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Single-Image Camera Calibration for Furniture Layout Using
Natural-Marker-Based Augmented Reality

Kazumoto TANAKA†a), Member and Yunchuan ZHANG††, Nonmember

SUMMARY We propose an augmented-reality-based method for ar-
ranging furniture using natural markers extracted from the edges of the
walls of rooms. The proposed method extracts natural markers and es-
timates the camera parameters from single images of rooms using deep
neural networks. Experimental results show that in all the measurements,
the superimposition error of the proposed method was lower than that of
general marker-based methods that use practical-sized markers.
key words: furniture layout, augmented reality, camera calibration, natu-
ral marker, deep neural network

1. Introduction

Furniture layout is often considered when purchasing or
renting living spaces. To enable comparisons of such spaces,
it is convenient to consider virtual furniture arrangements,
such as the advertised images of rooms on the Internet. Aug-
mented reality (AR) offers solutions to such needs. This pa-
per proposes an AR-based method for virtual furniture lay-
out using single images of rooms.

The estimation of a matrix that transforms real-world
coordinates into image system coordinates (i.e., camera cal-
ibration) is key to superimposing computer graphics models
onto real-world images with accurate positions and orienta-
tions. Two types of methods are employed for matrix esti-
mations in AR applications: marker-less and marker-based.
Marker-less methods typically use visual simultaneous lo-
calization and mapping (VSLAM) [1] or visual-inertial si-
multaneous localization and mapping (VISLAM) [2]. How-
ever, these require multiple images and sensor data.

Marker-based methods generally estimate the transfor-
mation matrices using the geometric information of markers
and camera geometry [3]. Their advantages include camera
calibration with single images and markers representing the
world coordinate system, such that the virtual object posi-
tions can be easily specified. However, placing such mark-
ers in individual rooms is difficult. Alternatively, indoor
natural markers, such as exit signs, have been used as the
AR markers [4]; however, such signs are not always avail-
able in all rooms. In contrast, this study proposes a natural-
marker-based method. Specifically, five connected edges of
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Fig. 1 Left: Natural markers (black lines). Right: World coordinate sys-
tem. The vertical line of the natural marker is the y-axis (blue), and the
lines of intersections between the walls and floor are the x-axis (green) and
z-axis (red). The axes are considered to form a right-handed system. When
there are multiple candidates for the world coordinate system, the leftmost
one in the image is selected in this study.

the room’s walls are used as the natural markers (Fig. 1, left),
and camera calibrations are performed in the world coordi-
nate system comprising three edges of these markers (Fig. 1,
right).

Several methods have been proposed for camera cal-
ibrations from single images, e.g. [5], using the edges of
planes, such as walls, ceilings, and floors. Under the Man-
hattan world assumption [6], the camera orientations are es-
timated using three orthogonal directions obtained from the
vanishing points of the edges. However, the camera po-
sitions were not determined in previous studies; therefore,
the positions of virtual objects cannot be specified based
on this coordinate system. In contrast, in this study, the
camera pose (orientation and position) and view angle (cor-
responding to the focal length) are estimated from natural
markers comprising the wall edges, and the world coordi-
nate system-based position can thus be clearly shown to the
user. To detect natural markers, we propose a deep neu-
ral network (DNN) named Marker Detector based on the
image-to-image translation (pix2pix) framework [7].

Methods estimating the camera poses from single
images using DNN have also been proposed [8]–[11].
PoseNet [8] outputs poses using the GoogLeNet architec-
ture [12]. Hourglass Pose [9] utilizes ResNet34 [13] instead
of GoogLeNet and improves the estimation accuracy via
a decoding layer before the regression layer. MapNet [10]
also uses ResNet34, but as a loss function, and both the
per-image absolute orientation and relative orientation be-
tween image pair losses are used to improve the estima-
tion accuracy. AtLoc [11] includes an attention module with
a ResNet34-based network to achieve improved robustness
against noise. These methods utilize camera relocalizations
that learn the relationships between the image in a three-
dimensional (3D) environment and camera pose to estimate
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the pose from any image of the given space.
In this study, the natural-marker image outputs from

Marker Detector are used to obtain the camera parameters;
however, as the 3D marker data are unknown, calibrating
the camera in the same manner as the marker-based method
is not possible. Therefore, we employ a DNN-based estima-
tion method and propose a Parameter Regressor that outputs
the camera pose and view angle using a modified ResNet34.

The main contributions of this study are as follows:

• An indoor AR method is proposed that has the advan-
tages of the marker-based approach. It requires no spe-
cial preparation and uses natural markers composed of
the room edges.
• Using Marker Detector and Parameter Regressor, the

camera pose and view angle are estimated from indi-
vidual indoor images. To the best of our knowledge,
there are no equivalent proposed methods for estimat-
ing the intrinsic and extrinsic parameters from single
indoor images.

2. Method

The proposed camera calibration method has two main com-
ponents: natural-marker detection and camera parameter es-
timation (Fig. 2: calibration phase). During marker detec-
tion, room images are converted to edge images by the
Canny operator and then converted to natural-marker im-
ages using Marker Detector. The camera parameter esti-
mation step then inputs the outputs from Marker Detector
to Parameter Regressor and outputs the camera parameters.
These proposed networks were trained from scratch.

2.1 Marker Detector

The edge images detected from input images have many
edges, and it is necessary to extract only the natural-marker
edges. Hence, Marker Detector directly outputs the natural-
marker images using the pix2pix framework—a genera-
tive adversarial network comprising a generator that trans-
forms input images to target images and a discriminator that

Fig. 2 Overview of the proposed method. va and p are the view angle
and camera pose, respectively.

checks if the output images are produced by the genera-
tor. This generator was used as Marker Detector in this
study. The network architecture of Marker Detector is sim-
ilar to the image transformation network in [14]. It con-
sists of residual blocks [13] between downsampling and up-
sampling layers. Strided convolutions are used instead of
pooling layers for downsampling and upsampling. Each
convolution layer is followed by instance normalization and
rectified linear unit (ReLU) layers, except for the last con-
volution layer—which is followed by a tanh output layer.
The architecture is shown in Fig. 3. The discriminator is
a PatchGAN [7] consisting of five convolution layers, each
followed by instance normalization and ReLU; it outputs
16 × 9 patches.

The input and output images of Marker Detector are an
edge image of a room and a natural-marker image with no
noise, respectively. Consequently, the data for Marker De-
tector training comprise edge image pairs, each consisting
of one image with partially and randomly missing natural
marker and noise edges and a corresponding second image
with only the natural marker (green part in Fig. 2).

The second images of the pairs are the ground truth
for the other side of the pairs. They are generated by using
OpenGL as follows:

• A rectangular cuboid wireframe is used as a room
model. Regarding the scale, the metric used is room
height, i.e., the length of the vertical edge of the nat-
ural marker is 1.0 (see Fig. 4). The length of the floor
is 3.0, and there are 11 width types: 1.0, 1.2, . . . , 3.0.
Therefore, we use 11 room model types for the train-
ing.
Step 1) Set the OpenGL space to black and the wire-
frame to white.
Step 2) Divide the room space into a 3D grid with a
mesh size of 0.2, randomly select one point from the
inside of each voxel, and set it as an eye point (Fig. 4).
Divide the wall on the x–y plane into a 2D grid with
a mesh size of 0.2, randomly select one point from the
inside of each cell, and set it as an aim point (Fig. 4).
There are six view angle types: 40, 50, . . . , 90 degrees.
Add a perturbation randomly selected from the range
of ±5 degrees to each angle when rendering.
Step 3) For each room model, render the wireframe
with all combinations of the above eye point, aim point,

Fig. 3 Network architecture of Marker Detector. The residual blocks
have nine blocks of convolution (kernel = 3 × 3, stride = 1), normaliza-
tion, and ReLU.
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Fig. 4 World coordinate system, room model, and camera model.
d = 0.2 (for training dataset) and 0.25 (for test dataset).

and view angle. Set the up-vector such that the ren-
dered height edge is parallel to the y-axis of the image.
Step 4) Delete images that do not show the natural
marker. (Blur the remaining images with a Gaussian
filter (kernel size: 11 × 11) after Step 5 to make one
of the image pairs. These images comprise the ground
truth.)
Step 5) For all image duplicates obtained in Step 4,
paint the randomly selected positions of the natural
markers black to generate occlusions. Further, add ran-
dom edges as noise to the images. Blur these images
in the same manner to make the other side of the image
pairs.

By using the above method, 252,000 image pairs of
size 256 × 144 were generated as training data. Next, for
test data, the room height and length were also 1.0 and 3.0
respectively, and there were four widths: 1.25, 1.75, 2.25,
2.75. The mesh size of the 3D and 2D grids was set to 0.25,
and then 26,000 image pairs for test data were created by the
random selection manner and the six types of view angles
with perturbation.

In addition, we also utilized the ground truth images
and the camera parameter used to generate the images for
Parameter Regressor training. Thus, a dataset consisting of
sets of the image pair and camera parameter was created
as a shared dataset for Marker Detector and Parameter Re-
gressor (the dataset in Fig. 2). The testing dataset was also
constituted in the same manner.

The loss function for Marker Detector (generator) is as
follows:

||1 − D(G(x))||22 + λ||y − G(x)||22 (1)

where || · ||22, G, D, x, y, and λ denote the mean squared er-
ror function, the generator, discriminator, partially occluded
natural-marker image with noise edges, ground truth image
(image with only natural marker), and weighted parameter,
respectively. The blur filtering in Steps 4 and 5 reduces the
strictness of the pixel-wise loss [15]. The loss function for
the discriminator is as follows:

||1 − D(y)||22 + ||D(G(x))||22 (2)

We trained Marker Detector for 150 epochs with no
mini-batch. The Adam optimizer [16] was used with learn-
ing rate = 0.0002, and momentum parameters 1 and 2 set to

Fig. 5 Left: Partially occluded natural-marker image with noise edges.
Middle: Image generated from the left image. Right: Ground truth.

Fig. 6 Process flow of Parameter Regressor. The initial pose for gen-
erating the image from the view angle estimation unit was set as fol-
lows: eye point = (0.5, 0.5, 1.0), aim point = (0.5, 0.5, 0.0), and up-vector
= (0.0, 1.0, 0.0).

0.5 and 0.999, respectively. Figure 5 shows an example of
the test results after the training.

2.2 Parameter Regressor

The ground truth images and camera parameters in the
dataset are used for Parameter Regressor training (blue part
in Fig. 2). The eye point is the camera position, and the
combined line-of-sight vector from the eye point to the aim
point and up-vector corresponds to the camera orientation.
The number of estimation parameters is set to eight by set-
ting the aim point on the z = 0 plane without loss of gener-
ality and setting the up-vector as a unit vector (element Y is
limited to a positive value).

We employed ResNet34 as Parameter Regressor.
However, training a network with the last layer of the fully
connected layer modified to output the eight parameters
yielded poor results. Therefore, from repeated attempts,
we found that dividing Parameter Regressor into view angle
and pose estimation units and supplying the view angle esti-
mates to the pose estimation unit resulted in improvements.
These two units utilize ResNet34 with one and seven out-
puts. The view angle estimation unit first estimates the view
angle using the natural-marker image as input and generates
an image with the view angle (estimated result) and initial
pose. The estimated result is improved by concatenating the
natural-marker image with the generated image and supply-
ing it to the pose estimation network (Fig. 6). Surprisingly,
good results were obtained even when the image with all
the pixel densities set to the estimated view angle result was
concatenated. Conversely, the results were not as good when
the view angle was concatenated with the input to the fully
connected layer.

In Parameter Regressor training, the view angle esti-
mation unit and the pose estimation unit were trained for
700 epochs and 600 epochs with eight mini-batch sizes, re-
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Fig. 7 Test errors for parameter estimation based on the proposed
method (left) and baseline (right). (ex, ey, ez), (ax, ay), and (ux, uz) denote
eye point, aim point, and up-vector, respectively. The metric used is room
height; thus, if the height is 2300 mm, a coordinate error of 0.01 equates to
an actual error of 23 mm.

spectively. Subsequently, each unit was additionally trained
for another 50 epochs on natural-marker images that Marker
Detector generated from the partially occluded natural-
marker image with noise edges in the dataset. In the ad-
ditional training, the trained Marker Detector was used, and
the parameters of Marker Detector were fixed.

For all the training of the two units, the Adam optimizer
with the same parameters as those used for Marker Detector
was used. The loss functions for the view angle estimation
unit and the pose estimation unit are the mean squared error
functions between estimated values and ground truth val-
ues. The test errors of the parameter estimation are shown
in Fig. 7 (left). The additional training had little effect on the
estimation accuracy.

To demonstrate the effectiveness of the proposed net-
work architecture consisting of the two estimation units, the
modified ResNet34, which outputs eight parameters (includ-
ing view angle) from the natural marker, was set as a base-
line. Figure 7 (right) shows the results of 600 epochs (a
weighted parameter for the view angle was employed for
the loss function). The results indicate that the convergence
accuracy of the baseline is worse than that of the proposed
method. For the camera parameter estimation based on re-
projection error minimization, there is some concern regard-
ing the simultaneous estimation of intrinsic parameters and
extrinsic parameters [17]. That is, the accuracy of the in-
trinsic parameters and that of the extrinsic parameters af-
fect each other, such that the accuracy is lower than when
estimating separately. Although our proposed approach is
different, both parameters are not completely independent
as they (except up-vector) relate to the size of the natural
marker image. Therefore, the proposed method of dividing
into two units is effective.

3. Experiments

Virtual furniture were superimposed on the room images for
visual evaluation of the proposed method. Then, the super-
imposed accuracy between the proposed and marker-based
methods was compared for objective evaluations.

Fig. 8 Top to bottom: original image, edge detection by Canny detector,
output image of Marker Detector, world coordinate system (axis length =
1.0) reprojected using estimated results of Parameter Regressor, and super-
imposed results for virtual bookshelf.

3.1 Superimposition on Room Images

Using sample images of vacant rooms from the Internet
(https://www.photo-ac.com/) and illustration images, we
conducted an experiment in which a virtual bookshelf was
superimposed at a specific position. Some example results
are shown in Fig. 8. In each case, the upper left vertex of
the bottom of the bookshelf was specified by OpenGL ren-
dering for placement at the coordinates (0.5, 0.0, 0.0) of the
natural-marker coordinate system. The results show that if
the edges of the original image corresponding to the nat-
ural markers are not hidden (top of Figs. 8 (a), 8 (b), and
8 (c)), then superimposition can be performed accurately
even when edge detection is incomplete (second from top
in Fig. 8 (b)). However, if the edges of the corners are hid-
den by structures such as pillars, then the natural-marker es-
timation fails (Fig. 8 (d)). Hence, even illustrations can be
superimposed without any problem when drawn in perspec-
tive view (Fig. 8 (c)).

3.2 Comparison of Accuracy with Marker-Based Method

For the evaluation of the proposed method, we compared
the accuracy of reprojection using the OpenCV ArUco mod-
ule [18] as a general marker-based method. The experi-
mental settings and method were as follows. Assuming
the normalized dimensions of a standard living room to
be 1.5 (length) × 1.5 (width) × 1.0 (height), we used a
space of 435 mm ×435 mm ×290 mm as a model for the
living room in the experiment. When an image of the liv-
ing room is taken from the wall with a camera having a
view angle of 80 degrees, a space with depth (z-axis di-
rection: see Fig. 4) approximately 1/3 can be covered com-
pletely. Consequently, six equally spaced reference points
ranging from (0.50, 0.00, 0.05) to (1.50, 0.00, 0.55) on the
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Fig. 9 Room space model and six reference points. Upper left: proposed
method; Upper right: ArUco marker-based method.

Fig. 10 Reprojection errors (pixels) for the 1024 × 576 image size. The
room space model was taken with a Full-HD camera, and images were re-
sized to 256 × 144 and 1024 × 576 for the proposed method and ArUco
marker-based method, respectively. For the proposed method, the repro-
jected coordinates were converted for a 1024 × 576 image.

floor of the model (actual size: (145 mm, 0 mm, 14.5 mm)–
(435 mm, 0 mm, 159.5 mm)) were used for reprojection (see
Fig. 9).

Generally, a compact AR marker is better, but if it is
overly small, there will be a problem with the recognition
rate of the marker. As the minimum size that can be sta-
bly recognized in this experimental environment was 25 mm
(when using a full high-definition camera), ArUco marker
of this size was used. The 25 mm marker corresponds to a
marker of approximately 198 mm in a room with a height
of 2300 mm. This is convenient for printing on a letter-size
sheet of paper and also for carrying.

We selected 20 camera positions and orientations such
that the six reference points and the edge in the height di-
rection of the room model could be captured by a full high-
definition camera with a view angle of 80 degrees. Further,
we took images of the reference points with the 20 camera
poses. Using these images, six points were reprojected onto
each image using the camera parameters estimated by the
proposed method and the marker method (Fig. 9). Figure 10
shows the average reprojection error at each point. The re-
sults show that the proposed method is highly accurate for
all reference points and is more useful than the practically
sized marker methods.

Furthermore, ignoring practicality, a similar experi-
ment was conducted with a 60 mm marker (that corresponds
to 476 mm at 2300 mm height). This result (Fig. 10) also

shows that the accuracy of the proposed method is higher
except for points 1 and 4 near the origin.

4. Limitations and Conclusions

This paper proposed an AR-based method for arranging fur-
niture using natural markers without the need for special
preparation. The proposed method extracts natural markers
and estimates the camera parameters from single images of
rooms using DNNs. The method requires images containing
edges of the room to derive the natural marker; additionally,
the walls must be mutually orthogonal. Although the pro-
posed method has these limitations, it can still be used to
specify the positions for placing virtual objects based on the
coordinate system of the natural marker; further, this method
is more accurate than other marker-based methods that use
practical-sized markers. Future work will mainly tackle the
estimation failure caused by corner edge occlusion.
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