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Fully Connected Imaging Network for Near-Field Synthetic
Aperture Interferometric Radiometer

Zhimin GUO†a), Member, Jianfei CHEN†, and Sheng ZHANG†, Nonmembers

SUMMARY Millimeter wave synthetic aperture interferometric ra-
diometers (SAIR) are very powerful instruments, which can effectively re-
alize high-precision imaging detection. However due to the existence of
interference factor and complex near-field error, the imaging effect of near-
field SAIR is usually not ideal. To achieve better imaging results, a new
fully connected imaging network (FCIN) is proposed for near-field SAIR.
In FCIN, the fully connected network is first used to reconstruct the image
domain directly from the visibility function, and then the residual dense
network is used for image denoising and enhancement. The simulation re-
sults show that the proposed FCIN method has high imaging accuracy and
shorten imaging time.
key words: fully connected, near field, synthetic aperture radiometer,
imaging algorithm, sparse reconstruction

1. Introduction

The millimeter wave synthetic aperture interferometric ra-
diometers (SAIR) are very efficient instruments for obtain-
ing high-precision images [1]. Benefit from synthetic aper-
ture technology, SAIR utilize small aperture antenna ar-
ray to compose large aperture synthetic antenna, so as to
achieve high imaging precision,which is difficult to be re-
alized by other systems [2]. Compared with infrared, mil-
limeter waves have longer wavelengths and better penetra-
bility. Compared with microwaves, millimeter waves have
shorter wavelengths and higher imaging resolution. In the
early days, SAIR was utilized primarily in the fields of radio
astronomy and earth remote sensing [3]. With the changes in
the global counter-terrorism situation in recent years, SAIR
is gradually introduced into the near-field imaging due to the
advantages and safety of technology of SAIR.

The traditional synthetic aperture imaging algorithm
meets the premise of far-field interferometry [4], but in the
near-field, the visibility function measured by SAIR and the
brightness temperature distribution of the target scene no
longer meet the Fourier transform relationship. The tra-
ditional imaging algorithm is difficult to achieve the ideal
effect for the near-field SAIR. At present, there are two
kinds of near-field algorithms. One is the Fourier trans-
form method based on phase correction, such as modified
FFT (MFFT) method [5]. By adding the correction phase,
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MFFT method makes the visibility function and the bright-
ness temperature distribution meet the approximate Fourier
transform to obtain the equivalent far-field imaging condi-
tions. The second is the inversion method based on G-
matrix, which models the complex synthetic aperture imag-
ing process as a mathematical model and inverses the bright-
ness temperature distribution of the target scene by solving
the G-matrix method [6]. In these two methods, the recon-
struction of the target image is optimized by numerical in-
version method, based on the establishment of their inver-
sion model. Owing to the inevitable factors such as noise
interference and system parameters error, there are some
errors in the model itself, so it is difficult to reconstruct
an accurate millimeter wave image. In 2019, Zhang pro-
posed the SAIR-CNN [7] algorithm based on learning super-
resolution idea and realized better millimeter wave synthetic
aperture imaging inversion results. Through deep learning,
the imaging network obtained by SAIR-CNN is closer to the
actual imaging and the model error is lower. Compared with
traditional imaging inversion methods, SAIR-CNN method
has a better effect on image quality and noise suppression.
However, SAIR-CNN has not meant deeply studied for the
particularity of near-field SAIR and realizes equal dimen-
sional imaging inversion. In the practical near-field SAIR,
due to the limitation of antenna array structure, the mea-
sured visibility function is usually sparse function, and dis-
turbed by near-field spherical wave and serious multipath
effect, its measurement error is usually large. Therefore,
SAIR-CNN is difficult to realize image reconstruction for
near-field SAIR.

Inspired by the SAIR-CNN algorithm, we proposed a
novel FCIN to realize higher-precision imaging inversion
for near-field SAIR with sparse visibility function. In the
paper, we use feedforward neural network with higher opti-
mal precision to complete the imaging inversion from sparse
visibility function, then combine the residual dense network
to complete the denoising and enhancement of millimeter-
wave images. Finally, the experimental simulation results
also show that in the case of near-field imaging, compared
with the existing near-field imaging methods, the FCIN
method has certain advantages in imaging accuracy and re-
construction time, which reflect that the FCIN is efficient
and feasible.
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2. Fully Connected Network Imaging Algorithm of
Near-field SAIR

2.1 Synthetic Aperture Imaging Algorithm

Before discussing the near-field millimeter wave imaging
method based on the fully connected network, the princi-
ple of millimeter wave synthetic aperture imaging is briefly
reviewed. As shown in Fig. 1, the radiation source S is lo-
cated on the plane oxy and is dispersed into N small parts.
The antenna is located on the OXY. The distance between
the point radiation source and the antenna is Rc

n and Rιn. Ac-
cording to [8], the visibility function of the antenna can be
expressed as:

Vc,ι = <Ec(Rc
n, t) • E∗ι (R

ι
n, t)>

=

N∑
n=0

T (n)Fc(xn, yn)F∗ι (xn, yn)e− jk(Rc
n−Rιn) (1)

Where E# (t) is the scene radiation signal received by an-
tenna#, (xn, yn) is the coordinate of the nth point radiation
source, F# is the normalized antenna pattern of antenna#,
and the index part is the most critical wave path difference
in synthetic aperture imaging. According to the geometric
relationship diagram shown in Fig. 1, The exact expressions
of the distances Rc

n and Rιn can be expressed as:

Rc
n =

√
(xn − XC)2 + (yn − Yc)2 + R2 (2)

Rιn =
√

(xn − Xι)2 + (yn − Yι)2 + R2 (3)

Normally, in order to separate the variables, it is necessary to
perform Taylor expansion on the distances Rc

n and Rιn. Then
ΔR in the exponential term can be expressed as:

ΔRn,c,ι = Rc
n − Rιn

≈
(
R +

(xn − XC)2 + (yn − Yc)2

2R

)

−
(
R +

(xn − Xι)2 + (yn − Yι)2

2R

)

=
xn (Xι − XC) + yn (Yι − Yc)

R
+

(X2
c + Y2

c ) − (X2
ι + Y2

ι )
2R

(4)

In far-field imaging, the target is usually located in the far-
field region, and the second term in the above formula can

Fig. 1 Interference measurement schematic.

usually be approximated to zero. However, in near-field
imaging, the imaging distance and the antenna aperture are
relatively close in value. The influence of the second term
on near-field imaging cannot be ignored. Bring Eq. (4) into
Eq. (1) to get:

VC,l =

N∑
n=1

T (n) FcF∗ι

e
− jK

[
xn(Xι−XC )+yn(Yι−Yc)

R +
(X2

c+Y2
c )−(X2

ι +Y2
ι )

2R

]
(5)

Then rewrite Eq. (5) into matrix form:

VM×1 = GM×NTN×1 (6)

G (m, n) = Fc (xn, yn) F∗ι (xn, yn)

e jπ[2xn(Xmc−Xmι)+2yn(Ymc−Ymι)+X2
mι+Y2

mι−X2
mc−Y2

mι]/Rλ (7)

Where V is the measured visibility function, T is the bright-
ness temperature data of the scene, G is the imaging matrix,
(Xmc,Ymc) and (Xmι,Ymι) are the coordinates of antenna. The
imaging method based on the G matrix is to perform image
inversion by solving G. The more accurate the G matrix, the
better the inversion effect. In the same way, we can also de-
rive the MFFT imaging formula based on phase correction
from Eq.( 5).

V(ν, h) = e−ϕ(ν,h)
�

T 0(x, y)e jk(νx+hy)dxdy (8)

T 0 (x, y) = IFT2[V(ν, h)eϕ(ν,h)] (9)

Where ν = k(Xc − Xι)/R, h = k(Yc − Yι)/R is the spatial fre-
quency domain variable. ϕ (ν, h) = k(X2

C +Y2
C −X2

ι −Y2
ι )/2R

is the phase correction term. T 0(x, y) is the approximate
brightness temperature. IFT2 stands for two-dimensional
inverse Fourier transform. The MFFT method is dedicated
to solving the approximate brightness temperature distribu-
tion as an approximate solution of the brightness tempera-
ture distribution.

Both of these imaging methods are based on their own
inversion model, using numerical inversion method to op-
timize the reconstruction of the target image. The recon-
struction accuracy largely depends on the accuracy of their
inversion model. However, due to some simplified approx-
imations in model construction, the actual SAIR inversion
model often has a certain description error. In addition, due
to specific environmental constraints in actual imaging ap-
plications. There are often situations where it is difficult to
accurately obtain some imaging parameters. Thus, the mil-
limeter wave image reconstructed by the traditional imaging
method usually has inevitable reconstruction errors.

2.2 Description of the FCIN for Near-Field

In view of the particularity of near-field SAIR and the object
full connectivity between visibility function and brightness
temperature image. FCIN method is proposed to realize
higher-precision SAIR imaging inversion from the sparse



1122
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.5 MAY 2022

Fig. 2 Network structure of FCIN.

visibility function. The network structure of FCIN is shown
in Fig. 2.

Our near-field millimeter wave imaging network is
mainly composed of two parts, the feedforward imaging net-
work and the residual dense denoising network. The ex-
tended dimension network is designed to reconstruct mil-
limeter wave images from sparse visibility functions in feed-
forward imaging network. Then a denoising network based
on the residual dense network is used to denoise and en-
hance the preliminary imaging results for improving the re-
construction accuracy further.

In feedforward imaging network, the full-connected
method is used to perform dimensional convolution and fea-
ture extraction on the visibility function. The two-stage ex-
pansion convolution is used as a hidden layer to extract the
mapping relationship between the spectrum domain of visi-
bility function and image domain of millimeter wave image
result. The expanded dimensional convolution model of the
first and second stage is:

T1m×m = C1m2,n2 • Vn2 + b1

T2k×k = C2k2,m2 • T1m2 + b2
(10)

Where C1 is the extended dimension convolution coefficient
of the first layer and C2 is the extended dimension convolu-
tion coefficient of the second layer, and its initial value will
be set according to the initial measurement data of the imag-
ing system. Here, the value of m is set to 50 and the value
of k is set to 100. These parameters can be set higher to
obtain better imaging effect according to actual needs. In
this paper, these three parameters are set by considering the
learning time and algorithm performance according to the
current hardware environment.

In the framework of deep learning, Convolutional neu-
ral network has fewer connections and parameters. Due to
the sparse connection, the neurons in the convolution layer
are only connected to some of their adjacent layers. This
connection structure improves the stability and generaliza-
tion ability of the network structure. However, it will lead
to the loss of some valuable features information and ignore
the correlation between the whole and part, which leads to
its optimal accuracy lower than that of the feedforward neu-
ral network. Considering the limited visibility function of
near-field SAIR, we choose feedforward neural network in-
stead of convolutional neural network to complete the image
reconstruction task. Feedforward imaging network structure
as shown in Fig. 3.

Since the feedforward neural network with two-layer
extended dimension network is difficult to describe the ac-
tual imaging process absolutely and accurately, there are

Fig. 3 Feedforward imaging network.

Fig. 4 Residual dense denoising network.

some errors and interferences in the initial reconstructed im-
age of feedback network. Therefore, we use the residual
dense network to denoise and enhance the image further.
The residual dense network can effectively reduce the com-
putational complexity of the network, reduce a large number
of network parameters and shorten the computing time. In
the residual dense denoising network, the cascaded intensive
residual network structure will be used to complete the local
feature learning and noise removal of the image. The key
residual intensive module residual dense block composition
structure is shown in Fig. 4. Through each convolution, the
dense connection between layers fully mines the local fea-
ture information of the image, and uses the residual learning
method to learn and store the feature information extracted
by all convolutional layers, which can improve the learning
efficiency of the network while ensuring the image denois-
ing performance.

We use numerical simulation to construct the SAIR
imaging dataset (10,000 pairs of image-visibility functions).
We selected 10,000 images from ImageNet and sent them
to the SAIR simulator to generate the corresponding vis-
ibility functions.We randomly select 100 images and visi-
bility functions as the test set and the remaining are used
as the training set. During training, the visibility function
is used as the input of the network, and the high-precision
millimeter-wave images are expected as the output of the
network. The loss function is the total of mean square error
(MSE) and peak signal-to-noise ratio (PSNR) between the
real scene and the reconstructed image. After about 10,000
pieces of training, the error between the actual value and the
predicted value is reduced to a relatively small value. The
RMS Prop algorithm was used to minimize the loss function
with minibatches of size 100, learning rate 0.0001, momen-
tum 0.0, and decay 0.9. All the networks were trained on
the tensorflow framework of Python3.7 using GPU (RTX
2080Ti) on the workstation.

3. Simulation and Results

For further demonstrating the effectiveness of the FCIN
method, two groups of two-dimensional imaging simulation
experiments from test set are performed here. The main sim-
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Table 1 Simulation parameters of SAIR.

Parameters Values Parameters Values
Wavelength 3 mm Antenna aperture 0.4 m
Array size 50 ∗ 50 Imaging distance 6 m
Antenna spacing 1 cm Source spacing 7 mm

Fig. 5 The reconstructed images of tank&car scene.

Fig. 6 The reconstructed images of airplane scene.

ulation parameters of SAIR simulator are listed in Table 1.
The tank&car and airplane are selected as simulated

test images. The brightness temperature distribution of the
target scene are shown in Fig. 5 (a) and Fig. 6 (a). In or-
der to simulate the detection process of the actual SAIR,
the gray value is used as the radiation intensity of the dis-
crete radiation source. The signal received by the array
antenna is obtained by integrating the generated millime-
ter wave radiation signal, then the visibility function is ob-
tained through the complex correlation calculation between
the antenna pairs. Then, the images are reconstructed by the
imaging methods from the measured visibility function. The
imaging results of the MFFT method, G-matrix method, and
the proposed FCIN-SAIR method are shown in Fig. 5 and
Fig. 6.

It can be found that because the MFFT method makes
the visibility function and the brightness temperature im-
age meet the approximate Fourier transform. The correc-
tion process is simple, but the accuracy is low and its recon-
structed image has large noise pollution. Compared with the
MFFT method, regularization method based on G-matrix
uses the regularization method to optimize the numerical it-
eration, which has higher accuracy, can remove most of the
noise and effectively restore the target information. How-
ever, the G-matrix model itself has some errors, so its re-
constructed image exists the phenomenon of inconspicuous
contours and blurred details, and the sharpness of the tar-
get is still poor. FCIN method directly establishes the map-
ping relationship between the visibility function to the mil-
limeter wave, avoiding interference factors such as back-
ground noise, system parameters and imaging model errors
caused by the establishment of inversion model. Moreover,
the feedforward neural network is used to infinitely approx-

Table 2 Comparison of reconstruction quality between the images.

Scene
Evaluation
criterion

MFFT G-matrix FCIN

tank&car
RMSE 44.7982 38.5052 28.7010
PSNR 15.7236 16.1488 20.2075

airplane
RMSE 44.2723 40.0915 24.6158
PSNR 16.2768 18.2133 20.3065

Table 3 Reconstruction time comparison.

Scene MFFT G-matrix FCIN
tank&car 36 s 108 s 4 s
airplane 36 s 103 s 4 s

imate the actual imaging process. This makes the contour
and detail of the reconstructed image more clear and recog-
nizable, the image noise is effectively filtered, and its imag-
ing accuracy is obviously better than the MFFT method and
the G-matrix method. In order to objectively evaluate the
accuracy of the imaging results, PSNR and RMSE are cal-
culated, and the results are shown in Table 2. The FCIN
method has the smallest RMSE and the largest PSNR. The
results show that the imaging results of the proposed FCIN
method are significantly better than the MFFT method and
the G-matrix method.

In addition, inversion time is an important considera-
tion. Although we use a lot of data for training, it takes a
lot of time. The inversion process only need to call the net-
work model and use, the imaging inversion of FCIN is very
fast. The MFFT method and the G-matrix method require
a large amount of data calculation in the inversion process,
which is very time-consuming. Table 3 shows the time re-
quired for the imaging inversion of the three methods. It can
be found that the MFFT method and the G-matrix method
consume a long time and cannot realize real-time imaging,
while FCIN method adopts a shorter time and can realize
real-time imaging.

4. Conclusion

In order to reconstruct high-precision millimeter wave im-
age, this paper proposes a new FCIN imaging method. Ac-
cording to the particularity of near-field SAIR, feedforward
fully connected neural network is used to reconstruct high-
dimensional millimeter wave image from sparse sampled
visibility function. Then the dense residual denoising net-
work is used for further improve image quality, and finally
achieve higher precision near-field SAIR sparse reconstruc-
tion. Experimental results show that FCIN method has great
advantages in imaging accuracy and reconstruction time.
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