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Triple Loss Based Framework for Generalized Zero-Shot Learning

Yaying SHEN†, Qun LI†a), Nonmembers, Ding XU††, Member, Ziyi ZHANG†, and Rui YANG†, Nonmembers

SUMMARY A triple loss based framework for generalized zero-shot
learning is presented in this letter. The approach learns a shared latent
space for image features and attributes by using aligned variational autoen-
coders and variants of triplet loss. Then we train a classifier in the latent
space. The experimental results demonstrate that the proposed framework
achieves great improvement.
key words: generalized zero-shot learning, triple loss, image classification,
variational autoencoder

1. Introduction

Zero-Shot Learning (ZSL) is one way proposed to address
the challenge of learning from limited labeled data. ZSL
aims to recognize unseen classes which are not available
during training stage by learning knowledge from seen
classes which are available during training stage and some
auxiliary information, such as attributes.

In conventional ZSL, train and test classes are disjoint,
since train classes only include seen classes and test classes
only include unseen classes. We can only measure the per-
formance of the conventional ZSL by classification accu-
racy on unseen classes. Obviously, this setting basically
does not exist in reality. Generalized Zero-Shot Learning
(GZSL) is a more practical and challenging variant of ZSL,
since train classes under the same setting as the conventional
ZSL, but test classes include both seen classes and unseen
classes. We measure the performance of the GZSL by the
harmonic mean of the classification accuracy on seen and
unseen classes.

Early ZSL works focus on embedding image features
and attributes to a latent space. We can recognize objects
by comparing distances between the representations of im-
age features and attributes in the latent space. In GZSL,
embedding-based methods suffer from serious bias owing
to the lack of image features of unseen classes during train-
ing stage. To alleviate the bias problem of embedding-based
mathods in GZSL, feature generation based methods, such
as Variational Autoencoder (VAE) [1] based methods and
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Generative Adversarial Network (GAN) [2] based methods,
are proposed. Since unseen classes are not available during
training stage, feature generation based methods can gen-
erate training features for unseen classes. In this work, we
propose a GZSL framework which combines the advantages
of the embedding-based and feature generation based meth-
ods. Due to the instability of GAN-based loss functions dur-
ing training stage, we use VAEs in this work.

Image features and attributes are data from different
modalities. Recently, cross-modal embeddings are used in
GZSL. Cross-modal embeddings are mostly based on au-
toencoders, such as ReViSE [3]. ReViSE learns a joint rep-
resentation for data from different modalities by matching
their latent distributions. Otherwise, some latent space mod-
els use cross-reconstruction to preserve discriminative infor-
mation in the joint latent representation. Inspired by this,
we use VAEs to learn a cross-modal embedding as a la-
tent space. In this work, we train two VAEs to encode and
decode features from image features and attributes, respec-
tively. In order to better learn a joint latent representation,
we align VAEs by matching their latent distributions and
conducting cross-reconstruction. Compared with CVAE [4]
which uses the conventional VAE, we use VAE for generat-
ing low-dimensional latent features instead of directly gen-
erating image features.

Specifically, we use some variants of triple loss to op-
timize the latent space. Triple loss function [5] is a widely
used loss function. The triplet loss can make that data of
same classes are closer to each other than those of different
classes. Person Re-Identification (ReID) is a branch of im-
age classfication. Several approaches for person ReID have
already achieved great performance by using some variants
of the triplet loss to train their models. In addition, we ex-
plore the impact of different variants of triple loss on the
performance of our framework.

Our main contributions are as follow: (1) We propose
triple loss based framework for GZSL. (2) We explore the
impact of different variants of triple loss on the performance.
(3) The proposed framework achieves great improvement on
four popular benchmark datasets.

2. Proposed Method

2.1 Problem Definition

The problem definition of GZSL is as follows. Train setDs

= {(xs, ys, as)| xs ∈ Xs, ys ∈ Y s, as ∈ A}, where Xs denotes
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Fig. 1 Overview of our framework.

the image feature set of seen classes, Y s is the corresponding
label set of Xs and A denotes the attribute set. In addition,
we use an auxiliary training setDu = {(yu, au)| yu ∈ Yu, au ∈
A}, where Yu denotes the label set of unseen classes. Yu and
Y s are disjoint. The complete train set is Dtr = Ds ∪ Du.
The test set Dte = {(xte, yte)| xte ∈ Xs ∪ Xu, yte ∈ Y s ∪ Yu}.
The GZSL aims to learn a classifier f GZS L : X → Y s ∪ Yu.

2.2 Triple Loss Based Framework

The overview of our framework is shown in Fig. 1. The ba-
sic blocks of our framework are two VAEs, one is for image
features and the other is for attributes. For learning a joint
representation for image features and attributes, we match
their latent distributions and conduct cross-reconstruction.
Specifically, we use some variants of triple loss to optimize
the latent space, as train a softmax classifer in the latent
space.

In VAE, the encoder inputs a image feature x and
outputs parameters of the Gaussian distribution N(µ, Σ).
Then, a latent vector z is generated from N(µ, Σ) via the
reparametrization trick [1]. We pass the z to the decoder and
expect it to reconstruct x. The D(E(x)) denotes the recon-
structed x. The training loss of a VAE can be formulated as:

LVAE = Lre((x,D(E(x))) - KL[N(µ,Σ),N(0,I)], (1)

where Lre is the reconstruction loss, the KL is the KL-
divergence, andN(0,I) is standard Gaussian distribution. In
this work, we choose L1 norm as the reconstruction loss.

The basic VAE loss of our framework is the sum of two
VAEs losses:

L1 = Lre(x,Dimg(Eimg(x))) − βKL(N(µ,Σ),N(0, I))

+ Lre(a,Datt(Eatt(a))) − βKL(N(µa,Σa),N(0, I)),

(2)

where x denotes the image feature, a denotes the attribute.
The image feature x and attribute a belong to the same class.
Eimg and Dimg are the encoder and the decoder of image fea-
tures, respectively. Eatt and Datt are the encoder and the de-
coder of attributes, respectively. N(µ,Σ) and N(µa,Σa) are

latent Gaussian distributions of the image feature x and at-
tribute a, respectively. β is the weight of the KL-Divergence.

Our latent Gaussian distributions of image features and
attributes are matched by minimizing their 2-Wasserstein
distances. The 2-Wasserstein distance W xa between N(µ,Σ)
and N(µa,Σa) simplifies to:

W xa = (|| µ - µa ||22 + || Σ1/2 - Σ1/2
a ||2Fro)1/2, (3)

where || ||2Fro denotes Frobenius norm, and the loss L2 for
matching the latent distributions of image features and at-
tributes is:

L2 = W xa + Wax. (4)

Cross-reconstruction is achieved by decoding the latent
representations derived from another VAE’s encoder. The
loss L3 of cross-reconstruction is:

L3 = Lre(x,Dimg(Eatt(a))) + Lre(a,Datt(Eimg(x))). (5)

Specifically, we use some variants of triple loss to op-
timize the latent space. In addition, we explore four variants
of the triple loss to improve the performance. Triplet loss
can be represented as:

Ltri =
∑

xt ,xp,xn

[m + d(xt,xp) - d(xt,xn)]+, (6)

This loss makes sure that, given an anchor point xt, a positive
point xp belonging to the same class as xt is closer to the
anchor than that of a negative point xn belonging to another
class, by at least a margin m [5]. And we call xt and xp

as positive pair, xt and xn as negtive pair. For an anchor,
the distances of its postive pairs merely need to be smaller
to any distances of its negative pairs. As proposed in [5],
we feed the framework with mini-batches. We form training
batches by randomly sampling P classes, and then randomly
sampling K images per class, thus resulting in a batch of P
× K images. The anchor point can be any one in the training
batch. Then we select positive and negative in the training
batch for each anchor point. In this work, we set m = 0.

We propose four methods based on four variants of
triple loss for reconstructed image features, which are differ-
ent in triplet selection: (1) All possible triplets. (2) Hardest
negative for each positive pair. (3) Random-hard negative
for each positive pair. (4) Semi-hard negative for each posi-
tive pair.

All possible triplets. That is to simply use all possible
triplets with positive triplet loss values. The loss LBA is:

LBA =
P∑

i=1

K∑
t=1

K∑
p = 1
p , t

P∑
j = 1
j , i

K∑
n=1

[ di,t,n
j,t,n ]+, (7)

di,t,n
j,t,n = d(̃xi

t ,̃x
i
p) - d(̃xi

t ,̃x
j
n), (8)

where x̃i
j = Dimg(Eimg(xi

j)) denotes the reconstructed image
features of the j-th image feature of the i-th class in the
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batch. The d(x1, x2) = ||x1− x2||22 denotes Euclidean distance
between x1 and x2.

Hardest negative for each positive pair. This is to se-
lect the negative with the maximal positive triplet loss value
for each positive pair. The loss LBH is:

LBH =
P∑

i=1

K∑
t=1

K∑
p = 1
p , t

[ dt,p ]+, (9)

dt,p = max([di,t,n
j,t,n| j = 1, ..., P; n = 1, ...,K; j , i]).

(10)

Random-hard negative for each positive pair. This
is to randomly select the negative with positive triplet loss
value for each positive pair. The loss LRH is similar to LBH ,
different in dt,p:

dt,p = rand([di,t,n
j,t,n| j = 1, ..., P; n = 1, ...,K; j , i]+).

(11)

Semi-hard negative for each positive pair. This is to
randomly select the negative with positive triplet loss value
greater than 0 but less than a threshold T , for each positive
pair. The loss LS H is similar to LBH , different in dt,p:

dt,p = rand[di,t,n
j,t,n|0 < di,t,n

j,t,n < T ; j = 1, .., P;

n = 1, ..,K; j , i],
(12)

T = (
P∑

i=1

K∑
t=1

K∑
p = 1
p , t

P∑
j = 1
j , i

K∑
n=1

[ - di,t,n
j,t,n ]+)/(P × K). (13)

We express the different variants of triple loss as L4.
Thus, the total loss of our final framework is formulated as:

Lall = L1 + α(L2+L4) + λ(L3+L4) + L4, (14)

where α and λ are weight coefficients.

3. Experimental Settings and Datasets

In this work, two VAEs are trained for image features and at-
tributes, respectively. All encoders and decoders are multi-
layer perceptrons (MLPs) containing a hidden layer with
ReLU activation. The hidden units of our image feature en-
coder, image feature decoder, attribute encoder and attribute
decoder are 1560, 1660, 1450 and 660, respectively. We
randomly select a mini-batch of P classes and K images per
class for training. We set the dimension of the latent space to
64, P = 10 and K = 5. We increase α from epoch 6 to epoch
22 by a rate of 0.54 per epoch and increase λ from epoch 21
to 75 by 0.044 per epoch. The weight of KL-divergence β is
increased from epoch 0 to epoch 90 by a rate of 0.0026 per
epoch. The L1 norm is used as reconstruction loss.

We evaluate our methods on four benchmark datasets
including Animals with Attributes 1 (AWA1 [11]), Animals

with Attributes 2 (AWA2 [12]), Caltech-UCSD Birds-200-
2011 (CUB) [13] and SUN Attribute (SUN) [14]. The eval-
uation protocol and the splits are as the same set in [12].
Also, we use the 2048-D image features provided by [12]
for all datasets. The performance of ZSL is measured by the
accuracy on unseen classes. Otherwise, the performance of
GZSL is measured by the harmonic mean H = 2 × S × U/(S
+ U), where S and U are the accuracy on seen and unseen
classes, respectively.

4. Results and Analysis

As shown in Table 1, compared to the state-of-the-art GZSL
methods, our methods achieve great improvement on four
benchmark datasets. And we explore the imapct of differ-
ent variants of triple loss on the performance of our moth-
ods by ablation analysis. It should be noted that AVAE
represents aligned VAE. BA-AVAE, BH-AVAE, RH-AVAE
and SH-AVAE represent the AVAE with all possible triplets,
with hardnest negative, with random-hard negative and with
semi-hard negative, respectively. Compared with other
GAN based methods [9], [10], our VAE based methods are
relatively efficient to be trained and the performance is close
to them. It can be seen that our methods with variants
of triple loss are more competitive in GZSL. Our methods
achieve the best S of 77.3% and 82.2% on the AWA1 and
AWA2 datasets, which exceed other methods by 1.0% and
7.1%, and best U of 48.2% on the SUN dataset, which ex-
ceeds other methods by 1.0%. And our methods obtain the
second best H of 65.0% and 65.5% on the AWA1 and AWA2
datasets, respectively.

In ablation analysis, we remove the variants of triple
loss, and the method without a variant of triple loss is called
AVAE. As shown in Table 1, the performance of our meth-
ods with variants of triple loss is generally better than AVAE
in GZSL scenario. On the CUB and SUN datasets, the per-
formance of all our methods with variants of triple loss is
better than AVAE at most 1.5%. In SH-AVAE, the results on
all datasets are better than AVAE.

We also report the results of our models in the conven-
tional ZSL scenario in Table 2. In the conventional ZSL
scenario, the performance of our methods with variants of
triple loss is still more competitive than AVAE. The best re-
sults and second best results on all datasets are obtained by
methods with variants of triple loss. Specifically, the results
of BA-AVAE on all datasets are better than AVAE, the re-
sults on the AWA1 and AWA2 datasets are better than AVAE
by 2% and 3.2%, respectively. This manifests that variants
of triple loss are also applicable to the conventional ZSL. In
addition, we can see that different variants of triple losses
have different degrees of impact on the performance of the
methods. Therefore, selecting proper triplets is the key for
better performance.

Figure 2 shows the t-SNE visualization of original and
reconstructed image features for the AWA2 dataset. In
Fig. 2, (a) shows the distribution of original image features,
(b) shows the distribution of the reconstructed image fea-
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Table 1 Results on GZSL. The best results and the second best results are respectively marked in
bold and underlined.

Method AWA1 AWA2 CUB SUN
U S H U S H U S H U S H

CVAE [4] - - 47.2 - - 51.2 - - 34.5 - - 26.7
f-VAEGAN-D2 [6] - - - 57.6 70.6 63.5 48.4 60.1 53.6 45.1 38.0 41.3

LisGAN [7] 52.6 76.3 62.3 - - - 46.5 57.9 51.6 42.9 37.8 40.2
CADA-VAE [8] 57.3 72.8 64.1 55.8 75.0 63.9 51.6 53.5 52.4 47.2 35.7 40.6
RFF-GZSL [9] 59.8 75.1 66.5 - - - 52.6 56.6 54.6 45.7 38.6 41.9

TF-VAEGAN [10] - - - 59.8 75.1 66.6 52.8 64.7 58.1 45.6 40.7 43.0
Ours(AVAE) 55.6 74.6 63.7 53.7 77.1 63.3 52.4 52.6 52.5 45.6 36.5 40.5

Ours(BA-AVAE) 57.4 73.0 65.0 51.3 78.9 62.2 49.2 57.4 53.0 48.2 35.3 40.7
Ours(BH-AVAE) 53.3 77.3 63.1 52.8 77.1 62.7 49.7 57.8 53.4 46.3 36.7 41.0
Ours(RH-AVAE) 56.5 75.6 64.7 51.8 79.0 62.6 50.0 58.2 53.8 47.6 36.5 41.3
Ours(SH-AVAE) 56.9 73.8 64.3 54.5 82.2 65.5 50.8 57.7 54.0 47.4 36.3 41.1

Table 2 Results on conventional ZSL. The best results and the second
best results are respectively marked in bold and underlined.

Method AWA1 AWA2 CUB SUN
AVAE 65.7 63.0 60.3 61.8

BA-AVAE 67.7 66.2 60.5 62.4
BH-AVAE 64.4 63.1 60.8 62.2
RH-AVAE 66.0 62.3 61.1 61.7
SH-AVAE 65.8 66.0 60.6 62.0

Fig. 2 t-SNE visualization for the AwA2 dataset.

tures in AVAE, and (c) shows the reconstructed image fea-
tures in SH-AVAE. Compared to AVAE, the reconstructed
image features of SH-AVAE are similar to the original im-
age features, and almost all reconstructed image features of
same class are closer than reconstructed image features of
different classes. This shows that our methods with variants
of triple loss are able to capture the discriminative informa-
tion to a good extent, and greatly optimize the latent space.

5. Conclusion

In this work, we learn two VAEs for image features and at-
tributes, respectively. For preserving discriminative infor-
mation in latent space, we align the corresponding latent
distributions of image features and attributes by minimiz-
ing the 2-Wasserstein distance and cross-reconstruction loss.
And we use some variants of triple loss to optimize the la-
tent space. Then, we train a softmax classifier in the latent
space. The proposed methods achieve great improvement
on four benchmark datasets. In addition, we explore the im-
pact of different variants of triple loss. How to better apply
the triple loss to ZSL and GZSL is worthy of study.
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