatically
generated, but it is shown to never occur in reality. Such
assertion would be safe to make only if usage log contains
large and representative enough information on the environ-
ment with which SUT interacts. As shown in Fig. 3 (a), each
data sequence in usage log may contain partial dependency
relation among environmental components. Mapping of all
data sequences in usage log would reveal all of the feasible
transitions in the compositional model. This step is repeat-

LETTER
2013

edly applied to all possible combinations of environmental
inputs. See Fig. 3 (b) for illustration.

2.3 Test Coverage Enhancement Based on Dependency
Relation

In the final phase of the proposed approach, existing test log
is mapped onto the compositional model to measure its cov-
erage and adequacy. Each test case contains time-sequenced
inputs and expected actuator outputs. If some complex or
subtle dependency relations are partially implemented, ex-
isting test cases would cover only a subset of feasible states
and transitions in the compositional model. If implementa-
tion is incorrect, it is also possible that transitions that were
never shown to occur in usage log may suddenly appear pos-
sible. All such anomalies are to be investigated as they are
indicators of potential errors in embedded software.

Figure 4 illustrates that existing test sequences, TS#1
and TS#2, cover all three feasible states (e.g., y1z1, y1z2,
and y2z1) but that some feasible transitions (e.g., t2 and
t6) remain uncovered. It means that additional test se-
quences (e.g., TS#3 and TS#4) are necessary by applying

Fig. 3 The identification of environmental component dependency

Fig. 4 Test enhancement with additional test cases

state model-based testing techniques such as [6]. Mapping
of test log onto the compositional model provides invaluable
insights on which part of software further testing resource
must be allocated.

One must understand that coverage value may vary de-
pending on the chosen criteria. For example, 79% coverage
of statement/branch coverage may yield only 67% coverage
when expression coverage is chosen instead [9]. It is equally
important to note that even 100% of chosen coverage crite-
ria may fail to detect faults unless test cases are powerful
enough to trigger generation of incorrect output [10].

3. Case Study

To investigate the effectiveness of the proposed approach,
we performed testing experiments on two embedded appli-
cations and compared test coverage against the CTM-based
technique. CTM-based test scenario was generated using a
randomizer that continuously add test cases until it satisfies
CTC2 (pairwise combination of classification-tree coverage)
criterion [2]. We generated the CTM test scenario 10,000
times and measured its performance in terms of the average,
minimum, and maximum coverages. See Table 1 for details.

The first experiment used embedded software running
on an Arduino-based wearable glove. The device translates
American sign language into text by reading the bend of
fingers with five flex sensors [13]. We collected the usage
log of 6,297 entries, and the compositional analysis revealed
10 (or 5C2) pairs of dependencies on finger movements be-
tween the muscles and bones. We created state models of
flex sensors, generated test scenarios, and compared to those
generated by the CTM-based technique. We measured how
many branches of the source code out of 26 branches corre-
spond to the alphabet ‘A’ to ‘Z’ in American sign language.
Test scenarios from the proposed method succeeded in cov-
ering 100% of the branch coverage, whereas the CTM test
scenario achieved only 67.5% (or 16.2 out of 26) coverage
on average. The maximum and minimum state coverage
measures were 92.3% and 34.6%, respectively.

The other experiment was on Gravity Screen [5], an
Android application that accepts input from 8 different en-
vironmental components including accelerometer and prox-
imity sensors. It determines when the smartphone screen is
best turned on or off. To apply the proposed method, we col-
lected the usage log of 29,218 records by Samsung Galaxy
S9+ smartphone. The compositional analysis revealed that
there are 14 pairs of dependency relationships among en-
vironmental components, and we were able to significantly

Table 1 Test result of experiment on Gravity Screen Android application

2014
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.11 NOVEMBER 2021

reduce the size of the test scenario. If we choose to perform
brute-force combinatorial testing, 28 (or 8C2) different pairs
of the state models would have required testing effort. In or-
der to perform a realistic evaluation of potential software er-
rors, we chose to inject some errors into software and com-
pare the effectiveness of our approach against CTM testing
technique. Because source code is not publicly available, we
decompiled APK file by FernFlower Decompiler [7], gener-
ated 41 mutants of the APK file with MutAPK, the auto-
matic mutation tool [8], and measured the effectiveness of
testing using the following criteria: 1) percentage of covered
transitions, and 2) number of mutants killed. Each mutant
represents a sample of potential errors, and a test sequence
is considered to have successfully detected the error if a mu-
tant is killed. The CTM showed that only about a quarter (or
25.8%) of transitions are covered, and only 18.5 out of 41
mutants are killed on the average. Our technique, however,
successfully covered all of 4,459 feasible transitions found
in the compositional model. In terms of mutants killed, our
technique outperformed CTM testing technique in that 31
out of 41 mutants have been killed.

4. Conclusion

Embedded software testing poses a significant challenge to
software engineers if complex and subtle dependencies ex-
ist among inputs. This is especially true if embedded soft-
ware is deployed in safety-critical applications. Developers
of embedded software may misunderstand the true nature
of subtle dependencies. Or, developers may have underesti-
mated the importance and significance of some of the known
dependencies. Such shortcomings might result in serious
quality issues with embedded software, and existing testing
technique such as CTM may become inadequate.

In this paper, we proposed how usage log can offer in-
valuable help to developers and test engineers of embed-
ded software. While usage log had primarily been used
primarily for investigative purposes, it is highly useful dur-
ing development in identifying some dependencies untested
or insufficiently tested. We use usage log to obtain a com-
plete and consistent behavior model of each environmental
component, and it is also used to filter only feasible states
and transitions when compositional dependency analysis is
performed. Mapping of test logs on compositional models
may reveal untested or insufficiently tested aspects of em-
bedded software, and additional test cases are generated us-
ing model-based testing technique such as [6]. Experimen-
tal evaluation on different applications convincingly demon-

strated that our technique is powerful and effective.

Acknowledgments

This research was supported by the Basic Science Re-
search Program through the National Research Founda-
tion of Korea funded by the Ministry of Education (NRF-
2017R1D1A3B04035880 and NRF-2018R1A6A1A030251
09).

References

[1] M. Grochtmann et al., “Test case design using classification trees
and the classification-tree editor CTE,” Proc. 8th International Qual-
ity Week, vol.95, 1995.

[2] K. Lamberg, M. Beine, M. Eschmann, R. Otterbach, M. Conrad, and
I. Fey, “Model-based testing of embedded automotive software us-
ing Mtest,” SAE transactions, no.2004-01-1593, pp.132–140, 2014.

[3] P. Johnston et al., “The Boeing 737 MAX saga: lessons for software
organizations,” Software Quality Professional, vol.21, no.3, pp.4–
12, 2019.

[4] S. Jeong, A.K. Jha, Y. Shin, and W.J. Lee, “A Log-Based Testing
Approach for Detecting Faults Caused by Incorrect Assumptions
About the Environment,” IEICE Trans. Information and Systems,
vol.E103-D, no.1, pp.170–173, 2020.

[5] Gravity Screen – On/Off, https://play.google.com/store/apps/details
?id=com.plexnor.gravityscreenofffree, accessed 05. Nov. 2020.

[6] S. Pradhan, M. Ray, and S.K. Swain, “Transition Coverage based
Test Case Generation from State Chart Diagram,” Journal of King
Saud University – Computer and Information Sciences, 2019. doi:
https://doi.org/10.1016/j.jksuci.2019.05.005

[7] FernFlower Decompiler, https://github.com/fesh0r/fernflower, ac-
cessed 25. July 2020.

[8] C. Escobar-Velásquez, M. Osorio-Riaño, and M. Linares-Vásquez,
“MutAPK: Source-Codeless Mutant Generation for Android Apps,”
The 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE’19), pp.1090–1093, 2019.

[9] Y. Cheng, M. Wang, Y. Xiong, D. Hao, and L. Zhang, “Empirical
Evaluation of Test Coverage for Functional Programs,” Proc. IEEE
International Conference on Software Testing, Verification and Val-
idation, pp.255–265, 2016.

[10] P. Piwowarski, M. Ohba, and J. Caruso, “Coverage measurement ex-
perience during function test,” Proc. 15th International Conference
on Software Engineering, pp.287–301, 1993.

[11] E. Lehmann et al., “Test case design by means of the CTE XL,”
Proc. 8th European International Conference on Software Testing,
Analysis & Review (EuroSTAR 2000), 2000.

[12] S. Siegl, M. Russer, and K.-S. Hielscher, “Partitioning the require-
ments of embedded systems by input/output dependency analysis for
compositional creation of parallel test models,” 2015 Annual IEEE
Systems Conference (SysCon) Proceedings, pp.96–102, 2015.

[13] A glove that translate sign language into text and speech,
https://www.hackster.io/173799/a-glove-that-translate-sign-
language-into-text-and-speech-c91b13, accessed 15 Nov. 2020.

http://dx.doi.org/10.4271/2004-01-1593
http://dx.doi.org/10.1587/transinf.2019edl8149
https://doi.org/10.1016/j.jksuci.2019.05.005
http://dx.doi.org/10.1109/ase.2019.00109
http://dx.doi.org/10.1109/icst.2016.8
http://dx.doi.org/10.1109/icse.1993.346035
http://dx.doi.org/10.1109/syscon.2015.7116735

