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Few-Shot Anomaly Detection Using Deep Generative Models for
Grouped Data

Kazuki SATO†a), Satoshi NAKATA††b), Nonmembers, Takashi MATSUBARA†††c),
and Kuniaki UEHARA††††d), Members

SUMMARY There exists a great demand for automatic anomaly de-
tection in industrial world. The anomaly has been defined as a group of
samples that rarely or never appears. Given a type of products, one has to
collect numerous samples and train an anomaly detector. When one diverts
a model trained with old types of products with sufficient inventory to the
new type, one can detect anomalies of the new type before a production line
is established. However, because of the definition of the anomaly, a typi-
cal anomaly detector considers the new type of products anomalous even
if it is consistent with the standard. Given the above practical demand, this
study propose a novel problem setting, few-shot anomaly detection, where
an anomaly detector trained in source domains is adapted to a small set of
target samples without full retraining. Then, we tackle this problem using
a hierarchical probabilistic model based on deep learning. Our empirical
results on toy and real-world datasets demonstrate that the proposed model
detects anomalies in a small set of target samples successfully.
key words: anomaly detection, deep generative model, disentangled rep-
resentation learning

1. Introduction

Anomaly detection, a problem of identifying samples with
patterns substantially differing from normal ones, has been
attracting much attention, such as the discovery of defective
parts for manufactured products in factories [1] and diagno-
sis of lesions in medical image analysis [2], [3]. Because
the anomaly has a wide variety of patterns produced non-
orderly, the unsupervised anomaly detection is preferable to
the supervised anomaly classification [4], [5].

When focusing on the industrial use, an anomaly detec-
tor needs to learn typical patterns from numerous samples
of a type of products. Given a new type (i.e., target type) of
products, one has to collect numerous samples of the prod-
uct from a production line and to train another anomaly de-
tector from scratch. When one diverts a model trained with
old types (i.e., source types) of products with sufficient in-

Manuscript received July 17, 2021.
Manuscript publicized October 25, 2021.
†The author is with Graduate School of System Informatics,

Kobe University, Kobe-shi, 657–8501 Japan.
††The author is with Mitsubishi Chemical Systems, Inc., Tokyo,

131–0045 Japan.
†††The author is with Graduate School of Engineering Science,

Osaka University, Toyonaka-shi, 560–8531 Japan.
††††The author is with Faculty of Business Administration, Osaka

Gakuin University, Toyonaka-shi, 564–8511 Japan.
a) E-mail: ksato@ai.cs.kobe-u.ac.jp
b) E-mail: nakata.satoshi.mx@mitsubishichem-sys.co.jp
c) E-mail: matsubara@sys.es.osaka-u.ac.jp
d) E-mail: kuniaki.uehara@ogu.ac.jp

DOI: 10.1587/transinf.2021EDL8063

ventory to the new type, one can detect anomalies of the new
type before a production line is established.

In this study, we consider a novel problem setting of
detecting anomalies within a small set of samples of a tar-
get type by diverting a model that is already trained with
sources types, which we refer to as few-shot anomaly de-
tection. Under this problem setting, we propose to use a
deep learning-based probabilistic model, which separates
domain-level common features in grouped samples from
sample-level features. We demonstrate the effectiveness of
the proposed method in experiments using toy datasets and
a real-world dataset containing aerial images of chemical
factories.

2. Few-Shot Learning Anomaly Detection

The domain adaptation includes various problem set-
tings [6]. In general, the purpose is to recognize samples
(called target samples) obtained from a domain (called tar-
get domain), but there exists a reason not to train a model ef-
ficiently. Hence, additional samples (called source samples)
are obtained from different domains (called source domains)
and used for training. For classification, target samples are
often assumed to be unlabeled, whereas source samples are
labeled. For unsupervised anomaly detection, the number
of target samples is assumed to be limited [7]–[9]. In any
cases, domain adaptation methods train a model using both
source and target samples.

The few-shot learning is a special case of the domain
adaptation, where the number of available target samples is
extremely limited (typically, 1–10 samples) and most do-
main adaptation methods are inapplicable [10]. Especially,
few-shot learning methods train a model only using source
samples and, after training, adjust the model every time a
set of target samples is given [11]–[13]. The few-shot learn-
ing setting is free from the following bottlenecks. First, do-
main adaptation methods adapt a model to a target domain
that is used at the training phase. Therefore, to adapt an-
other target domain, they have to train another model from
scratch. Second, even when domain adaptation methods
train many models for many target domains, one has to de-
termine which model is best for a given set of samples by
using a domain classifier. Given an additional target do-
main, the domain classifier is retrained using all samples
obtained from all target domains. In both cases, a huge
amount of computational resources is required. Conversely,
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the few-shot learning methods are assumed to quickly adjust
a trained model to fit a given set of target samples without
full retraining.

Given the above, we propose the few-shot anomaly de-
tection. A model is trained using samples obtained only
from source domains. After training, a small set of sam-
ples is obtained from a target domain. Then, the model is
expected to detect anomalies in the small set. In typical un-
supervised anomaly detection, the anomaly is defined as a
group of samples that rarely or never appears in the train-
ing phase; the anomaly is sometimes referred to as “unseen
samples”, and any target samples are detected as anomalies.
However, the purpose of the few-shot anomaly detection is
to detect anomalies (in some sense depending on datasets)
among target samples. The anomaly is defined as a sample
with patterns substantially differing from the remaining of
the given set of target samples.

The few-shot anomaly detection reflects a practical sit-
uation in a factory in which we aim to detect defective parts
from a new type (i.e., target type) of product for which a pro-
duction line has not yet been established. In this situation, it
may become necessary to divert a model trained with older
products (i.e., source samples) with sufficient inventory to
detect anomalies in newer products. To our best knowledge,
this is the first time to tackle the few-shot anomaly detection.

3. Methods

Variational Autoencoder: Autoencoder (AE) is a kind of
DNNs generally consisting of two networks, called encoder
and decoder [14]. The encoder first maps a sample x to
a low-dimensional variable z as a compressed feature, and
then the decoder maps it to a reconstruction x̃ so that the
original sample x is recovered.

Variational autoencoder (VAE) is an AE extended from
the viewpoint of generative model [15]. For a sample x in a
data space X ⊂ RNx , consider a probabilistic model with
latent variable z in a low-dimensional latent space Z ⊂ RNz

such that pθ(x) =
∫

z
pθ(x|z)p(z). By introducing a variational

distribution qφ(z|x), the marginal log-likelihood of a sample
x is lower-bounded by the evidence lower bound (ELBO)
−L(x) as

logpθ(x) ≥ −L(x)

:= −DKL(qφ(z|x)||p(z)) + Eqφ(z|x)
[
log pθ(x|z)

]
.

(1)

Then, the parameters θ and φ are updated to maximize the
ELBO. qφ(z|x) and pφ(x|z) are implemented as an encoder
and a decoder of the AE. Instead of the point estimates, they
output the parameters of distributions. The second term of
the ELBO corresponds the reconstruction error.

Because the encoder compresses an input x into a low-
dimensional variable z, they retain only salient information
and discard others. The AEs produce a large error for a
group of samples that rarely or never appears at the training
phase. Hence, the AEs are trained using normal samples,
and their error is used as an anomaly score [16]. However,

in few-shot anomaly detection, all target samples are de-
tected as anomalies because they never appear at the training
phase.
Multi-level VAE for Few-Shot Anomaly Detection: Sup-
pose that a group G = {x1, . . . , xNG } is composed of two
or more observations that belong to the same class and is
given as input. Multi-Level VAE (MLVAE) aims to gen-
eralize to unseen classes by extracting the common fea-
ture cG (content) and the varying feature si (style) within
a group [17], [18]. The ELBO for a group G is given by

−L(G) := −DKL(qφc (cG |G)||p(cG))

−∑xi∈G DKL(qφs (si|xi)||p(si))

+
∑

xi∈G Eqφc (cG |G)Eqφs (si |xi)
[
log pθ(xi|cG, si)

]
.

(2)

The posterior qφc (cG |G) is defined as the product of the dis-
tributions of ci obtained from each member of the group:

qφc (cG |G) ∝∏xi∈G qφc (ci|xi). (3)

Assuming a multivariate normal distribution for qφc (ci|xi),
the accumulated posterior distribution qφc (cG |G) also be-
comes a multivariate normal distribution and thus the con-
tent variable cG can be obtained using the reparameteriza-
tion trick. Methods of disentangling style and content such
as MLVAE have been used for various downstream tasks
such as image-to-image translation task [19] and few-shot
classification task [20] as they perform well even for classes
that were not observed during training.

We propose to use MLVAE for the few-shot anomaly
detection, where a domain is used instead of a class. Dur-
ing the training phase, a small set of samples obtained from
one of the source domains is fed to MLVAE as an input
group G. After training, a small set of samples obtained
from a target domain is given to MLVAE. Then, the sample-
wise reconstruction error Eqφc (cG |G)Eqφs (si |xi)

[
log pθ(xi|cG, si)

]

is obtained and used as the anomaly score of the sample xi.
Intuitively, MLVAE learns the permissible range of a given
domain at the training phase. Then, MLVAE detects a sam-
ple as an anomaly if it is out of the permissible range esti-
mated using the given set of target samples. We emphasize
that, while MLVAE is never retrained using the target do-
main, it is expected to be generalized to any target domains,
reducing false positives.

4. Experiments

Toy Datasets: We evaluated the proposed method with
two toy datasets: the Street View House Numbers (SVHN)
dataset [21] and the CIFAR-10 dataset [22]. The SVHN
dataset consists of images of house numbers collected from
Google Street View and contains color images of size 32 ×
32, 73,257 for training and 26,032 for testing. The CIFAR-
10 dataset contains color images of size 32×32 for 10 differ-
ent classes, 5,000 per class for training and 1,000 per class
for testing. We used one class as the target domain, and the
remaining classes as the source domains. We kept all train-
ing samples unmodified as normal samples. We duplicated
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each test sample, converted one of two to an anomaly by ro-
tating it 90 degrees clockwise, and kept the other as a normal
sample; hence, from CIFAR-10, we obtained 1,000 normal
samples and 1,000 anomalous samples per class for testing.

Factory Roof Dataset: We further evaluated the proposed
method using a factory roof dataset consisting of aerial im-
ages of different chemical factories. The dataset contains
color images of size 3000 × 4000, 759 for training and 25
for testing. All of the test images are of factories with rust
on their roofs, which we aimed to detect. Different roofs
have different appearances, as shown in Fig. 1. Preliminary
experiments found that an AE trained using some roofs mis-
takenly detected the whole of an unseen (i.e., target) roof
due to the difference in the appearances. Hence, we treated
a roof as a domain, and examined the dataset in the few-
shot anomaly detection. We obtained patches with a size of
100 × 100 from each roof image.

Models: Because domain adaptation methods train a model
using both source and target samples [7]–[9], they are in-
applicable to the few-shot learning. We compared MLVAE
with the basic methods, AE and VAE. The encoder of the AE
or VAE outputted an Nz-dimensional latent variable z. The
encoder of MLVAE outputted a pair of an Nc-dimensional
content cG and an Nc-dimensional style si.

The encoder was composed of five convolution lay-
ers for the toy datasets and six convolution layers for the
factory roof dataset. Each intermediate layer had a ker-
nel size of 4, a stride of 2, and a padding of 1, and was
followed by the batch normalization and the ReLU func-
tion. The last layer had a stride of 1 and no padding, and
its kernel size was 2 for the toy datasets and 3 for the fac-
tory roof dataset. The decoder was composed of transposed
convolution layers with feature maps of the same sizes as
those of the encoder. As hyperparameters of each model,
we searched the number of dimensions of latent variables in
Nz,Nc,Ns ∈ {2, 4, 8, 16, 32, 64, 128, 256} and the number of
channels of the convolutional layer in Nconv ∈ {16, 32}. For
MLVAE, we set the group size to NG = 10, which is recom-
mended in the original work [17]. At the training phase, we
randomly took ten normal source samples and fed it to ML-
VAE as an input group G. For evaluating a target sample in
SVHN and CIFAR-10 datasets, we took nine samples addi-
tionally from the same target domain (i.e., the same class)
and built an input group G. Even through most samples
in the target domain are expected to be normal because of
the definition of the anomaly, the assumption is unnatural
that all additional samples as normal. We varied the number

Fig. 1 Samples and an annotation from the factory roof dataset.

of anomalous samples from zero to two and denote it in a
bracket; for example, MLVAE (1/9) denotes MLVAE using
a group G composed of a sample taken from the anomalous
subset and eight samples taken from the normal subset in ad-
dition to a sample to be tested. For the factory roof dataset,
we took ten patches randomly from the same domain (i.e.,
the same roof), built an input group G, and evaluated each
pixel. We did not adjust the fraction of anomalous pixels in
each patch.

5. Results and Discussion

To evaluate the performance, we calculated the area under
the receiver operating characteristic curve (ROC-AUC) for
each model, as shown in Tables 1 and 2. For the factory
roof dataset, we also provide the intersection over union
(IoU) when the threshold was determined so that the true
positive rate (TPR) was 50, 90, or 95%. MLVAE achieved
the best performance for all datasets and evaluation metrics.
While MLVAE got a lower performance with more anoma-
lous samples for SVHN and CIFAR-10 datasets, it was al-
ways superior to AE and VAE. This result implies that ML-
VAE is robust to anomalies in the target domain. Figure 2
shows the histogram of anomaly scores of VAE and ML-
VAE. For these histograms, the Wasserstein distances be-
tween the distributions of normal and anomalous samples
are shown in Table 3. For both source and target domains,
the MVLAE achieved the largest Wasserstein distance, indi-
cating that it achieved better separation between normal and
anomalous samples.

Figure 3 shows a sample and the corresponding anno-
tation of anomalous area from the factory roof dataset and
heatmaps of anomaly scores. While anomaly scores of AE
and VAE were high even in non-anomalous areas, MLVAE
showed low anomaly scores in non-anomalous areas, con-
firming that MLVAE contributes to reduction of the false
positive rate as described in Sect. 3.

When a single threshold value is determined, samples

Table 1 Resultant ROC-AUCs for SVHN and CIFAR-10 datasets.

SVHN CIFAR-10

Model target source target source

AE 0.644 0.656 0.601 0.606
VAE 0.700 0.717 0.605 0.616

MLVAE (0/9) 0.723 0.745 0.640 0.642
MLVAE (1/9) 0.719 0.741 0.637 0.635
MLVAE (2/9) 0.718 0.739 0.634 0.633

Table 2 Resultant performances for factory roof dataset.

IoU

Model ROC-AUC @TPR95 @TPR90 @TPR50

AE 0.901 0.031 0.102 0.268
VAE 0.948 0.051 0.104 0.235

MLVAE 0.972 0.130 0.197 0.294
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Fig. 2 Histogram for anomaly score when we set the class “1” as the
target domain for the toy datasets.

Fig. 3 A sample and the corresponding annotation of the rust from the
factory roof dataset (top) and heatmaps of anomaly scores (bottom).

Table 3 Wasserstein distance between score distributions.

SVHN CIFAR-10

source target source target source

VAE 0.050 0.052 0.053 0.067
MLVAE (0/9) 0.172 0.195 0.060 0.073
MLVAE (1/9) 0.075 0.146 0.112 0.137
MLVAE (2/9) 0.072 0.183 0.108 0.130

or pixels with anomaly scores exceeding the threshold value
are detected as anomalies. The threshold value is sometimes
determined to maximize the difference between the true and
false positive rates (called Youden’s index [23]). In practical
few-shot anomaly detection, one has to divert the threshold
determined only using source samples to target samples. Ta-
bles 4 and 5 summarize Youden’s index for the target sam-
ples when the threshold was determined using source or tar-
get samples. For the factory roof dataset, MLVAE achieved
the best performance, and AE and MLVAE got the smallest

Table 4 Youden’s index for SVHN and CIFAR-10 datasets.

SVHN CIFAR-10

Model target source diff. target source diff.

AE 0.210 0.195 0.015 0.163 0.121 0.042
VAE 0.294 0.279 0.015 0.181 0.150 0.031

MLVAE (0/9) 0.332 0.325 0.007 0.227 0.204 0.023
MLVAE (1/9) 0.326 0.314 0.012 0.223 0.198 0.025
MLVAE (2/9) 0.322 0.306 0.016 0.216 0.184 0.032

Table 5 Youden’s index for factory roof dataset.

Model target source diff.

AE 0.688 0.687 0.001
VAE 0.731 0.720 0.011

MLVAE 0.754 0.753 0.001

performance gap. For both toy datasets, MLVAE achieved
the best performance regardless of the fraction of anomalous
samples, and MLVAE got the smallest performance gap with
zero or one anomalous sample in the group G. Only when
two anomalous samples are in the group G, the performance
gap grows to a similar level to AE and VAE. This fact also
implies that MLVAE is not just a good anomaly detector
but also a good domain adapter to a small set of test sam-
ples even when some of them are anomalous, and hence it is
suitable for few-shot anomaly detection.

6. Conclusion

We introduced the few-shot anomaly detection, a novel
problem setting in which a group of samples belonging to
the same domain is provided as input. To generalize to tar-
get domains, we proposed to use MLVAE, which separates
features varying among a domain from sample-level fea-
tures. The experimental results on the two toy datasets and
the real-world dataset showed that our proposed method can
robustly detect anomalies in target domains.

This work was partially supported by JSPS KAKENHI
(19H04172, 19K20344).
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