
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022
1325

LETTER

On a Cup-Stacking Concept in Repetitive Collective
Communication

Takashi YOKOTA†a), Kanemitsu OOTSU†, and Shun KOJIMA†, Members

SUMMARY Parallel computing essentially consists of computation
and communication and, in many cases, communication performance is
vital. Many parallel applications use collective communications, which of-
ten dominate the performance of the parallel execution. This paper focuses
on collective communication performance to speed-up the parallel execu-
tion. This paper firstly offers our experimental result that splitting a session
of collective communication to small portions (slices) possibly enables ef-
ficient communication. Then, based on the results, this paper proposes
a new concept cup-stacking with a genetic algorithm based methodology.
The preliminary evaluation results reveal the effectiveness of the proposed
method.
key words: interconnection networks, parallel computers, collective com-
munication

1. Introduction

Interconnection network is one of the vital components in
parallel supercomputers [1]. A parallel program runs as an
aggregate of concurrent processes that interchange their data
occasionally or frequently. Thus, inter-process communica-
tion is essential in parallel computation and parallel perfor-
mance is described as a some kind of mixture of computa-
tion and communication.

Communications are carried out according to the in-
structions in the parallel program. Many of them are based
on collective communication that forms some kind of log-
ical structure. This paper focuses discussions on reducing
duration time of collective communication.

This paper assumes packet exchange networks that
have regular network topology, 2-dimensional torus, and
each router in the network operates the deterministic routing
algorithm for simplification of discussions. Furthermore,
this paper assumes static approaches that arrange commu-
nication strategy beforehand.

The unique point in this paper is to split a large packet
into a series of small ones that are injected with an adequate
interval. In general collective communication, each node
injects a packet in unison. If the packet is small, the com-
munication will be completed rapidly. However, when large
packets are injected, the network suffers from severe con-
gestion for a relatively long time. What is the most essential
problem here is few degrees of freedom in controlling the

Manuscript received October 25, 2021.
Manuscript revised March 16, 2022.
Manuscript publicized April 15, 2022.
†The authors are with Utsunomiya University, Utsunomiya-

shi, 321–8585 Japan.
a) E-mail: yokota@is.utsunomiya-u.ac.jp

DOI: 10.1587/transinf.2021EDL8098

vast amount of packets. Splitting large packets into small
portions is worth considering.

This paper further arranges the injection timing of
small packets, as well as the inter-packet interval, so that
interferences between packets are minimized. We propose a
new concept, cup-stacking, that runs well in many of collec-
tive communication patterns.

The rest of this paper is organized as follows. After
Sect. 2 summarizes related work, Sect. 3 shows that collec-
tive communication may be accelerated by splitting a large
packet. Based on the results, Sect. 4 proposes a new method
cup-stacking, and Sect. 5 evaluates the effectiveness. Fi-
nally, Sect. 6 concludes this paper.

2. Related Work

Discussing congestion control methods is essential for max-
imizing the performance of interconnection network. Once
a local congestion occurs, a blocked packet obstructs other
ones so that the congested situation spreads, which is de-
scribed as tree saturation [2].

One of the promising approaches is to smooth the
packet flow. The major reason of severe congestion is
too dense packet flow that cannot resolve local congestion.
Throttling is one of the typical idea, where packet injection
is appropriately controlled according to the network situa-
tion [3]. Pacing is another idea for smooth packet flow [4].

As a static approach, a packet scheduling method is
proposed [5], where packet injection timing is optimized.
The method operates effectively, however, it has not reached
at clear and systematic solutions. Furthermore, the idea of
packet splitting is not discussed so far.

3. Splitting Packet with Constant Interval

In general, in packet exchange networks, a packet consists
of a header and payload. The former includes necessary in-
formation for packet delivery and the latter contains objec-
tive communication data. A packet forms with a series of
flits, and we assume that a packet consists of a header flit
followed by succeeding p payload flits, i.e., the packet size
in length is expressed as lc = p + 1 [flits].

In general, communication performance of the network
is discussed in terms of throughput and latency. As the
throughput means the number of received payloads in ev-
ery time unit, the header flit is treated as an overhead. Thus,
small packets pay relatively large overheads and large pack-

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers



1326
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

Fig. 1 Duration times for inter-slice intervals (16 × 16, p = 32).

ets are welcomed in terms of throughput.
In a congested situation, once a packet conflict occurs,

the situation continues according to the packet size. We
firstly focus on propagation behaviors of the congested sit-
uation. A locally congested situation will easily induce fur-
ther congestion when the situation sustains. However, from
the opposite point of view, we can expect that the congested
situation is expired by short packets.

The important point here is not to propagate conges-
tion. It is necessary that the network traffic is smooth when
a local congestion is resolved [6]. This consideration con-
ducts us to the new idea that a large packet is split to multi-
ple portions that are injected with an interval.

We call a split packet slice to clearly distinct from the
original packet. When a p-flit payload packet is split to s
slices, each slice consists of �p/s�+ 1 flits whereas the orig-
inal one lc = p + 1.

We have tried a preliminary experiment for feasibility
study of the slice idea by using the environment described in
Sect. 5.1. We split a 32-flit payload packet to 2, 4, 8, and 16
slices and measured duration times by varying the inter-slice
interval. Figure 1 shows the results. Horizontal axis shows
the inter-slice interval and the vertical axis shows the total
duration time. Only the exception is the horizontal solid line
that shows the duration time in the non-splitting case. In this
figure, the notation ppxss means that an original packet is
split into s slices with p-flit payload.

Figures 1 (a) and (b) show two typical results. In many
traffic patterns, except tornado and transpose traffic, dura-
tion time marks the minimum value that supersedes the orig-
inal duration.

4. Cup-Stacking

4.1 Observation of Communication Situation

As shown in Fig. 1, in some traffic patterns, duration time
curves show complicated behaviors for inter-slice intervals.
It seems difficult to precisely model the behavior analyti-
cally (and mathematically), however, we take an intuitive
approach. Figure 2 visualizes the communication behavior
of bcmp traffic in 8 × 8 2D-torus network. In this figure,
each horizontal position shows the corresponding (physical)
link of the router. For example, the leftmost position corre-
sponds to the north link of router (0, 0). Vertical axis shows
the time. This figure draws a colored dot when a flit is trans-

Fig. 2 Visualized communication behavior.

Fig. 3 Abstract model of cup-stacking concept.

ferred via the link. Different colors show different slices:
red, green, blue, cyan colors show the first, second, third,
and fourth slice, respectively. A gray dot means that the
packet transfer is suspended because of busy buffer and a
white dot shows the link is not used at the time.

Figure 2 (a) shows the non-splitting case and Fig. 2 (b)
shows the consecutive four-slice case where the duration
time becomes worse as described in the previous section.
Figure 2 (c) also shows the four-slice case but it has an ap-
propriate inter-slice interval. We can visually recognize that
an appropriate interval leads a ‘tidy’ appearance of commu-
nication situation that results in performance improvement.

4.2 Cup-Stacking Concept

Based on the observation results, we abstract the shapes of
slice (in Fig. 2) to model a new concept. Figure 3 illustrates
the abstracted concept. As shown in Fig. 2 (a), ordinary (i.e.,
non-split) communication starts and ends as Fig. 3 (a) illus-
trates. Figure 3 (b) models the sliced communication with
an appropriate interval (that corresponds to Fig. 2 (c)).

Here, we focus on the shape of the slice. As Fig. 2 (b)
shows, when the inter-slice interval is small, packets are dis-
ordered in terms of slice. The disordered transfer means
that packets from different slices interfere with each other,
whereas the tidy situation (as Fig. 2 (c)) expects smooth flow
of packets.

Our idea is effective thickness of the shape in slice
communication. If the slice communication is re-shaped
as Fig. 3 (c), we can shorten the inter-slice interval so that
the overall duration time is reduced. Figure 3 (d) shows the
optimized situation where the no rooms exist between con-
secutive slices.

We call the concept cup-stacking. Cups are stacked and
stored in the kitchen cabinet smoothly, even if each cup has
a certain height. In this paper, the shape of slice communica-



LETTER
1327

tion corresponds to the cup. Each slice has certain height (in
duration time), however, if the effective thickness of slice is
small, slices can be started successively with a short interval
that is given by the thickness.

4.3 Cup-Stacking Method

The previous section offers a conceptual model, cup-
stacking. Then, we discuss a practical method, cup-stacking
method, as the second step. The problem is simple, that is,
how we can re-shape the slice communication, and our first
answer is to manage packet injection timing, not unison in-
jection.

Inefficiencies in network communication mainly come
from interferences between packets transferred in-flight. In-
terference is caused by resource conflict in which multiple
packets require the same resource in a router simultaneously.
A simple way to resolve the conflict is to manage the pack-
ets’ arrival times to the router where the conflict occurs.
This paper simply manages injection timing of packets.

Solving an optimal injection timing is a class of NP-
hard problems especially in large-scale networks. A packet
is relayed via a number of routers until it reaches the des-
tination. Thus, even when a packet injection is delayed to
solve a local conflict, the packet may cause a new conflict
at another router. To handle the hard problem, we introduce
the genetic algorithm (GA).

In our GA method, a gene simply consists of packet
injection times at every node, presented as Ii for i-th node.
Maximum value of Ii is conducted by Imax = td0 − lc, td0 is
the duration time of the slice where Ii = 0 for all nodes and
lc is the packet length (in flit unit).

We prepare two evaluation functions for the GA op-
eration: height and effective thickness in the previous sec-
tion. The former is determined by the duration time of slice
td. To define the latter parameter, we introduce the idea of
occupation time. As shown in Fig. 2, every router link dif-
ferently behaves according to the transferring packets. The
occupation time is given by the time length between the first
and last flits transferred via the link. Given the occupation
time of link k as Ok, the effective thickness is defined as
Te = max(Ok).

Mutation operation of the GA randomly selects one
or more members (Ii) in a gene (i.e., chromosomes) and
changes their values within the range of [0 : Imax]. Ev-
ery gene is mutated in every generation except when the
crossover operation takes place. If the mutated gene per-
forms worse, the original one survives.

Crossover operation of GA firstly sorts the genes by
the evaluation value order. Then, it systematically selects
two genes from the sorted order as (1, 2), (1, 3), (2, 3), (1, 4),
(2, 4), (3, 4), and so on, where (a, b) means a combination of
two genes at the a- and b-th orders. The child gene overrides
the weaker parent gene and the stronger one survives. The
crossover function substitutes randomly-selected members
in the a-th gene (Ia) to the corresponding members in the
b-th gene (Ib) as Ia

i = Ib
i .

Furthermore, to prevent local-minima situations, we in-
troduce lifetime and watchdog timer in our GA method. The
former restricts the maximum number of generations of a
gene, and the latter re-sets a timer at every update of the
best score of the evaluation value. The timer re-initializes
all the genes at its expiration time.

5. Evaluation

The objective issues in this evaluation section are (1) how
we can re-shape the slice communication to fit for the cup-
stacking, and (2) how the re-shaped slice works effectively
in the cup-stacking method where the slice is repeatedly ap-
plied with an adequate interval. Thus, we firstly apply the
GA method that is described in the previous section, we then
apply the resolved (re-shaped) slice to fit the cup-stacking
by adjusting the inter-slice interval.

5.1 Evaluation Environment and Condition

We built an evaluation environment by extending our cel-
lular automata (CA) based simulator ([7]) for rapid and
precise experiments. The simulator models a simple non-
pipelined router and it assumes two-dimensional torus
topology. Throughout the evaluations, the number of vir-
tual channels (VC) is three and each VC has a four-flit
buffer at the every input port of router. Routing algorithm
is dimension order where each packet firstly traverses along
the x-axis then it goes in y-direction until it reaches the
destination. We use six traffic patterns as Table 1 sum-
marizes. In this table, X and Y represent x- and y- ad-
dresses, respectively. Small letters show bit representation:
xi means the i-th bit in X. W is concatenation of Y and X:
W = w2n−1 · · ·w0 = yn−1 · · · y0xn−1 · · · x0. In this evaluation
section, unlike the previous sections, we uniformly use 8-flit
packets that has a 7-flit payload and a header, so that we can
discuss the effects of the re-shaped slices for various divi-
sion numbers.

GA parameters are as follows. The number of genes is
50. Crossover operation is carried periodically in the spec-
ified interval ic ∈ {100, 200} [generations]. Every mem-
ber in the gene is selected to crossover at a given possi-
bility rc ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 0.9}. When the crossover
operation is not carried out, mutation operation is applied

Table 1 Traffic patterns used.

abbrevi- description
ation
bcmp bit-complement.

w2n−1w2n−2 · · ·w0 −→ w2n−1 w2n−2 · · ·w0

brev bit-reverse.
w2n−1w2n−2 · · ·w0 −→ w0 · · ·w2n−2w2n−1

brot bit-rotation.
w2n−1 · · ·w1w0 −→ w0w2n−1 · · ·w1

shfl perfect shuffle.
w2n−1w2n−2 · · ·w0 −→ w2n−2 · · ·w0w2n−1

torn tornado. W −→ mod(W + N/2,N2)
trns transpose. (X,Y) −→ (Y, X)



1328
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

Table 2 16 × 16 network results [cycles].

unit slice (p = 7) p = 14 p = 28
traffic unison (us) GA s = s = 2 s = s = 4
pattern td0 Te td Te 1 us GA 1 us GA
bcmp 65 62 53 50 109 104 91 193 181 164
brev 108 105 79 76 199 179 151 381 326 298
brot 91 86 78 75 178 147 143 363 259 271
shfl 95 90 71 67 243 152 133 427 269 256
torn 67 64 64 64 123 131 131 235 259 259
trns 74 71 71 71 130 138 138 242 266 266

where every chromosome is selected at another proba-
bility rm ∈ {0.1, 0.05, 0.02}. Lifetime is given as lt ∈
{0, 100, 200} [generations] and the watchdog timer is set as
wd ∈ {0, 100, 200} [generations], where lt = 0 and wd = 0
mean that the corresponding functions are inhibited. We ran
possible combinations of parameter values where each com-
bination has five simulation runs. We ran two independent
GA sessions for td and Te as evaluation values for each pa-
rameter set.

5.2 Results

Table 2 shows the evaluation results of 16 × 16 2D-torus
network. In this table, unison (us for short) means that all
the packets are injected in unison, i.e., Ii = 0 for all nodes,
GA means the our proposed method.

Firstly, let us compare the results in the unit slice sec-
tion in the table. This section has four columns that show
the heights (td0 and td) and effective thicknesses (two Te’s),
respectively. By comparing the corresponding values in uni-
son and GA, we can confirm the effectiveness of the pro-
posed method. For example, the GA method reduces 27.6
percent of the effective thickness in brev traffic: Te of brev
is reduced from 105 to 76.

Then, we compare the collective communication per-
formance in the two payload cases (i.e., p = 14 and p = 28).
Each case consists of three columns: the leftmost column
(that is marked s = 1) shows the duration time of the non-
split case, where all the packets are injected in unison. The
center column (marked us) shows the duration time when
each slice starts in unison with an optimized interval. The
right column (GA) shows the minimum duration time that
the optimized slice by the proposed method marks. The pro-
posed method marks at most 45 percent improvement in the
p = 14 case in shfl traffic (i.e., duration time is reduced from
243 to 133 [cycles]).

5.3 Discussions and Future Work

The proposed method reduces both height (duration time)
and effective thickness (maximum occupation time) of a
slice in bcmp, brev, brot and shfl traffic patterns. These
results suggest that network behavior in a collective com-
munication involves much room to optimize (like bubbles)
and that the proposed method can press the behavior to elim-
inate the room so that the communication performance is
improved.

This paper tries two objective evaluation metrics,
height and thickness. As a simple intuition from the core
idea of the proposed method, the shortest thickness marks
the best performance (i.e., the shortest duration). However,
the evaluation results shows that our forecast is not always
true. Although the effective thickness of slice, height, and
the total duration time have strong correlation, small thick-
ness does not necessarily guarantee the short duration time.

Then, we will take a look at the resulting cup-stacking
situations in terms of fragility (or robustness). As described
in Sect. 4, the duration time by the cup-stacking method is
Td ≤ Te(s − 1) + td, where td and Te are height and effec-
tive thickness of a slice, respectively, and s is the number of
slices split from the original form.

In the unison injection case, where all the packets are
injected at the same timing, Te(s − 1) + td = 417 and
Td = 326, their difference is 91 [cycles]. On the other
hand, in the cup-stacking method, Te(s − 1) + td = 307 and
Td = 298, and the difference is 9 [cycles]†. This means
that the slice in the former case involves many bubbles and
it can tolerate shorter intervals than the effective thickness.
On the other hand in the latter case, the slice is rather rigid
since the bubbles do not sufficiently absorb the inter-slice
interferences.

We recognize that the observation results offer us a hint
for further improvement of the proposed method, which will
be the our future work.

6. Conclusions

To improve the performance of collective communication,
this paper firstly discussed a new idea of packet splitting and
showed that appropriate interval may improve performance.
Based on the preliminary results, this paper presented a new
concept of cup-stacking and a GA-based method, where
packet injection timing is optimized.

Evaluation results reveal that the proposed method can
improve collective communication performance at most 45
percent in 16 × 16 torus network. This paper further dis-
cussed the robustness of the method for further improve-
ments.

Acknowledgments

This work was partly supported by JSPS KAKENHI Grant
Number 20K11726.

References

[1] W.J. Dally and B.P. Towles, Principles and Practices of Interconnec-
tion Networks, Morgan Kaufmann Pub., 2004.

[2] G.F. Pfister and V.A. Norton, “ “Hot spot” contention and combin-
ing in multistage interconnection networks,” IEEE Trans. Comput.,
vol.C-34, no.10, pp.943–948, 1985. DOI: 10.1109/TC.1985.6312198.

[3] E. Baydal, P. López, and J. Duato, “A family of mechanisms for con-
gestion control in wormhole networks,” IEEE Trans. Parallel Distrib.
Syst., vol.16, no.9, pp.772–784, 2005. DOI: 10.1109/TPDS.2005.102.

†16 × 16 network with brev traffic pattern (s = 4).

http://dx.doi.org/ 10.1109/TC.1985.6312198
http://dx.doi.org/10.1109/TPDS.2005.102


LETTER
1329

[4] H. Shibamura, “Active packet pacing as a congestion avoid-
ance technique in interconnection network,” Parallel Comput-
ing: On the Road to Exascale, vol.27, pp.257–264, 2016. DOI:
10.3233/978-1-61499-621-7-257.

[5] T. Yokota, K. Ootsu, and T. Ohkawa, “A static packet scheduling
approach for fast collective communication by using PSO,” IEICE
Trans. Inf. & Syst., vol.E100-D, no.12, pp.2781–2795, Dec. 2017.
DOI: 10.1587/transinf.2017PAP0015.

[6] T. Yokota, K. Ootsu, F. Furukawa, and T. Baba, “Phase transition phe-
nomena in interconnection networks of massively parallel comput-
ers,” Journal of the Physical Society of Japan, vol.75, no.7, 078401 (7
pages), 2006. DOI: 10.1143/JPSJ.75.074801.

[7] T. Yokota, K. Ootsu, and T. Ohkawa, “Accelerating large-scale inter-
connection network simulation by cellular automata concept,” IEICE
Trans. Inf. & Syst., vol.E102-D, no.1, pp.52–74, Jan. 2019. DOI:
10.1587/transinf.2018EDP7131.

http://dx.doi.org/10.3233/978-1-61499-621-7-257
http://dx.doi.org/10.1587/transinf.2017PAP0015
http://dx.doi.org/10.1143/JPSJ.75.074801
http://dx.doi.org/10.1587/transinf.2018EDP7131

