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A Novel Transferable Sparse Regression Method for
Cross-Database Facial Expression Recognition∗

Wenjing ZHANG†, Nonmember, Peng SONG†a), Member, and Wenming ZHENG††, Nonmember

SUMMARY In this letter, we propose a novel transferable sparse re-
gression (TSR) method, for cross-database facial expression recognition
(FER). In TSR, we firstly present a novel regression function to regress
the data into a latent representation space instead of a strict binary label
space. To further alleviate the influence of outliers and overfitting, we im-
pose a row sparsity constraint on the regression term. And a pairwise re-
lation term is introduced to guide the feature transfer learning. Secondly,
we design a global graph to transfer knowledge, which can well preserve
the cross-database manifold structure. Moreover, we introduce a low-rank
constraint on the graph regularization term to uncover additional structural
information. Finally, several experiments are conducted on three popular
facial expression databases, and the results validate that the proposed TSR
method is superior to other non-deep and deep transfer learning methods.
key words: sparse regression, transfer learning, cross-database facial ex-
pression recognition

1. Introduction

Facial expression contains a large amount of emotional in-
formation, which plays an important role in verbal and
nonverbal communications. Facial expression recognition
(FER) aims to classify facial expressions into the follow-
ing emotional states, e.g., anger, fear, disgust, happiness,
sadness, and surprise. With the rapid development of artifi-
cial intelligence, FER has attracted much attention in many
application fields, e.g., human-computer interaction, educa-
tional tutoring systems, and pain detection.

Recently, regression based methods are very popular
to improve the FER performance [1]–[3]. For example,
in [1], Wang et al. propose an unsupervised feature selec-
tion method for FER, which is based on spectral regression
and manifold learning. In [2], Yan et al. present a regres-
sion based robust locality preserving projection (RRLPP)
method, which can effectively eliminate the noises and oc-
clusion in FER. In [3], Peng et al. develop a low-rank
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spectral regression (LRSR) model, which decomposes the
projection matrix in spectral regression by two-factor ma-
trices to conduct subspace learning. Note that all these
methods try to regress the original data into the label space,
which can achieve promising performance. However, there
exist two main shortcomings. First, in practice, the train-
ing and testing data may be sampled from different scenes,
e.g., different lighting, equipment, and environment. Sec-
ond, directly transforming the original data into a binary la-
bel space is too strict and may cause overfitting. Thus, the
recognition rate may drop significantly for cross-database
FER.

To solve the above-mentioned problems, some label re-
laxation transfer learning methods have been proposed. For
example, in [4], Xu et al. propose a discriminative transfer
subspace learning (DTSL) method. DTSL introduces a la-
bel relaxation matrix, and imposes low-rank and sparse con-
straints on the reconstruction matrix to achieve better trans-
fer performance. In [5], Zhang et al. present a guide sub-
space learning (GSL) method for transfer learning, which
also introduces a label relaxation matrix to improve the dis-
criminative of subspace. In [6], Chen et al. develop a ro-
bust transferable subspace learning (RTSL) for cross-corpus
FER, which jointly considers the distance divergence and
label relaxation guidance strategy to transfer knowledge.

Motivated by the above discussions, in this letter,
we propose a novel transferable sparse regression (TSR)
method to solve the cross-database FER problem. Differ-
ent from the aforementioned methods, the proposed TSR
approach firstly regresses the source data into a latent rep-
resentation space. Meanwhile, we constrain the regression
term by using an �2,1-norm, which can reduce the noise and
outliers. Then, we introduce a pairwise relation constraint
to further exploit the discriminative information. In addi-
tion, we develop a novel low-rank constrained global graph,
which not only can preserve the geometric structure of the
cross-database data, but also can uncover the structural in-
formation.

2. Proposed Method

Here we first elaborate the definitions of terminologies,
which are frequently used in this letter. For the cross-
database FER tasks, let Xs ∈ Rd×ns and Xt ∈ Rd×nt be the
source and target emotional data, respectively, where d is
the dimensionality of the original data, ns and nt indicate
the numbers of source and target samples, respectively. Let
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W ∈ Rd×c be the projection matrix, where c is the dimen-
sionality of the common subspace. Define V ∈ Rns×c as the
latent representation matrix. Y ∈ Rns×c as the binary label
matrix of the source database. For an arbitrary matrix A ∈
R

ns×nt , the nuclear norm of A is defined as ‖A‖∗ = ∑i σi(A),
where σi(A) is the singular values of A, and the �2,1-norm of

A is defined as ‖A‖2,1 = ∑ns

i=1

√∑nt

j=1 A2
i j.

Note that there is rich information hidden in the source
database, e.g., the label discriminative information and the
inherent geometric structural information. How to effec-
tively utilize this valuable information will contribute to
learn a more robust subspace and boost the recognition per-
formance. As is known to all, linear regression (LR) can
give full consideration to the label discriminative informa-
tion. However, conventional LR algorithms assume that the
training samples will be transformed into a strict binary la-
bel space, or learn more transformation matrices to relax
the strict label matrix. Although they can achieve satisfac-
tory results, learning multiple transformation matrices will
be very time consuming.

Instead of directly regressing the training data into the
label space, in this letter, we firstly regress the training data
into a latent representation space V , which is defined as

min
W
‖V − XT

s W‖2F (1)

It can be noticed that Eq. (1) is constrained by a
Frobenius norm, which is sensitive to noises and outliers.
To address this problem, as [7], we rewrite Eq. (1) as
follows:

min
W
‖V − XT

s W‖2,1 (2)

Then, we introduce a pairwise constraint to further ex-
ploit the label discriminative information. It assumes that
two samples in the latent representation space are close, only
if the samples with the same category are close to each other.
Therefore, the pairwise constraint can be reformulated as
minimizing the following distance-distance difference prob-
lem:

min
V
‖VT V − YT Y‖2F (3)

Since manifold learning has recently been widely ap-
plied on transfer subspace learning [6], we further take into
account the cross-database local geometric structural infor-
mation. In this letter, we construct a global k-nearest neigh-
bor graph to preserve the geometric structure information
and achieve knowledge transfer, which can be formulated as

min
W

tr(WT XLXT W) (4)

where L = D − W is a Laplacian matrix, D is a diagonal
matrix, and its diagonal entry Dii =

∑
j�i Wi j. The weight

matrix W is a binary weighting matrix that defines the simi-
larity of each pair of samples, which is defined as

Wi j =

{
1, xi ∈ Nk(x j) or x j ∈ Nk(xi)

0, otherwise
(5)

Because the Laplacian matrix L is a real symmetric, we
use the eigen-decomposition technique on Eq. (4). Then the
following equation can be obtained as

tr(WT XLXT W) = tr(WT XUSUT XT W)

= ‖S 1
2 UT XT ‖2F = ‖AW‖2F , (6)

where A = S
1
2 UT XT .

As for the cross-database FER, the low-rank con-
straint [4] can not only achieve more effective representa-
tion, but also can reveal the additional subspace structure.
Therefore, we impose the nuclear norm on the graph con-
straint, and rewrite the Eq. (6) as

min
W
‖AW‖∗ (7)

By integrating Eqs. (2), (3) and (7), the final objective
function can be formulated as

min
V,W
‖V − XT

s W‖2,1 + α‖VT V − YT Y‖2F + γ‖AW‖∗ (8)

s.t. VT 1 = 1, WT W = I.

It is obvious that Eq. (8) is non-convex, which is hard to
directly be solved. Therefore, in this letter, we use the alter-
nating direction method of multipliers (ADMM) [8] to solve
this problem. Firstly, we introduce two auxiliary variables G
and H to make the objective function separable. And Eq. (2)
can be expressed as

‖V − XT
s W‖2,1 = 2Tr(V − XT

s W)T Q(V − XT
s W) (9)

For clarity, we set F = V −XT
s W, Q = [qii] is a diagonal ma-

trix with qii =
1

2‖Fi‖2+ε , ε is a small positive constant to avoid
dividing by zero. Then we solve Eq. (8) by minimizing the
following Lagrangian function:

L = Tr(V−XT
sW)TQ(V−XT

sW)+α‖VTH−YTY‖2F+γ‖G‖∗
+ <Y1,V−H> + <Y2,G−AW> + tr

(
φ(I−WTW)

)
+
μ

2

(
‖V − H‖2F + ‖G − AW‖2F

)
(10)

where Y1 and Y2 are the Lagrange multipliers, α, γ and φ are
the trade-off parameters, and μ > 0 is a penalty parameter.
The detailed procedures of solving (10) are given as follows.

1) Update V by fixing the other variables. Let the
partial derivative of L with respect to V equal 0, we can
obtain

V∗ = (μI +αHHT +Q)−1(QXT
s W +μH −Y1 +αHYT Y)

(11)

Since the column normalization constraint ‖V:,i‖ns

i=1 = 1, the
optimal V∗ is

V∗ = [V∗:,1,V
∗
:,2, . . . ,V

∗
:,n] (12)

2) Update H by fixing the other variables. Let the
partial derivative of L with respect to H equal 0, we can
obtain
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H∗ = (αVVT + μI)−1(αVYT Y + μV + Y1) (13)

3) Update G by fixing the other variables, we can
obtain

arg min
G
γ‖G‖∗ + <Y2,G − AW> +

μ

2
‖G − AW‖2F . (14)

We utilize the singular value thresholding (SVT) [9] algo-
rithm to solve the Eq. (14).

4) Update W by fixing the other variables. Let the
partial derivative of L with respect to W equal 0, we can
obtain

W∗ = (XsQXT
s + φW + AT A)−1(XsQV + AT G +

Y1

μ
AT )

(15)

5) Update the multipliers Y1, Y2 and μ:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y1 = Y1 + μ(V − H)
Y2 = Y2 + μ(G − AW)
μ = min(ρμ, μmax)

(16)

where ρ > 1 and μmax are the constants.

3. Experiments

To evaluate the performance of the proposed TSR ap-
proach, we conduct extensive cross-database and non cross-
database FER experiments on three commonly used emo-
tional databases, including JAFFE†, CK+††, and KDEF†††.
And we compare the proposed TSR approach with the fol-
lowing transfer learning methods, including principal com-
ponent analysis (PCA) [10], transfer component analysis
(TCA) [11], transfer joint matching (TJM) [12], discrimina-
tive transfer subspace learning (DTSL) [4], joint geometrical
and statistical alignment (JGSA) [13], domain invariant and
class discriminative (DICD) [14], and guide subspace learn-
ing (GSL) [5]. In addition, we also compare our method
with several deep transfer learning methods, i.e., deep do-
main confusion (DDC) [15], and deep adaptation networks
(DAN) [16].

In our experiments, for a fair comparison, we firstly re-
size all facial images into 60×60 pixels and transform them
into grayscale. Then we use the local binary patterns (LBP)
feature for feature extraction. In this way, each emotional
image is divided into nine regions, and we can obtain a 2304
dimensional feature. In addition, we also use a fine-tuned
ResNet-50 model [17] to further extract the deep features of
facial images, and the dimensionality of each image is set to
2048. We choose six common emotion categories for eval-
uation, including anger, disgust, fear, happiness, sadness,
and surprise. And we conduct six types of cross-database
FER experiments (source → target), including J → C, J →
K, C → J, C → K, K → C, K → J, where J, C and K are

†http://www.kasrl.org/jaffe.html
††http://www.pitt.edu/emotion/ck-spread.htm
†††http://www.emotionlab.se/kdef/

abbreviations for JAFFE, CK+ and KDEF, respectively. As
for the non cross-database FER experiments, we divide each
database into six parts by categories, then randomly select
7/10 for training, and the rest are used for testing. The ex-
periments are repeated five times and the average recogni-
tion results are given.

For fairness, we strictly follow the same experimen-
tal settings, and empirically search the optimal parameter
values for evaluation. Then, we give the best experimental
results of each method. Specifically, the subspace dimen-
sion of PCA, TCA, TJM, JGSA and DICD is set to 100, and
the dimensionality of DTSL, GSL and the proposed TSR
method is set to six. The main three trade-off parameters,
i.e., α, γ and φ, are involved in our method, which are tuned
from [0.001, 0.01, 0.1, 1, 10, 100]. Also, we set μ = 0.001,
η = 0.001, the number of nearest neighbors k = 30, and the
maximum iteration number T = 10. To evaluate the recog-
nition performance, a linear support vector machine (SVM)
is used as the baseline classifier for all the compared meth-
ods.

The recognition accuracy of different methods using
LBP feature and deep features are reported in Tables 1 and
2, respectively. From the tables, we can obtain the following
observations.

From Table 1, we can observe that, the proposed ap-
proach can obtain better recognition results compared with
other classical transfer learning methods. Under the six ex-
perimental settings, the average recognition accuracy of the
proposed TSR is 55.82%, which obtains a 2.61% improve-
ment compared with the best baseline method GSL. We can
find that the proposed method can achieve the highest per-
formance in all cross-database FER tasks. Also, we can ob-
tain that, the recognition rate about considering label regres-
sion methods, such as DTSL, GSL, and our proposed TSR,
is higher than other transfer learning methods. These results
all demonstrate that, by considering the sparse regression
and low-rank graph constraint, the proposed method can ob-
tain a more robust subspace for cross-database FER.

We further give the results of different methods using
deep features in Table 2. From the table, we can notice that,
by using the deep features, the performance of the proposed
TSR method also outperforms that of all the non-deep trans-
fer learning methods. When comparing the performance be-
tween deep features and LBP feature, it can be found that,
the accuracies of deep features are much better than those
of LBP feature. The reason may be that the deep features
can obtain deeper and better structural information, which
is helpful for facial expression classification. Furthermore,
by comparing TSR with deep transfer learning algorithms,
i.e., DDC and DAN, the proposed TSR method also achieves
better recognition performance, with about 5.54% improve-
ment in average recognition accuracy.

In order to provide fairer evaluation of the proposed
method against the other methods, we also give the results of
non cross-database FER in Table 3. From the table, we can
notice that, the performance of the proposed TSR method
is better than all the compared methods on all databases.
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Table 1 Recognition performance (%) of different methods using the LBP feature under different
settings.

Settings
Compared methods

PCA TCA TJM DTSL JGSA DICD GSL TSR

J→C 41.43 37.62 51.90 49.52 47.14 49.52 54.29 56.19

J→K 47.14 40.95 51.67 52.86 51.43 50.00 50.95 55.24

C→J 37.70 36.61 36.61 44.81 37.70 42.08 43.17 45.90

C→K 55.24 51.90 55.71 55.71 56.19 54.76 57.62 59.05

K→C 58.10 60.48 64.29 63.81 65.62 63.81 65.71 67.14

K→J 46.45 42.08 46.99 45.36 49.73 43.72 50.27 51.37

Average 47.95 44.94 51.20 52.01 49.61 50.65 53.21 55.82

Table 2 Recognition performance (%) of different methods using the deep features under different
settings.

Settings
Compared methods

PCA TCA TJM DTSL JGSA DICD GSL DDC* DAN* TSR

J→C 43.33 45.71 51.90 58.57 51.90 52.38 55.24 58.57 65.24 66.19

J→K 56.67 57.62 63.33 66.19 60.95 69.52 65.24 56.19 67.14 72.38

C→J 46.45 43.17 51.91 55.74 53.01 55.19 51.91 53.55 50.82 56.28

C→K 62.38 61.9 66.67 70.48 66.19 68.57 70.74 69.05 67.62 74.76

K→C 61.43 62.86 67.14 69.52 64.76 68.10 66.19 71.43 63.81 73.33

K→J 55.74 54.64 59.02 62.30 59.02 63.93 62.84 49.73 58.47 63.39

Average 54.33 54.32 60.00 63.80 59.31 62.95 62.03 59.75 62.18 67.72

Table 3 Recognition performance (%) using LBP and deep features under different databases.

Features Databases
Compared methods

PCA TCA TJM DTSL JGSA DICD GSL TSR

JAFFE 60.00 65.97 68.42 69.82 73.68 75.09 76.14 77.54

LBP CK+ 64.26 68.37 70.82 75.08 78.69 79.35 81.97 83.28

KDEF 63.67 66.67 65.52 68.50 75.00 75.04 74.66 79.33

JAFFE 85.96 89.82 90.53 88.42 90.17 92.28 92.63 95.08

Deep features CK+ 86.89 87.87 90.49 90.82 91.47 89.51 91.15 94.10

KDEF 88.00 89.40 91.00 90.34 90.67 90.33 91.34 92.67

This demonstrates that the proposed method can not only
effectively improve the recognition performance of cross-
database FER, but also can be applied to non cross-database
FER tasks.

4. Conclusion

In this letter, we have presented a novel transfer learn-
ing method, called transferable sparse regression (TSR),
for cross-database FER. Specifically, we develop a sparse
regression function to regress the data into a latent subspace.
Meanwhile, we utilize a pairwise relation term to guide fea-
ture transfer learning. In addition, we introduce a low-rank
graph constraint to uncover the local geometric structure of
cross-database data. Extensive experiments on three public
facial expression databases demonstrate the superiority of

the proposed method.
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