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An Efficient Deep Learning Based Coarse-to-Fine Cephalometric
Landmark Detection Method

Yu SONG†∗, Xu QIAO††∗, Nonmembers, Yutaro IWAMOTO†, Yen-Wei CHEN†a), Members,
and Yili CHEN†††b), Nonmember

SUMMARY Accurate and automatic quantitative cephalometry anal-
ysis is of great importance in orthodontics. The fundamental step for
cephalometry analysis is to annotate anatomic-interested landmarks on X-
ray images. Computer-aided automatic method remains to be an open
topic nowadays. In this paper, we propose an efficient deep learning-
based coarse-to-fine approach to realize accurate landmark detection. In
the coarse detection step, we train a deep learning-based deformable trans-
formation model by using training samples. We register test images to
the reference image (one training image) using the trained model to pre-
dict coarse landmarks’ locations on test images. Thus, regions of interest
(ROIs) which include landmarks can be located. In the fine detection step,
we utilize trained deep convolutional neural networks (CNNs), to detect
landmarks in ROI patches. For each landmark, there is one corresponding
neural network, which directly does regression to the landmark’s coordi-
nates. The fine step can be considered as a refinement or fine-tuning step
based on the coarse detection step. We validated the proposed method on
public dataset from 2015 International Symposium on Biomedical Imag-
ing (ISBI) grand challenge. Compared with the state-of-the-art method, we
not only achieved the comparable detection accuracy (the mean radial error
is about 1.0–1.6mm), but also largely shortened the computation time (4
seconds per image).
key words: cephalometric landmark, x-ray, deep learning, registration,
deformable transformation

1. Introduction

Cephalometry analysis is of great importance for doctors to
make diagnosis and treatment plans [1]–[3]. It has a long
history, which can date back to 1931. Usually, skeletal X-
ray images are widely used for this analysis due to its high
resolution. In order to do cephalometry analysis, anatomical
cephalometric landmarks need to be annotated first. One
typical example of 19 cephalometric-interested landmarks
is shown as Fig. 1.

With the development of machine learning and deep
learning techniques, research on automatic cephalomet-
ric landmark detection have been increased sharply. Es-
pecially in 2014 and 2015, International Symposium on
Biomedical Imaging (ISBI) launched two grand challenges
on cephalometry, aiming to recruit computer-aided meth-
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ods to automatic detect cephalometric landmarks in high
accuracy [4], [5]. Several classic methods have been pro-
posed. In 2015’s ISBI grand challenge, the best result was
achieved by Lindner et.al [6]. By using a random-forest
based method, they achieved a 74.84% SDR (Successful De-
tection Rate) for a 2mm precision range [6]. Ibragimov et.al.
achieved the second-best results by using harr-like feature
extraction with random-forest regression [7].

Deep learning has presented unprecedented perfor-
mance in computer vision problems since the success of
AlexNet in 2012 ImageNet Challenge [8]. Compared with
conventional image processing methods, as well as other
machine learning methods, they have achieved great im-
provements in problems like image classification [9], im-
age segmentation [10], [11] and so on. Many state-of-
the-art deep learning-based methods have also been pro-
posed on the cephalometric landmark detection problems.
In 2017, Arik et al. improved their previous work by re-
placing random-forest regression with convolutional neural
network (CNN) to do binary classification, then refined it
with shape model [12]. In 2017, Hansang Lee et al. pro-
posed a deep learning method to directly output landmarks’

Fig. 1 Example of 19 cephalometric-interested landmarks.
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coordinates [13]. They achieved comparable results on re-
sized small images. In 2019, Jianhong Qian et al. proposed
a network structure named Cephanet and achieved relatively
high detection accuracy compared with other state-of-the art
methods [14]. In our previous work, we proposed a two-
step method to detect cephalometric landmarks with high
detection accuracy [15]. In the coarse detection step, we
used a rigid registration method to register the test image
to the training image to detect the landmark roughly. Then
we used deep learning models to detect landmarks precisely
based on the extracted regions of interest (ROIs). Since the
rigid registration used in the coarse detection step is not pos-
sible to achieve a good match if two images are quite differ-
ent, we need to register the test image to all training images
and find the best matched image. It should also be noted that
the transform parameters for each test image registration are
obtained based on an optimization algorithm such as gra-
dient decent, which is an iterative method. So the coarse
detection step in the previous method [15] takes very large
computation time.

In this paper, we propose a coarse-to-fine method to de-
tect cephalometric landmarks, therefore, reducing the large
computation cost in the coarse detection step. We first train
a deep learning-based deformable transformation model by
using training samples for the coarse detection step. We
choose a training image as the reference image and use other
training images as moving images. In the test phase, we just
need to input the test image (as a moving image) and the ref-
erence image to the deformable transformation model and
we can obtain a displacement field as an output of the model
to transform the test image to the reference image. We then

Fig. 2 Overview of the proposed coarse-to-fine method.

inversely transform the reference image’s landmarks to the
test image, which can be considered as coarse estimation or
coarse detection of the test image. Since we use a trained
model to estimate the displacement field (parameters) for
each test image, the coarse detection is very fast and effi-
cient. In addition, the deformable transformation model is
trained for non-rigid registration, we do not need to find the
best matched training image for coarse detection. The fine
step is the same as our previous method [15]. For each land-
mark, we train one model to detect the landmark in the ROI.
In all, we have 19 models for 19 landmarks, all the mod-
els share the same architecture but with different weights.
Based on the coarse landmark locations in the coarse detec-
tion step, we crop small patches (ROIs) and use the trained
deep neural network models to detect landmarks’ locations
in those ROIs precisely (fine detection).

The following of this paper will be arranged as follows:
In Sect. 2, we will introduce our proposed method in detail.
In Sect. 3, we are going to present our experiments and com-
parisons. Finally, we will make a conclusion and discussion
in Sect. 4.

2. Materials and Methods

2.1 Overview

Since it is difficult to accurately detect all cephalomet-
ric landmarks at once [15], we propose an efficient deep
learning-based coarse-to-fine approach to realize accurate
landmark detection in this paper. The overview of the pro-
posed method is shown in Fig. 2.
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In the coarse detection step, we first train a deep
learning-based deformable transformation model by using
training samples. Then we register test image to reference
image to predict the coarse landmarks’ locations of the test
image and extract a region of interest (ROI) patch for each
landmark centered on its predicted position. In the fine de-
tection step, we utilize trained CNNs with ResNet back-
bone, to detect every landmark in its corresponding patch.
In other words, the fine step can be considered as making
refinements based on the coarse detection step.

For the fine step, we use the same strategy with our
previous method [15], aim to do refinements by locating the
landmark in small patch images. In the training phase, we
cut out small patches from training images, doing data aug-
mentation, and training deep CNNs to detect landmarks in
the small patches. We train one model for each landmark,
which means that we have 19 models to detect 19 land-
marks, where every model shares the same architecture but
with different weights. In the test phase, since we already
get the coarse landmark locations in the coarse detection
step, we cut out a patch centered at that coarse location from
test image, input into our corresponding trained models to
detect landmarks. The result is our final prediction results,
which can be considered as the refined results.

2.2 Coarse Landmark Detection

In the coarse detection step, we propose to use a deep-
learning-based deformable transformation model, to register
the test image to the reference image [16], [17].

The backbone of our architecture is 2D U-Net [11]with
encoders and decoders, as shown in Fig. 3. We concatenate
reference image and moving image into a two-channel im-
age as input. After the encoder layers, the image’s size is
reduced to 1/16 of its original size. Then, the decoder layers
upsample the small feature maps to the original size. The
output of the decoders is the displacement field u between
the reference image and the moving image. The displace-
ment field has the size of w x h x 2, where w and h rep-
resent the input image’s width and height respectively. For
each pixel p, u(p) is a displacement field to make f (p) and
M(Φ)(p) correspond to similar anatomical locations, which
means a shift is added to every pixel p. After transform-
ing the moving image M using the displacement field Φ,
we obtained the transformed moving image M(Φ). Since
we don’t have any ground-truth displacement field, our aim
is to make this transformed moving image be as similar as
possible to the reference image F, so that we can consider
the reference image’s landmarks as transformed moving im-
age’s landmarks. In order to calculate the similarity between
transformed moving image and reference image, we choose
to calculate the intensity difference between them. We cal-
culate the pixel-wise difference between these two images,
back propagating through the network to make the differ-
ence become smaller during training process, until achiev-
ing convergence. One example of moving image, fixed im-
age, their corrsponding displacement field and transformed

Fig. 3 Unet architecture used in the proposed method.

Fig. 4 Example of Moving image M, Reference Image F, their displace-
ment field Φ and Transformed moving image M(ϕ).

moving image is shown in Fig. 4.
In the training phase, we choose a training image as

the reference image and use other training images as mov-
ing images. In order to calculate the similarity between
transformed moving image M(Φ) and reference image F,
we choose mean squared error (MSE) between M(Φ) and F
as the loss function. In addition, we also use a Laplacian of
the displacement field Φ as a regularization term to penal-
ize local spatial variations in Φ. The loss function L can be
written as Eq. (1):

L =
1

n ∗ m

n∑
i=1

m∑
j=1

(Fi, j−M(Φ)i, j)
2+λ

n∑
i=1

m∑
j=1

∥∥∥∥∥∆Φ(i, j)
∥∥∥∥∥

(1)

where M(Φ) represents the transformed moving image, F
represents the reference image, i and j are pixel coordinates,
n and m represent width and height. In the test phase, we
just need to input the test image (as a moving image) and the
reference image to the trained deformable transformation
model and we can obtain a displacement field Φtest between
the test image and the reference image. We then inversely
transform the reference image’s landmarks to the test image
using (Φ−1

test), which can be considered as coarse landmark
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Fig. 5 The overall architecture of ResNet50.

estimation or coarse landmark detection of the test image.
The inverse transformation (Φ−1

test) is represented as Eq. (2):

Φ−1
test = Φtest(−i,− j) (2)

Compared with our previous method [15], which used a
rigid registration method to register the test image to all
training images so that a best match training image for each
test image can be found, the proposed deep learning-based
registration method is very fast and efficient since we use
a trained model to estimate the displacement field (param-
eters). In addition, the deformable transformation model is
trained for non-rigid registration, we do not need to find the
best match training image for the coarse landmark detection
(extraction of ROIs).

2.3 Fine Landmark Detection

Though we can estimate or detect the landmarks roughly in
the coarse detection step, it is not accurate enough. There-
fore, we cut off ROIs for each landmark centered on their
predicted coarse positions and perform a fine detection in
each ROI using CNN models as shown in Fig. 2(the fine
step). In the corarse detection step, we resize images to 1/5
of original size to reduce computational time, however, the
ROIs we cropped in the fine step come from the original res-
olution images. We use a ResNet50 [18] to detect the exact
landmark as shown in Fig. 5, adding fully connected layer
for regression after feature extraction. The input is the ROI
image and the output is landmark’s coordinate. The reason
we choose the ResNet50 is that it is one of the state-of-the-
art CNNs and it is efficient when facing gradient vanishing
problems. Since every different landmark is in a different
anatomic structure, we train the network independently for
each landmark. Thus, we have 19 models for each land-
mark. Note that direct regression on all landmarks is a
highly non-linear mapping which is difficult to learn [19]–
[21]. But in the proposed method, each landmark has its
specific non-linear mapping function (model).

The loss function we use for training is Mean Squared
Error. It can be written as Eq. (3).

MS E =
1
n

n∑
i=1

((xi − x̂i)
2 + (yi − ŷi)

2) (3)

Where xi and yi represent the ground-truth coordinate of
landmark i, x̂i and ŷi represent the estimated coordinate of
landmark i. Since we only have limited number of training
data (150 in ISBI dataset), we make data augmentation to

all annotated data in the training step. We randomly crop
a region around the ground-truth landmark positions, ev-
ery region includes the landmark and the landmark could be
everywhere in the cropped region. For each landmark, we
crop 200 images in one X-ray image, which means that we
increase training data 200 times than before for each land-
mark.

The detection procedure is quite easy. We first get the
coarse landmarks’ locations through trained displacement
field. Then we cropped ROIs centered at the coarse loca-
tions. After that, we input each ROI into corresponding
trained ResNet50 model, making predictions directly.

3. Experiments and Results

3.1 Datasets

We evaluate our method using International Symposium on
Biomedical Imaging (ISBI) 2015 Cephalometry X-ray im-
age analysis Challenge dataset [5]. It includes 150 x-ray im-
ages for training, 150 images in testset 1 and 100 images
in testset 2. Each image is 1935 x 2400 pixels in Tiff for-
mat, where each pixel is 0.1 x 0.1 mm. Each image has
19 landmarks to be detected, the annotations are performed
by two experienced doctors. In our experiment, we calcu-
late the average of two annotations from two doctors as our
ground-truth.

3.2 Implementation Details

We use Titan-X GPU to help us accelerating training pro-
cedure. We use Python programming language, tensorflow
and keras deep learning tools, to implement our experiment.
For coarse landmark detection model, we choose one train-
ing image (the closest one to the average image of taining
images) as reference image and all other training images as
moving images to train the CNN model. For refined land-
mark detection models, we use all 150 annotated training
images to train the CNN models, after doing data augmen-
tation by randomly cropping 200 patches for each landmark
in each image, we have 30000 training images (200*150)
for each landmark.

3.3 Evaluation Measurements

According to ISBI grand challenge [5], we use the mean
radial error (MRE) and successful detection rate (SDR) to
evaluate the performance. Radial error is defined as follows:
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R =
√
∆x2 + ∆y2

And the MRE is defined as follows:

MRE =

∑n
i=1 Ri

n

where ∆x and ∆y are the differences of x-axis and y-axis
between predicted landmark location and ground-truth, n is
the total number of test images. The definition of Success-
ful Detection is as follows: If the radial error between the
predicted landmark and the ground-truth value is no greater
than z mm (where z = 2, 2.5, 3, 4), the detection is consid-
ered as a successful one (Usually, 2mm range is acceptable
in medical analysis). The definition of SDR is shown as fol-
lows:

S DR =
Na

N
∗ 100%

where Na indicates the number of successful detections and
N indicates the number of total detections.

3.4 Performance of the Proposed Method

3.4.1 Coarse Landmark Detection Results

In the training phase, we choose image that is closest to the
average image of training images (No.126) as our reference
image. For the moving image, we use all other 149 training
images. We train a U-Net based CNN to generate displace-
ment fields. In the test phase, we input the test image and
the reference image (No.126) into our trained network, the
output will be the predicted displacement field. We get the
coarse landmarks’ locations by tracing back the displace-
ment field. The input images’ sizes are downsampled to 1/5
of original size in this step. One of the typical detection
results is shown in Fig. 6. The reference image, moving im-
age, transformed moving image, composed reference image
and moving image (before transformation), composed ref-
erence image and transformed moving image (after trans-
formation), comparison of detected landmarks (green) and
ground truth (blue) are shown in Figs. 6(a)-(f), respectively.
As we can see, the transformed moving image becomes
more similar with reference image. The MRE of this coarse
step is shown as Table 1, the MRE is calculated using the
original resolution. Note that the coarse step aims to lo-
cate the landmarks’ ROIs, as long as landmarks are within
the ROIs, their locations can be refined in the fine detection
step. Also, in Fig. 6, the predicted landmark seems to be re-
ally close to ground-truth, but this is the resized image (1/5
of original size), which means the actual distance should be
5 times larger.

3.4.2 Refined Landmark Detection

To continue refining the coarse location, we train 19 ResNet
models with same architecture. In training phase, since there
are only 150 training images, the number is insufficient for

Fig. 6 Example of coarse landmark detection results.

Table 1 Coarse step’s results of testset1 and testset2 on MRE(mean ra-
dial error)

Anatomical Landmarks MRE on Testset1(mm) MRE on Testset2(mm)
1. sella turcica 6.610 7.565

2. nasion 9.204 9.827
3. orbitale 8.096 10.198
4. porion 5.301 6.608

5. subspinale 7.195 6.683
6. supramentale 8.563 7.910

7. pogonion 10.499 8.707
8. menton 11.137 8.365
9. gnathion 10.951 8.557
10. gonion 10.293 9.890

11. lower incisal incision 8.029 7.687
12. upper incisal incision 7.793 7.112

13. upper lip 9.458 9.922
14. lower lip 10.336 9.325
15. subnasale 9.022 8.729

16. soft tissue pogonion 11.611 10.905
17. posterior nasal spine 6.295 7.210
18. anterior nasal spine 7.865 7.241

19. articulate 5.121 6.303
Average: 8.598 8.355

training a deep convolutional neural network. We do data
augmentation as described in Sect. 2.3. We randomly crop
200 patch images which includes the landmark, the land-
mark could be everywhere in the patch. The patches are
cropped from original size (1935 x 2400) x-ray images.
Each cropped patch image is 512 x 512 pixels, we resize
them to 256 x 256 pixels, treating them as our training
dataset. The training images are 30000 (200 x 150) for each
landmark. In the test phase, we first get the coarse landmark
location through displacement field generated from trained
U-Net weights, then cutting patches centered at the coarse
landmark location.

We input the cropped patches respectively to the
trained ResNet models, outputting the locations in the patch
images directly. The SDR and MRE results on test dataset
1 and test dataset 2 are shown in Table 2. The results are
calculated based on original resolution. One of the typical
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Table 2 SDR and MRE Results on test dataset1 and test dataset2 of 2mm, 2.5mm, 3mm, 4mm range

Test dataset 1 and Test dataset2
Anatomical Landmarks 2mm(%) 2.5mm(%) 3mm(%) 4mm(%) MRE(mm)
1. sella turcica 97.3 94.0 98.0 94.0 98.0 94.0 98.0 94.0 0.759 1.802
2. nasion 86.0 85.0 91.3 90.0 93.3 92.0 96.0 96.0 1.212 1.096
3. orbitale 84.0 33.0 94.0 51.0 95.3 72.0 98.0 93.0 1.302 2.808
4. porion 69.3 70.0 78.0 78.0 82.0 82.0 92.7 92.0 1.849 1.973
5. subspinale 69.3 77.0 80.0 93.0 89.3 97.0 100.0 96.7 1.629 1.300
6. supramentale 85.3 34.0 93.3 48.0 97.3 63.0 99.3 87.0 1.186 2.640
7. pogonion 94.0 98.0 97.3 99.0 98.7 99.0 99.3 99.0 0.866 0.748
8. menton 88.0 95.0 94.0 97.0 95.3 98.0 95.3 99.0 1.258 0.799
9. gnathion 94.0 99.0 97.3 99.0 98.0 99.0 98.7 99.0 0.895 0.676
10.gonion 60.0 67.0 72.0 81.0 82.7 86.0 90.7 97.0 1.966 1.999
11.lower incisal incision 96.0 94.0 96.7 96.0 98.0 96.0 98.7 99.0 0.719 0.823
12.upper incisal incision 96.0 97.0 97.3 97.0 98.0 98.0 99.3 99.0 0.554 0.482
13.upper lip 80.0 7.0 93.3 29.0 97.3 59.0 99.3 96.0 1.555 2.857
14.lower lip 98.0 62.0 100.0 83.0 100.0 92.0 100.0 100.0 0.891 1.875
15.subnasale 92.0 96.0 95.3 97.0 98.0 98.0 99.3 100.0 0.990 0.939
16.soft tissue pogonion 88.7 4.0 94.0 7.0 96.0 10.0 98.0 37.0 1.127 4.397
17.posterior nasal spine 92.7 88.0 95.3 93.0 98.0 93.0 99.3 96.0 0.880 1.240
18.anterior nasal spine 87.3 94.0 92.7 96.0 96.7 98.0 97.3 100.0 1.167 0.934
19.articulate 61.3 78.0 72.0 83.0 81.3 86.0 90.7 94.0 1.871 1.821
Average: 85.2 72.2 91.2 79.5 94.4 85.0 97.2 93.5 1.194 1.643

Fig. 7 Example of one result. Green:predicted result Blue:ground-truth

detection results is shown as Fig. 7.

3.4.3 Comparison

The comparison with other state-of-the-art methods is
shown in Table 3. The comparison with our previous
method is shown in Table 4. Notice that the reason we mul-

tiply computational time by 150 is because we need to find
the best matching image as our reference image in our pre-
vious method, in other words, we register each test image to
every training image to find the best reference image.

4. Conclusion and Discussion

The proposed improved coarse-to-fine method achieves sat-
isfying performance in automatic cephalometric landmark
detection. Especially, for the coarse landmark detection, we
locate the ROIs in very short time. After the refined detec-
tion, the result surpasses other state-of-the-results. What’s
more, compared with our previous method, the computa-
tional time is largely reduced, only about 1/3000 time spent
per test image, while maintaining the detection accuracy.

For the coarse location in the coarse detection step, it
can be seen as a positional normalization to find the ROI of
the landmark. Since coarse locations are used to locate re-
gions of interests (ROIs) that include landmarks, it would be
meaningless if landmarks are not included in the ROIs. We
found that three images have the situation that landmarks
are not included ROIs, which is about 1.2% (3/250) of test
images. We think this is acceptable. As long as the ROI
includes landmarks, our trained ResNet CNNs can detect
them correctly. The accuracy of coarse detection is shown
in Table 1. The MRE for test dataset1 and test dataset2 are
8.598mm and 8.355mm, respectively, while as shown in Ta-
ble 3, the MRE and be significantly improved to 1.194mm
and 1.613mm, respectively, by using fine detection step.

We also performed traditional method using both rigid
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Table 3 SDR proposed in this paper compared with other benchmarks for ISBI 2015 grand challenge Testset1 and Testset2.

Comparisons of SDR
Method 2mm(%) 2.5mm(%) 3mm(%) 4mm(%)

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2
Ibrgimov [7] 71.9 62.7 77.4 70.5 81.9 76.5 88.0 85.1
Lindner [6] 73.7 66.1 80.2 72.0 85.2 77.6 91.5 87.4
Arik [12] 75.4 67.7 80.9 74.2 84.3 79.1 88.3 84.6
Qian [14] 82.5 72.4 86.2 76.2 89.3 79.7 90.6 85.9
Proposed Method 85.2 72.2 91.2 79.5 94.4 85.0 97.2 93.5

Table 4 MRE and Computational time per image compared with previous method

Comparisons of MRE and Computation Time
Method MRE of Test1(mm) MRE of Test2(mm) Computation Time(s)
Previous Method [15] 1.077 1.542 85.3 x 150
Proposed Method 1.194 1.643 4.0

and non-rigid registration for landmark detection to validate
the effectiveness of our U-Net based coarse registration. We
used affine transform for alignment first. After that, we use a
displacement field transform to warp the moving image [22].
The MRE for testset1 and testset2 is 10.7mm and 11.2mm
respectively. For computational time, one registration takes
280 seconds in average. Compared with our U-Net-based
method, which is shown in Table 1, the conventional regis-
tration method not only takes large computational time, but
also result in poor performance.

Neither our proposed U-Net-based method nor the tra-
ditional rigid and non-rigid registration method achieved
satisfying result. So the second fine detection step is needed
to achieve accurate landmark detection. We think the large
image resolution (1980 x 2400), as well as the strict med-
ical acceptable landmark error (within 2mm), limit the ef-
fectiveness of registration methods, thus, making registra-
tion methods only appropriate for locating coarse regions of
each landmark.

Some landmark have relatively low SDR in test
dataset2 compared with those in test dataset1. As we ex-
plained in the previous paper [15], due to the extreme dif-
fernet anatomical structure of test dataset2 from training
dataset and test dataset1, some landmarks cannot be accu-
rately located using the trained CNN models.

In conclusion, our proposed method is fast and accu-
rate, which is applicable for practical use.
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