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PRIGM: Partial-Regression-Integrated Generic Model for
Synthetic Benchmarks Robust to Sensor Characteristics∗

Kyungmin KIM†, Jiung SONG††, and Jong Wook KWAK†a), Nonmembers

SUMMARY We propose a novel synthetic-benchmarks generation
model using partial time-series regression, called Partial-Regression-
Integrated Generic Model (PRIGM). PRIGM abstracts the unique charac-
teristics of the input sensor data into generic time-series data confirming the
generation similarity and evaluating the correctness of the synthetic bench-
marks. The experimental results obtained by the proposed model with its
formula verify that PRIGM preserves the time-series characteristics of em-
pirical data in complex time-series data within 10.4% on an average differ-
ence in terms of descriptive statistics accuracy.
key words: internet of things, synthetic data generation, synthetic bench-
marks, ARIMA, time-series analysis

1. Introduction

To analyze the performance of the IoT or other application
devices, researchers are expected to provide various types
of sensor data; UCI Repository and KEEL are representa-
tive datasets mainly used by AI researchers as data process-
ing sources to evaluate the performance of their techniques.
Although many publicly available datasets have emerged,
their structures and selection criteria are inconsistent, and a
detailed walk-through is not provided. Therefore, selecting
an appropriate datasets for performance evaluation becomes
another unnecessary burden on researchers [1], [2].

As the use of the data retrieved by the repository
has such difficulties and limitations, a tool for generat-
ing a standardized synthetic data set exactly matched for
the specifics of application sensing data for the conve-
nience of research and verification is necessary. Conse-
quently, many researchers have mainly attempted to gener-
ate synthetic benchmarks by implementing a hidden Markov
model (HMM) or statistical regression. Arlitt et al. used
an HMM to generate power data over several months as a
synthetic benchmark [3]. Liu et al. proposed regression and
probability-based energy consumption time-series data gen-
eration [4].

However, existing synthetic benchmark generation
methods have several limitations: (1) Existing synthetic data
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generation studies are limited to generating data on a spe-
cific data type, such as energy consumption and meteoro-
logical data. That requires additional pre-tuning analysis for
specific data, and there are restrictions for automating and
using it universally. It means that these cannot be adopted
in sensor data of IoT devices with various characteristics
and radical sensing value changes. (2) In previous studies,
the similarity between empirical data and synthetically gen-
erated data has been compared by using only descriptive
statistics. However, descriptive statistics cannot compare
the difference of time-dependent changes in values. There-
fore, the similarity of time-series characteristics cannot be
guaranteed by central tendency and measures of variability,
especially for data with non-periodic trends.

Therefore, in this letter, we propose a novel synthetic-
benchmark generation and verification model that is inde-
pendent of sensor data characteristics. The proposal takes
the strategy of creating parameters by dividing empirical
data that have complex time-series characteristics. As a re-
sult, without considering specific data target, it can gener-
ate various time-series data and automatically generate data
with non-periodic tendencies as well as periodic data for
complex characteristic data type. In addition, PRIGM can
quantitatively compare the differences of time-series data
characteristics using PoR. Our main contributions are as
follows:

(1) Description of partial-regression-integrated generic
model. We describe a new benchmark generation technique
for decomposing, verifying, and evaluating empirical data.
Through this process, PRIGM can model generic time-series
data, regardless of the sensor data characteristics.

(2) New quantitative evaluation criteria for synthetic
benchmarks. Evaluation using descriptive statistics cannot
reflect trends in time-series data, and verifying models using
deviations is not suitable for synthetic benchmarks. To ad-
dress this, we present a new concept of possibility of repro-
ducibility (PoR) that interprets individual signals and evalu-
ates the similarity with empirical data through Fourier trans-
form.

(3) Realization of benchmark ubiquity. Our model can
generate and verify synthetic data using only its parameters,
enabling researchers to perform their evaluation and mutual
verification by simply using and sharing the model parame-
ters, without considering the experimental environment and
empirical data.
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2. Motivation

We have previously addressed the problem of modeling data
from acceleration sensors or gyroscopes using specific pa-
rameters. These problems arise from the following obser-
vations. Figure 1 presents the sensor data mainly utilized
in IoT devices based on their characteristics. Figure 1 (a-1)
shows the temperature data, Fig. 1 (a-2) shows the appliance
power consumption, Fig. 1 (b-1) shows the acceleration sen-
sor, and Fig. 1 (b-2) shows the Dau Index shares of stock.
The characteristics of the sensor data shown in Fig. 1 are as
follows:

Frequency: Frequency is the reciprocal of the number
of data inputs during the same period. A high frequency am-
plifies variability and regularity by providing a large number
of values per unit of time. In contrast, a low frequency miti-
gates the effect of variability and regularity.

Variability: Variability encompasses the sensor’s bit
depth and the magnitude of the temporal variation of the
sensor value. High variability means that the sensor’s range
of values is broad, and value changes are rapid and frequent.
Low variability indicates that the sensor unit has a low and
gradual change degree.

Figures 1 (a-1) and 1 (a-2) show a low frequency and
variability. In previous studies, data, such as climate data
and energy grids, have been examined, and these can eas-
ily define patterns through statistical modeling or machine
learning. Figures 1 (b-1) and 1 (b-2) show a high frequency
and variability and they include activity recognition or stock
indices, the data of which volume is rapidly increasing. We
observed the reason why modeling based on previous stud-
ies is difficult for data with high variability, such as these
types. The main reason is that the time-series character-
istics and critical patterns of data are inconsistently scat-
tered in a specific section rather than the entire input dataset.
However, the proposed model, PRIGM, is used as a primary
motive to find a specific section with consistent time-series
characteristics and divide it into several segments to gener-
ate a composite benchmark from such complex data.

Fig. 1 Various empirical sensor data.

3. Partial-Regression-Integrated Generic Model

To generate a synthetic benchmark, PRIGM employs three
processes: segmentation, modeling, and verification. Seg-
mentation divides the empirical data set (EDS) into empir-
ical segments (ESi) based on moving average and variance
changes. In the modeling process, for each ESi, PRIGM de-
fines the ARIMA model parameters for a synthetic bench-
mark using the Hyndman–Khandakar algorithm. The pa-
rameters generated are recorded for each synthetic segment
class (SSCi). Synthetic definition class (SDC) reserves
metadata, such as the number of SSCi or categories of
benchmarks. PRIGM creates a segment set (SSi) by con-
figuring the parameters defined in SSCis into the ARIMA
model. To verify that the generated data are appropriate for
the intend of the modeling process, each SSi corresponding
to ESi is decomposed by applying Fourier transform for fre-
quency components, and the result is quantified to measure
the similarity. Finally, the combination of SSi constitutes a
synthetic benchmark (SB). Algorithm 1 shows the overall
procedure.

First, in the segmentation process, PRIGM aims to gen-
erate synthetic benchmarks by abstracting different types of
time-series data into the same interface. Through segmen-
tation, PRIGM divides EDS into ESi set to preserve each
section’s time-series characteristics for highly variable data
to allow each segment to reproduce a time-series model
(line 3). The segmentation process divides the interval based
on the mean-variance gap of the time-series data. If the seg-
mentation process cannot determine an appropriate parame-

Algorithm 1 PRIGM Procedure

Ensure: The minimum possibility of reproducibility
required is p, the segmentation group number is i;
Input: empirical data set (EDS)
Output: synthetic benchmark (SB)

1: do
2: //Devide EDS with the change point in segmentation.
3: ESi ← Segmentation(EDS)
4: for i to length(ESi) then
5: //Modeling parameters for synthetic data generation.
6: SSCi ← Modeling(ESi);
7: //Test model for time-series consistency.
8: SSi ← ARIMA(SSCi.AR,SSCi.I, SSCi.MA);
9: //Calculate PoR value in verification process.

10: PoR← Verification(ESi,SSi);
11: if PoR < p then
12: //Subdivide the current segment recursively.
13: Segmentation(ESi);
14: else
15: //Assign the metadata of the segment class.
16: assign SSCi metadata (ID, seq, len . . . );
17: SDC.len← SDC.len + 1;
18: end if
19: end for
20: //Assign the metadata of the definition class
21: assign SDC metadata (IDSDC , IDtype, Segment . . . );
22: SB← ARIMA for each SDC segment;
23: Verification(EDS,SB) < p while
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Fig. 2 Data structure for handling SDC and SSC.

ter in the subsequent modeling process, PRIGM performs
the segmentation process recursively, and all intervals or
the mean-variance difference are within the margin of error
(line 10–13).

Second, in the modeling process, PRIGM automati-
cally defines that the ARIMA parameters describe the seg-
mented ESi section in the empirical data set using the
Hyndman–Khandakar algorithm (line 6). Each ESi creates
an SSCi composed of the corresponding ARIMA model and
SDC for managing the set of SSCi corresponding to EDS
(line 8). The structures of SDC and SSC are shown in Fig. 2.
SDC is a set of SSCis and corresponds to a unique empirical
benchmark. It is an interface for generating synthetic bench-
marks and consists of metadata for each category, such as
an identifier for structural composition (IDSDC), a category
ID for classifying values in the synthetic benchmark gen-
eration service afterward (IDtype), and the segment length
included in SDC, meaning the number of SSCi included
(lenSDC). Each set of SSCis, SSCi is a 32 byte record con-
sisting of SSC identifiers for data management (IDSSC), se-
quences to store relative position in SDC (seqSSC), empirical
data lengths of ESi to be modeled (lenSSC), parameters used
for ARIMA modeling (AR, I, MA, mean, and variance), the
highest PoR value measured in the model (PoR), and flags
to set temporary characteristics (line 16–17).

In the PRIGM process for generating synthetic data,
the data subset from using ARIMA parameters stored in
SSCi corresponding to ESi is called SSi. As a set of these
SSis, the final SB is constructed using the SDC correspond-
ing to the EDS (line 21–22).

Finally, we propose the possibility of reproducibility
(PoR), which is the criterion for evaluation in the verifica-
tion process. The main motivation of PoR is based on the
following two requirements. (1) The performance compar-
ison of the generated synthetic benchmark is based on the
similarity with the empirical data. However, the descrip-
tive statistics presented in previous studies cannot compare
the differences in time-series data variation of professional
benchmark data with long measurement intervals. (2) When
the appropriate number of SSCi is not determined during the
segmentation process, it damages the complexity and stabil-
ity of the entire model. As the input data characteristics are
different for each benchmark and sensor type, a standardized
method is required to adapt and respond to the input data.

In PRIGM, to verify these time-series data, SSis are
substituted with the sum of the frequency components. The
values of the empirical and frequency components generated

are converted into quantified indices to check the similar-
ity between them. The input sensor data are converted into
discrete data through quantization. Therefore, ESi, the fre-
quency decomposition section of the partial empirical data,
and SSi, the synthesized data generated by regressive mod-
eling, are frequency-decomposed into discrete Fourier trans-
form. The Fourier transform of the sampled data for discrete
time t is given by Eq. (1).

f (t) =
N−1∑

j=0

c je
i jt2π/N , t = 0, . . . ,N − 1. (1)

PoR(seg, i) =

∑N
i=0 FSS2

i∑lenSSC

i=0 (FSSi − FSEi)2 +
∑N

i=0 FSS2
i

(2)

Let the Fourier spectra of ESi and SSi obtained by us-
ing Eq. (1) be FSEi and FSSi, respectively. PoR(seg, i) for
each segmenti is defined as Eq. (2), which shows that if
the spectral difference between FSEi and FSSi is enlarged,
PoR(seg, i) converges to 0. However, if the two signals are
similar, PoR(seg, i) converges to 1. The length of the gen-
erated segment of FSSi may be different from the original
length, but it is robust to the sampling area by Fourier trans-
form. The PoR value indicates the upper limit of the simi-
larity of the synthetic benchmark generated by the SSC.

4. Performance Evaluation

To evaluate the performance of the proposed model, we used
a HAR dataset provided by UCI Repository [1]. We evalu-
ated the performance of the synthetic-benchmark generation
of the proposed technique using acceleration data represent-
ing the characteristics of high variability and strong irregu-
larity. The performance evaluation of the synthetic bench-
mark was determined based on the statistical significance of
the time-series characteristics of the target empirical data.

PRIGM proposes automated synthetic benchmark gen-
eration techniques that can utilize various data types. There-
fore, the comparison between other techniques is unfair in
terms of the overhead and accuracy of data generation for
their target restrictions and the requirement of pre-tuning
process. In addition, PoR, a new indicator proposed in this
paper, reflects the statistical similarity and time-series char-
acteristics absolutely. For this reason, the discussion and
comparison of our models are enough to show the effec-
tiveness of the proposed method. The generation model
was verified through time-series visualization and the distri-
bution characteristics of individual values using descriptive
statistics. Additionally, we verified the trend of the gener-
ated data according to the PoR value.

Figure 3 presents the generated synthetic benchmarks
as time-series data and their descriptive statistics. Fig-
ure 3 (a) summarizes the characteristics of the synthetic
benchmark when the proposed model has a PoR of 0.9. The
generated synthetic data (top) are visualized in almost the
same form as the empirical data so that time-series simi-
larity can be confirmed. Additionally, each element of the
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Fig. 3 Visualization of time-series data (top) and the comparison of descriptive statistics (bottom).
The x-axis represents the progress of time in a sampling section, and the y-axis represents an acceleration
value measured.

Fig. 4 Distribution of raw synthetic data generation.

descriptive statistics (bottom) shows a difference of 17%
(Min), 0.8% (Median), 2% (Max), 0.1% (Mean), and 0.2%
(Standard deviation), confirming the similarity of descrip-
tive statistics between the synthetic data and the empirical
data. Figure 3 (b) shows the characteristics of the synthetic
benchmark with a PoR of 0.7. Data from ARIMA and Ran-
dom Walk depicted in Fig. 3 (c) and Fig. 3 (d) do not reflect
any fluctuations in the value of empirical data in the entire
interval, and the difference increases as the ARIMA or Ran-
dom Walk process proceeds.

The generation of the synthetic benchmark proceeds
through the probability generation process, which gener-
ates different values for each process. Therefore, the vali-
dation and verification of the value distribution that appear
in the iterative and optimized generation processes at a cer-
tain moment can be used as an indicator of the model stabil-
ity. Figure 4 shows the characteristics of the data obtained
through 100,000 synthetic-benchmark generations for an ar-

Fig. 5 Distribution of calculated PoR from 100,000 times.

bitrary acceleration dataset. As shown in Fig. 4, the empir-
ical data has a fixed distribution, and the scope of values
changes for each generation owing to the probabilistic pro-
cess of the proposed method and the comparison method.
In PRIGM, as the PoR value of the proposed technique in-
creases, the distribution model and quantile index of the val-
ues become similar to those of the empirical data. The two
red dotted lines represent the first and third quantiles of the
empirical data, and the gray lines represent the minimum
and maximum values. In contrast, in ARIMA and Random
Walk, which are random probability processes, the distribu-
tion model of the overall value appears similar to the normal
distribution, which is significantly different from the origi-
nal data. We confirm that a high PoR value can generate
synthetic data statistically similar to the empirical data.

Figure 5 shows the distribution of the PoR values ac-
cording to PRIGM, ARIMA, and Random Walk. In 100,000
generation processes, the proposed PoR scheme shows a
distribution of PoR values with a maximum of 0.95 and min-
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imum of 0.63 for PRIGM. From the 25th percentile to the
75th percentile, the value is generally at the top side, and
mild outliers are even in the main value distribution area of
ARIMA and therefore we can expect that PRIGM will gen-
erate highly reproducible synthetic benchmarks. ARIMA
shows a distribution of PoR values, with a maximum of
0.80 and minimum of 0.38. Mild outliers, which are suf-
ficient to be classified as errors, appear in both the upper
and lower sides. In addition, the maximum expected perfor-
mance of ARIMA does not reach the main value distribu-
tion area of PRIGM. Random Walk is approximately 0.49,
and the distribution of the PoR value of the synthetic bench-
mark appears narrow and invariant. This is attributed to the
characteristics of the normal distribution, and most values
other than 0.5 are treated as outliers. Therefore, the data
generated with a random probability do not sufficiently re-
flect the characteristics of the distribution of values for data
with time-series trends.

5. Conclusion

In this letter, we propose PRIGM, a synthetic-benchmark
generation model that can be used for general-purpose time-
series data. PRIGM divides sensor data based on singular
points whose time-series characteristics differ, and it per-
forms ARIMA operations for each division to attenuate er-
rors in the autoregression analysis. To overcome the lim-
itations of existing models for determining the similarity

between synthetic and empirical benchmarks, PRIGM em-
ploys a new evaluation criterion called PoR, which assumes
each divided section as the sum of frequencies and exam-
ines the similarity by considering the difference between a
value obtained through Fourier transform and its adjacent
value. The synthetic benchmark generated by PRIGM in the
experimental evaluation mainly shows a PoR value of 0.8–
0.9, and the descriptive statistics show a difference within
4.9% on average compared to the descriptive statistics of
the empirical data. Therefore, PRIGM can generate syn-
thetic benchmarks that statistically preserve the time-series
characteristics of the empirical data.
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