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A Novel Discriminative Virtual Label Regression Method for
Unsupervised Feature Selection∗

Zihao SONG†, Nonmember, Peng SONG†a), Member, Chao SHENG†, Wenming ZHENG††, Wenjing ZHANG†,
and Shaokai LI†, Nonmembers

SUMMARY Unsupervised Feature selection is an important dimen-
sionality reduction technique to cope with high-dimensional data. It does
not require prior label information, and has recently attracted much atten-
tion. However, it cannot fully utilize the discriminative information of
samples, which may affect the feature selection performance. To tackle
this problem, in this letter, we propose a novel discriminative virtual label
regression method (DVLR) for unsupervised feature selection. In DVLR,
we develop a virtual label regression function to guide the subspace learn-
ing based feature selection, which can select more discriminative features.
Moreover, a linear discriminant analysis (LDA) term is used to make the
model be more discriminative. To further make the model be more robust
and select more representative features, we impose the �2,1-norm on the
regression and feature selection terms. Finally, extensive experiments are
carried out on several public datasets, and the results demonstrate that our
proposed DVLR achieves better performance than several state-of-the-art
unsupervised feature selection methods.
key words: feature selection, subspace learning, virtual label, linear dis-
criminant analysis

1. Introduction

The development of information technology produces a
large number of high-dimensional data, which may contain
a lot of redundant information and noises and will increase
the difficulty during the data processing. Feature selection is
an important technique to alleviate the influence of the curse
of dimensionality. Since it can select important features and
increase the speed of data processing, feature selection has
attracted much attention during the past decades [1].

According to the availability of label information, fea-
ture selection can be divided into supervised feature se-
lection, semi-supervised feature selection and unsupervised
feature selection [2]. In real world, it is unrealistic to
label all the data. Thus, unsupervised feature selection
methods have become more popular than the other two
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categories. According to different selection strategies, unsu-
pervised feature selection can be divided into the following
three categories, including filter, wrapper and embedded [2].
The filtering algorithms score each feature by several fixed
indexes and selects features with the highest score. How-
ever, the results are often not very satisfactory due to the
simple selecting strategy. The wrapper algorithms [3] use a
specific prediction and feedback learning algorithm to eval-
uate the feature subsets. However, with the increase of data
size, the computing ability will significantly decrease and
affect the performance. Embedded algorithms integrate fea-
ture selection process and learner training process [4], both
of which are completed in the same optimization process. It
automatically selects features in the process of learner train-
ing and can obtain more accurate results to some extent.

For unsupervised feature selection, since the label in-
formation of data is not available, it is much more chal-
lenging than the other two categories. To solve this prob-
lem, many unsupervised feature selection algorithms have
been presented. For example, in [5], He et al. propose a
Laplacian score (LS) algorithm for feature selection, which
takes into account the local structure of data for feature se-
lection. In [6], Cai et al. present a multi-cluster feature se-
lection (MCFS) algorithm, which employs the spectral clus-
tering theory to explore the manifold structure of data. In
[7], Shang et al. propose a subspace learning based graph
regularized feature selection (SGFS) method, which uses
the graph theory to consider the local structure of feature
space. In [8], Shang et al. develop a local discriminative
based sparse subspace learning algorithm (LDSSL) for fea-
ture selection, which combines subspace learning with local
discrimination model, and employs the �1−norm for feature
selection. However, they cannot fully utilize the discrimi-
nant information of data and the virtual label information of
the data.

To solve the problems mentioned above, in this letter,
we propose a discriminative virtual label regression based
unsupervised feature selection method. Firstly, a novel vir-
tual label regression function is presented to guide feature
selection. Then, the linear discriminant analysis (LDA) term
is used to make the selected features be discriminative. Fi-
nally, we integrate the virtual label regression and LDA into
the framework of subspace learning based feature selection.
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2. Proposed Method

In this section, we give some commonly used notations and
then we introduce our proposed algorithm in detail. Given
a matrix A ∈ Rn×d, its i-th row and j-th column are de-
noted as Ai and Aj, respectively. Tr(A) represents the trace
of A, AT represents the transpose of A, and A−1 represents
the inverse of A. The �2,1-norm of A is defined as the sum
of the �2-norm of the rows of A, which is expressed as

‖A‖2,1 = ∑d
i=1

√∑n
j=1 A2

i j.

Let X ∈ Rn×d be the high-dimensional data, through
subspace learning, we can learn a low-dimensional subspace
of X that can well represent the original data [7], [9]. Its
formula can be expressed as follows:

min
l
‖X − XI H‖22 (1)

s.t. ‖I‖ = l

where H ∈ Rl×d is the coefficient matrix, which is used for
matrix reconstruction, I ∈ Rl×l is the index set, and l is the
number of selected features from the original features. From
the perspective of matrix factorization [10], Eq. (1) can be
rewritten as follows:

min
W,H
‖X − XWH‖22 (2)

s.t. W, H ≥ 0, WT W = Il

where W ∈ Rd×l is the feature selection matrix. In the above
equation, we have adopted an orthogonal constraint on W,
which can ensure that each row or column has at most one
non-zero value. Meanwhile, we adopt the �2,1-norm to con-
strain W, which can ensure the sparsity of W. Then, Eq. (2)
can be further rewritten as

min
W,H
‖X − XWH‖22 + β‖W‖2,1 (3)

s.t. W, H ≥ 0, WT W = Il

As is known to all, for unsupervised feature selection,
the label information of samples is not available. Thus, we
develop a linear regression function to predict labels, which
aims to find a relationship between low-dimensional se-
lected features and virtual labels. Then, the objective func-
tion is given as

min
F,W,G

‖F − XWG‖2,1 (4)

s.t. F, G ≥ 0, FT F = Ic

where F ∈ Rn×c is the one-hot encoding virtual label matrix,
and G ∈ Rl×c is the regression matrix, which describes the
relationship between the learned subspace and the virtual
labels. We determine c according to the total number of
categories of each dataset, and we do not know the category
of each sample. Since in real world, a negative matrix has no
practical meaning. Thus we impose a orthogonal constraint
on F to maintain its physical meaning.

To make the model be more discriminative, we further
introduce a LDA term, which aims to find the most discrim-
inant direction by maximizing the ratio of inter-class and
intra-class scatter matrices. We use the virtual label ma-
trix F to guide the category learning in LDA. The objective
function is given as follows:

max
W

WT SbW
WT SWW

(5)

According to [11], Eq. (5) can be expressed as the fol-
lowing optimization problem:

min
W

Tr(WT (SW − uSb)W) (6)

where Sw is the between-class scatter matrix, Sb is the
within-class scatter matrix, and u is a balancing parameter
with very small positive values.

In summary, we can first use subspace learning based
feature selection in Eq. (3) to learn a low-dimensional repre-
sentation subspace of high-dimensional data. Then, we can
use the linear regression function in Eq. (4) to predict the vir-
tual labels of samples. Moreover, we can use the LDA term
in Eq. (6) to better explore the discriminative information of
data. Based on the above analysis, combining Eqs. (3), (4)
and (6), the final objective function of DVLR is written as

min
W,H,F,G

‖X − XWH‖2,1 + α‖F − XWG‖2,1
+ λTr(WT (SW − uSb)W) + β‖W‖2,1 (7)

s.t. W, H ≥ 0, F, G ≥ 0, WT W = Il, FT F = Ic

where α, λ and β are trade-off parameters. By solving the
above equation, we can get the feature selection matrix W =
[w1, w2, w3, . . . . . . wl]. Finally, we arrange the features in a
descending order according to the values of ‖Wi‖2, and use
the selected matrix W to construct a new data matrix Xnew ∈
Rn×l.

To solve the objective function in Eq. (7), we develop
an iterative update method. We introduce four Lagrangian
operators δ, ζ, θ and η, which are used to ensure that W, H,
F and G be non-negative. Then we can rewrite Eq. (7) as the
following Lagrangian function:

min
W,H,F,G

‖X−XWH‖2,1+α‖F−XWG‖2,1+λTr(WT(SW−uSb)W)

+
γ1

2
‖WT W − Il‖22 +

γ2

2
‖FT F − Ic‖22 + Tr(δWT )

+ Tr(θFT ) + Tr(ηGT ) + Tr(ζHT ) + β‖W‖2,1 (8)

To resolve the �2,1-norm, we define three matrices P ∈
Rn×d, U ∈ Rd×d and Q ∈ Rn×n, where Pii =

1
2 max(‖ei‖2,ε) ,

U j j =
1

2 max(‖w j‖2,ε) and Qii =
1

2 max(‖ri‖2,ε) , in which ei, wi and
ri are the i-th rows of M=X − XWH, W and V=F − XWG,
respectively. Thus we can convert Eq. (8) into the following
form:

L(W,H, F,G) = Tr(MT PM) + αTr((F − Z)T Q(F − Z))

+
γ1

2
Tr((WT W − Il)

T (WT W − Il))
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Table 1 Clustering accuracy of different methods on different datasets (ACC±std%).

Methods Baseline LS MCFS SGFS LDSSL DVLR

ORL 52.74(±3.54) 45.00(±2.01) 52.42(±1.99) 55.50(±2.30) 55.75(±2.04) 56.00(±2.88)

COIL20 65.08(±3.02) 57.15(±2.50) 69.86(±2.79) 60.25(±2.38) 65.90(±2.75) 70.56(±3.19)

LUNGDIS 89.04(±7.52) 72.60(±3.70) 87.67(±)6.80 83.56(±6.43) 83.56(±6.90) 89.81(±5.07)

Isolet 62.11(±1.94) 58.92(±2.77) 57.50 (±1.72) 52.88(±1.89) 61.84(±2.00) 64.49(±2.90)

LUNG 70.27(±8.56) 61.21(±2.58) 65.52(±1.50) 59.11(±1.63) 65.02(±2.36) 71.92(±2.24)

JAFFE 79.75(±4.69) 92.47(±7.32) 88.47(±5.84) 86.38(±4.68) 90.14(±4.00) 93.90(±4.01)

Table 2 Normalized mutual information of different methods on different datasets (NMI±std%).

Methods Baseline LS MCFS SGFS LDSSL DVLR

ORL 72.92(±2.27) 65.29(±1.28) 73.66(±0.79) 72.49(±1.17) 72.95(±1.19) 76.58(±1.16)

COIL20 79.01(±1.30) 65.23(±1.00) 73.44(±1.28) 68.28(±1.00) 74.60(±1.80) 75.14(±1.19)

LUNGDIS 83.08(±5.28) 69.21(±3.76) 80.05(±)0.51 76.98(±4.32) 74.32(±4.50) 81.65(±4.37)

Isolet 76.36(±1.80) 69.67(±0.94) 69.78 (±0.75) 66.49(±1.17) 74.12(±0.89) 76.76(±1.10)

LUNG 54.66(±2.16) 47.42(±1.07) 50.90(±0.12) 39.33(±0.77) 46.16(±0.39) 54.69(±2.24)

JAFFE 83.48(±3.17) 91.88(±3.96) 87.31(±4.40) 86.32(±2.85) 87.68(±1.96) 92.81(±3.40)

+
γ2

2
Tr((FT F − Ic)T (FT F − Ic))

+Tr(ηGT)+Tr(δWT)+Tr(ζHT)+Tr(θFT)+βTr(WTUW)

+ λTr(WT (SW − uSb)W) (9)

where M = X − XWH and Z = XWG.
Then the optimization procedures are given as follows.

Step 1. Update W by fixing F, G and H, we can get the
following equation by calculating the partial derivative of L
with respect to W:

∂L
∂W
= 2(XT PXWHHT− XT PXHT ) + λ(Sw − uSb)W

+ 2βUW + 2α(XT QXWGGT − XT QFGT )

+ 2γ1(WWT W −W) + δ (10)

By using the Karush-Kuhn-Tucker (KKT) condi-
tions [12], i.e., δi jWi j =0, we can obtain

(
2(XTPXWHHT−XTPXHT )+2α(XTQXWGGT−XTQFGT )

+ 2βUW + 2γ1(WWT W −W) + λ (Sw − uSb)
)
Wi j = 0

(11)

Let K = αXT QXWGGT and L = XT PXWHHT , we
can get the update rules for W as follows:

Wi j ← Wi j

[
2XTPXHT+2αXTQFGT+2γ1W+λuSbW

]
i j[

2L+2K+2βUW+2γ1WWTW+λSwW
]
i j

(12)

Step 2. Update F: We update F by fixing W, H and G.
Setting the partial derivative of L with respect to W equal
zero, we can get the following equation:

∂L
∂F
= 2α(QF−QXWG)+2γ2(FFTF−F)+θ = 0 (13)

By using the KKT conditions, i.e., θi jFi j=0, we can

obtain
(
α(QF − QXWG) + γ2(FFT F − F)

)
Fi j = 0 (14)

Then, we can obtain the update rule of F as follows:

Fi j ← Fi j

[
αQXWG + γ2F

]
i j[

αQF + γ2FFT F
]
i j

(15)

Step 3. Update H: We update H by fixing W, F and G.
By calculating the partial derivative of L with respect to H,
we can get the following equation:

∂L
∂H
= 2(WT XT PXWH −WT XT PX) + ζ (16)

By using the KKT conditions, i.e., ζH=0, we can ob-
tain the following equation:

(WT XT PXWH −WT XT PX)Hi j = 0 (17)

Then, we can get the iterative update rules for H as
follows:

Hi j ← Hi j

[
WT XT PX

]
i j[

WT XT PXWH
]
i j

(18)

Step 4. Update G: We update G by fixing W, F and H.
By calculating the partial derivative of L with respect to G,
we can get

∂L
∂G
= 2(WT XT QXWG −WT XT QF) (19)

By using the KKT conditions, i.e., ηGi j=0, we can ob-
tain the following equation:
(
α(WT XT QXWG −WT XT QF)

)
Gi j = 0 (20)

Then, we can get the update rules for G as follows:
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Gi j ← Gi j

[
WT XT QF

]
i j[

WT XT QXWG
]
i j

(21)

3. Computational Complexity Analysis

In this section, we discuss the computational cost of the pro-
posed DVLR method. As discussed in previous sections, the
algorithm mainly includes subspace learning, virtual label
regression, discriminant learning and �2,1-norm constraint.
Suppose n is the number of samples, d is the feature dimen-
sion, c is the number of categories of samples, and l repre-
sents the dimension of the subspace. Then, the time costs of
calculating W, H, F and G are O(d2n + d2c), O(dnl + dl2),
O(cn2) and O(dnc + dc2), respectively. Due to the dimen-
sion of subspace and the number of data are much smaller
than the dimension of data, the total time complexity of the
DVLR is about O

(
T (d2n + d2c)

)
.

4. Experiments

In this section, we evaluate the proposed DVLR algo-
rithm on six public datasets, including two face image
datasets, i.e., ORL [6] and JAFFE [13], two biological
datasets, i.e., LUNG [14], LUNGDIS [14], one letter speech
dataset, i.e., Isolet [15], and one digital image dataset, i.e.,
COIL20 [16]. The number of categories for ORL, JAFFE,
LUNG, LUNGDIS, ISOLET and COIL20 are 40, 10, 5,
7, 26 and 20, respectively. To prove the effectiveness of
the DVLR algorithm, we compare it with several classic
unsupervised feature selection algorithms. They are Base-
line (all features are used), LS [5], MCFS [6], SGFS [7] and

Fig. 2 Convergence curves of the proposed DVLR.

LDSSL [8].
Here we give the settings of the parameters used in

DVLR and compared algorithms. For LS, MCFS, SGFS
and LDSSL, the number of nearest neighbors K is set
to 5, and the Gaussian scale parameter σ is set to 10.
For our method, we tune the range of α, β, γ1 and γ2

from {10−3, 10−2, . . . , 102, 103}. We choose the dimen-
sion of subspace from {100, 200, 300, 400, 500}. For all
methods, the number of selected features l is turned from
{20, 30, 40, 50, 60, 70, 80, 90, 100}. The maximum number
of iterations is set to 30. In addition, we perform k-means
clustering with the selected features 40 times. In particu-
lar, note that in our algorithm, the virtual label regression
term and the LDA term are two main parts. Thus, here we
mainly analyze the two regularization parameters, i.e., α and

Fig. 1 ACC results of DVLR and two special cases, i.e., DVLR1 and
DVLR2, on six datasets.
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λ. For most datasets, when α and λ are set as {101, 102} and
the dimension of subspace is set as {300, 400}, the proposed
method can achieve the optimal results. We choose two
popular evaluation metrics, i.e., accuracy (ACC) and nor-
malized mutual information (NMI), to evaluate the cluster-
ing results.

We give the experimental results in Tables 1 and 2,
which report the ACC and NMI results, respectively. In
these two tables, the best results are blacked and the sec-
ond best results are underlined. From these two tables, we
have the following three observations.

First, we can find that the proposed DVLR algorithm
can achieve better ACC and NMI results on most datasets.
In addition, in some cases, our method is better than the
Baseline algorithm. These results indicate that our method
can select more distinguishable and discriminative features
in comparison with other methods.

Second, compared with MCFS, which uses spectral re-
gression for feature selection, our algorithm obtains higher
clustering results. The reason is that, MCFS adopts a two-
step strategy. Unlike this, our algorithm integrates label
regression and feature selection into a unified framework,
which can achieve better results in theory.

Third, compared with SGFS and LDSSL, which also
conduct on the subspace learning based feature selection
framework, our method can achieve better clustering per-
formance. The might be attributed to that, on one hand, we
build a linear regression function to predict virtual labels and
use the virtual labels to guild feature selection. On the other
hand, we use discriminant analysis to select more discrimi-
native features.

We further verify the effectiveness of the proposed
method. By setting the regularization parameters of the vir-
tual label regression term and the LDA term to zero, we can
get a special case of DVLR, called DVLR1. Also, by setting
the the regularization parameter of the LDA term to zero,
we can get a special case of DVLR, called DVLR2. Figure 1
gives the ACC results of different cases. From the figure, we
can observe that both the virtual label regression term and
the LDA term can boost the clustering performance, which
proves the effectiveness of our algorithm.

In addition, we experimentally study the convergence
property of the proposed method. Figure 2 gives the ob-
jective values of the proposed algorithm on six datasets.
From the figure, we can find that our algorithm can converge
quickly on all datasets.

5. Conclusion

In this letter, we have presented an effective unsupervised
feature selection method, called discriminant virtual label
regression (DVLR). Different from the previous unsuper-
vised feature selection algorithms, in DVLR, we develop
a novel linear regression function to describe the linear re-

lationship between the feature subspace and virtual labels,
which can well guide the process of feature selection and
discriminant subspace learning. We further integrate sub-
space learning, virtual label prediction and feature selection
into a unified framework. Extensive experiments on six pub-
lic datasets demonstrate the effectiveness of the proposed al-
gorithm.
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