
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.10 OCTOBER 2021
1661

PAPER

Code-Switching ASR and TTS Using Semisupervised Learning
with Machine Speech Chain

Sahoko NAKAYAMA†,††a), Andros TJANDRA†∗, Nonmembers, Sakriani SAKTI†,††,
and Satoshi NAKAMURA†,††, Members

SUMMARY The phenomenon where a speaker mixes two or more lan-
guages within the same conversation is called code-switching (CS). Han-
dling CS is challenging for automatic speech recognition (ASR) and text-
to-speech (TTS) because it requires coping with multilingual input. Al-
though CS text or speech may be found in social media, the datasets of
CS speech and corresponding CS transcriptions are hard to obtain even
though they are required for supervised training. This work adopts a deep
learning-based machine speech chain to train CS ASR and CS TTS with
each other with semisupervised learning. After supervised learning with
monolingual data, the machine speech chain is then carried out with unsu-
pervised learning of either the CS text or speech. The results show that the
machine speech chain trains ASR and TTS together and improves perfor-
mance without requiring the pair of CS speech and corresponding CS text.
We also integrate language embedding and language identification into the
CS machine speech chain in order to handle CS better by giving language
information. We demonstrate that our proposed approach can improve the
performance on both a single CS language pair and multiple CS language
pairs, including the unknown CS excluded from training data.
key words: ASR, code-switching, language identification, semisupervised
learning, TTS, machine speech chain

1. Introduction

Japan’s bilingual community is growing up. The number
of Japanese school-age children who have lived abroad has
more than doubled over the past 40 years [1]. The number of
Japanese children with foreign parents has also risen com-
pared to 25 years ago. The number of foreign tourists and
residents also steadily increases due to tourism, education,
and health. These changes affect how people communicate
with each other.

Bilingual or multilingual speakers often alternate be-
tween languages in a conversation, which phenomenon is
called code-switching (CS). CS is a characteristic of bilin-
gual communities [2]. Nakamura studied a Japanese child in
America who used 179 switches during a one-hour conver-
sation with his mother [3]. Fotos et al. investigated the four-
hour conversations of four English-Japanese bilingual chil-
dren living in Japan and observed CS 153 times [4]. Both
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reports reveal that people use English-Japanese CS in every-
day life. Therefore, CS automatic speech recognition (ASR)
and text-to-speech (TTS) must be developed to handle not
only monolingual but also CS.

Unfortunately, common methods of developing CS
ASR and TTS are separate training, where just CS ASR
or CS TTS is developed. Moreover, it relies on supervised
learning that requires large amounts of CS data for training
models. Although either CS text or CS speech may be found
on social media, pairs of CS speech and corresponding CS
transcriptions are scarce and difficult to obtain. Such a data
problem hinders the development of CS ASR and TTS.

On the other hand, recently, a framework called a ma-
chine speech chain [5], [6] was proposed to achieve semisu-
pervised learning for ASR and TTS, trainable with labeled
and unlabeled data. The machine speech chain mechanism
has a feedback loop between ASR and TTS, allowing them
to support each other given the available unpaired speech
or text data (unlabeled data). However, the existing works
on machine speech chains [5], [6] have only addressed the
monolingual issue.

Therefore, in this study, we propose utilizing the ma-
chine speech chain for CS task to handle not only monolin-
gual but also bilingual. First, we train ASR and TTS with
the labeled monolingual data in supervised learning. Next,
we perform a machine speech chain with the unsupervised
learning with only CS text or CS speech without requiring
any labeled CS data. We also extend the machine speech
chain to handle CS better by integrating language embed-
ding and language identification (LID) and investigate our
proposed model’s performance both on a single CS lan-
guage pair and multiple CS language pairs. The multiple CS
language pairs include the unknown CS excluded from the
training data. The task of predicting the unknown CS with-
out training is called a zero-shot CS. It is difficult to predict
the switching points and the used language in that situation
since the target CS is not used as training data. We expect
that language embedding and LID can solve these problems
by delivering language information in the training.

Finally, this study provides more expansion than
our previous CS machine speech chain works [7], [8].
We handle non-native CS as well, using the natural
Mandarin-English CS data, South East Asia Mandarin-
English (SEAME) corpus [9]. We control the accented prob-
lem better by utilizing efficient pronunciation-assisted sub-
word modeling (PASM) [10].
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2. Related Works

2.1 Code-switching

Several studies have addressed ASR for the CS of spe-
cific language pairs, such as Mandarin-English [11]–[13],
English-Malay [14], and Frisian-Dutch [15]. Semisuper-
vised acoustic and lexicon learning for English-Mandarin
CS ASR have been proposed [16]. Although that work
achieved CS ASR with semisupervised learning, it only fo-
cused on a single CS language pair for ASR. In TTS stud-
ies, approaches for Mandarin-English [17], [18], German-
English [19], [20], Hindi-English, Telugu-English, Marathi-
English, and Tamil-English [21] CS have been investigated.

Beyond a single CS language pair, White et al. [22] ex-
plored a method to model the acoustics between multiple
CS language pairs, and Imseng et al. [23] proposed an ap-
proach to estimate the universal phoneme posterior proba-
bilities of mixed language speech recognition. Another al-
ternative is a language-independent ASR for multiple CS
language pairs [24]. However, these approaches just relied
on supervised learning and handled only ASR.

Most previous researches suffer from one or more of
the following disadvantages: (a) developed on either only
ASR or only TTS; (b) focused only on a single CS lan-
guage pair; (c) trained in supervised learning that requires
a large amount of labeled CS data in which the CS speech
and corresponding CS transcriptions are hard to obtain. In
contrast, our study builds end-to-end encoder-decoder mod-
els for both CS ASR and TTS and connects them so that
they train each other. The machine speech chain framework
can train CS ASR and CS TTS together in semisupervised
learning, even without labeled CS data. We also handle mul-
tiple CS language pairs not only a single CS language pair.
We integrate language embedding and LID into the machine
speech chain and explore how well the model performs well
on both a single CS language pair and multiple CS language
pairs, including the unknown CS excluded from the training
data, called zero-shot CS.

2.2 Zero-Shot Learning

Zero-shot learning, which was initially proposed in the field
of computer vision, refers to the problem of recognizing ob-
jects that may not have appeared in the training data in mul-
ticlass classification [25]. In machine translation, zero-shot
tasks faced the challenge of translating the language com-
binations that were excluded in training sets [26]. Unfortu-
nately, few studies have addressed CS ASR and TTS, so this
study has contributed to the zero-shot CS ASR and TTS.

2.3 Synthetic Data

Since obtaining a large amount of data takes time and
money, some researchers in several fields of spoken lan-
guage technologies have utilized synthetic data to improve

the quality of their systems. Jia et al. [27] used synthetic data
and machine translation for improving end-to-end speech-
to-text translation models. Hasegawa-Johnson et al. [28]
trained image-to-speech models with SPEECH-COCO [29],
a synthetic speech corpus generated by TTS. Synthetic data
were also used for training ASR and TTS [5]. They con-
ducted experiments with synthetic data as well as those with
natural data, and both sets of results showed the same ten-
dency of their proposed model to improve the ASR and
TTS performances. Therefore, synthetic data can be uti-
lized for covering low-resourced data. One of the low-
resourced data is CS. The existing corpus is limited to some
language pairs and accents, and difficult to collect a new cor-
pus of natural CS. Although we may find either CS speech
or CS text in social media, the annotation for CS data re-
quires high language skills. Some researchers actually uti-
lized synthetic CS data to improve their CS system’s qual-
ity [30], [31]. Similarly, we utilized synthetic data for cov-
ering low-resourced CS data even though we also experi-
mented with natural data.

3. Code-switching Categories

3.1 Switching Positions

CS phenomena can be divided into two main categories:
intra-sentential and inter-sentential. In intra-sentential CS,
the language shift occurs within a sentence. The intra-
sentential CS may be inserted from the length of a sin-
gle word to phrases that exceed the loanwords. In inter-
sentential CS, language switching occurs at the sentence
boundaries. We show some English-Japanese CS examples
collected from a bilingual CS user:

• Intra-sentential CS:

– Word-level CS:
“Kokkai ga the Equal Employment Opportu-
nity Law ni bassoku wo moukenakatta node
kuubun da toiu iken ga ari masu.” (Since
the Diet did not put any teeth into the Equal Em-
ployment Opportunity Law, some believe that it is
merely a scrap of paper.)

– Phrase-level CS:
“If I could make a suggestion, kono gidai ni
tsuite no tougi wo tyusyoku made ni oe te

itadakereba to omoi masu ga.” (If I could
make a suggestion, why do not we finish dis-
cussing this subject by lunch?)

• Inter-sentential CS:

– Inter-sentential CS:
“In the end, he quit his job and followed in his
father’s footsteps, taking over the family busi-
ness. Yappari kaeru no ko wa kaeru da

ne.” (His son’s a chip off the old block, all right.
In the end, he quit his job and followed in his fa-
ther’s footsteps, taking over the family business.)
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However, CS’s definition is controversial. Loanwords,
which are borrowed from a foreign language, may not be
included in intra-sentential word-level CSs, and quotations,
which borrow part of another’s text or speech, may not be
included in the intra-sentential phrase-level CSs. Although
they may not be CS in principle, we include them in our
CS targets because we want to recognize all of the words in
multilingual conversations.

3.2 Language Proficiency

CS switches between the first language (L1) and the sec-
ond language (L2), where only one of the languages is the
mother tongue. The proficiency level of the L2 language
varies from beginners to near-native speakers. Handling
them together may degrade the ASR performance since
it causes a mismatch between speech and acoustic mod-
els [32]. Therefore, we categorize CS with native CS and
non-native CS based on the proficiency level of the L2 lan-
guage. In the native CS, the L2 language of the CS is near-
native speaker level. The non-native CS tends to make dis-
tinctive non-native sounds. In this work, we handle both
native CS and non-native CS.

4. Speech Chain Framework

4.1 Human Speech Chain

The human speech chain [33] is an essential mechanism
for communication. We communicate by expressing our
thoughts and listening to others. This speaking and listen-
ing cycle also occurs when we talk to ourselves. When we
utter a word, we aurally check whether we spoke it as we in-
tended. We simultaneously improve speaking and listening
while alternately repeating sounds and words. The human
speech chain is defined by such a communication cycle.

4.2 Machine Speech Chain

Tjandra et al. developed a deep learning-based monolingual
machine speech chain [5], [6], [34], inspired by the human
speech chain as Fig. 1 shows. Its framework is illustrated
in Fig. 2. It is composed of an end-to-end ASR [35], [36]
and an end-to-end TTS [37], and they are connected. The
architecture can train ASR and TTS each other with their
feedback. The monolingual machine speech chain [5] im-
proves the performance of monolingual ASR and TTS. The
multi-speaker machine speech chain [5], [6] is expanded to
deal with multi-speakers by integrating speaker recognition
(SPKREC) based on DeepSpeaker [38]. Still, they are only
for monolingual language; it cannot handle CS. Therefore,
in this study, we expand it to handle CS.

Fig. 1 Human speech chain [33] and the corresponding machine speech
chain [5]. Source: adapted from [33].

Fig. 2 The overview of machine speech chain framework [5].

5. Component Technologies: ASR, TTS, and SPKREC

5.1 ASR

We use an encoder-decoder with an attention model [35],
[36] for ASR. An overview is shown in Fig. 3.

In the encoder, from the input sequences of speech fea-
tures x = (x1, x2, · · · , xT ), it outputs a hidden vector, where
we used three bidirectional LSTM layers with 256 hidden
states:

h f
t = LSTM(h f

t−1, xt), (1)

hb
t = LSTM(hb

t+1, xt), (2)

where h f
t is a forward hidden vector at time t and hb

t is a
backward hidden vector hb

t at time t. The final hidden vector
concatenated h f

t and hb
t , which is then denoted as ht at time t.

An attention mechanism [39] can map between encoder
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Fig. 3 Attention-based encoder-decoder.

and decoder. It calculates context vector ct using attention
weights αt j, which obtain the most relevant encoder repre-
sentation to the decoder state:

ct =

J∑

j=0

αt jh j, (3)

αt j =
exp(et j)∑T

k=1 exp(etk)
, (4)

et j = Score(st, h j). (5)

The Score function determines how the encoder and decoder
outputs are related, where st is the decoder’s hidden vector
and h j is the encoder’s hidden vector. The calculation had
three ways in a previous work [40], but we adopt the calcu-
lating method by the multilayer perceptron (MLP):

Score(st, h j) = w
T
a tanh(Wa[st, h j]), (6)

where wa,Wa is the weight vector and tanh is an activation
function.

The decoder generates output yt with all the previously
predicted words y1, y2, · · · , yt−1 and context vector ct:

p(yt |y1, y2, · · · , yt−1, ct) = g(st, yt−1, ct), (7)

where g is an activation function that calculates the proba-
bility of yt. The decoder hidden vector st is calculated with
the LSTM layer:

st = LSTM(st−1, yt−1, ct). (8)

For optimizing ASR, we attempt to decrease the nega-
tive log-likelihood loss function to maximize the probability
of target sequence ywith the context vector of decoder input
c and previous output y1:t−1:

LASR = −
T∑

t=1

log P(yt |ct, y1:t−1), (9)

where posterior probability P(yt |ct, y1:t−1) is calculated by a
softmax function.

5.2 TTS

The TTS system of the machine speech chain is shown
in Fig. 4. It is based on an encoder-decoder TTS
(Tacotron) [41]. The hyperparameters are almost the same

Fig. 4 Tacotron in machine speech chain for a single speaker.

as the original Tacotron, but the activation function replaced
ReLU with LeakyReLU [42]. The encoder CBHG module’s
convolutional filters are eight sets instead of 16 sets of orig-
inal Tacotron to conserve GPU memory. The decoder re-
places GRU with two stacked LSTMs that have 256 hidden
states in each layer. The decoder has a process that pre-
dicts the speech’s end frame, which is decided by the binary
prediction of the log Mel-spectrogram and the context vec-
tor from the attention module. The loss function for training
TTS used a combination of mean squared error (MSE) in the
log Mel-spectrogram and MSE in the log magnitude spec-
trogram and binary cross-entropy in the prediction for the
speech’s end frame as follows:

LTTS =
1
T

T∑

t=1

{(mt − m̂t)
2 + (rt − r̂t)

2

− (bt log (b̂t) + (1 − bt) log (1 − b̂t))}, (10)

where the first term of the summation is the MSE be-
tween target log Mel-spectrogram m and predicted log Mel-
spectrogram m̂, the second term is the MSE between target
log magnitude spectrogram r and predicted log magnitude
spectrogram r̂, and the third term is the binary cross-entropy
between the target probability end frame of speech b and
predicted probability end frame of speech b̂.

5.3 Speaker Recognition for Multi-Speaker

Since the original Tacotron is a single speaker model and
cannot deal with multi-speakers, we generate speaker vec-
tors with the DNN-based speaker recognition (SPKREC)
DeepSpeaker [38] and take them into Tacotron.

In DeepSpeaker, the DNN architectures (we used
Residual CNN) extracted the frame features from the utter-
ances. After converting the frame features to a speaker rep-
resentation for an utterance unit, it is embedded into a 512-
dimensional representation. The embedding vectors are nor-
malized to the unit norm and by cosine similarity between
two embedding vectors:

cos(xi, x j) = xix j, (11)

where xi, and x j are the embedding vectors.
Finally, the model is trained using the following loss
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function, which maximizes the cosine similarities of the em-
bedding vectors from the same speaker while minimizing
those from different speakers for N triplets:

Ltriplet =

N∑

i=0

max((san
i − sap

i + α), 0), (12)

where sap
i is the cosine similarity between an utterance a of

a speaker and another utterance p of the same speaker in
triplet i. san

i is the cosine similarity between an utterance a
of a speaker and an utterance n of another speaker in triplet
i.

After the DeepSpeaker models are trained, we gener-
ate speaker embedding vector s. The generated speaker vec-
tor is used in the speaker embedding of the multi-speakers
Tacotron (Fig. 5). The speaker vector is concatenated with
the encoder output and goes through the decoder. In the
loss function, we use the extension of Eq. (10) by adding the
formula of speaker loss for handling multiple speakers as
follows:

LTTSspeaker =
1
T

T∑

t=1

{γ1((mt − m̂t)
2 + (rt − r̂t)

2)

− γ2((bt log (b̂t) + (1 − bt) log (1 − b̂t)))}
+ γ3(1 − s · ŝ

‖s‖2 · ‖ŝ‖2 ), (13)

where the first term is an MSE that compares target log Mel-
spectrogram m with predicted log Mel-spectrogram m̂, the
second term is an MSE that compares target log magnitude
spectrogram r with predicted log magnitude spectrogram r̂,
the third term is the binary cross-entropy comparing target

Fig. 5 Tacotron in machine speech chain for multi-speakers.

Fig. 6 Comparison among CS machine speech chain models: (a) basic CS machine speech chain [7];
(b) multi-speaker CS machine speech chain incorporating SPKREC; (c) language-aware CS machine
speech chain [8].

speech’s end probability b with predicted speech’s end prob-
ability b̂, and the last term is the cosine distance compar-
ing target speaker vector s with predicted speaker vector ŝ.
γ1, γ2, γ3 are hyperparameters that adjust the balance among
the three losses. In our experiments, we set the hyperparam-
eters for calculating the loss as γ1 = 1, γ2 = 1, γ3 = 0.25 in
Eq. (13).

6. Proposed Machine Speech Chain for Code-Switching

Figure 6 shows the differences among the following: (a) a
basic CS machine speech chain [7], (b) a multi-speaker CS
machine speech chain that incorporates SPKREC for han-
dling multiple speakers, and (c) a language-aware CS ma-
chine speech chain [8].

6.1 Basic Code-switching Machine Speech Chain

The basic CS machine speech chain (Fig. 7) seeks to im-
prove the ASR and TTS performance on CS without any
labeled CS data. The learning process is as follows (In
the case of handling multiple speakers, the speaker vector
z = SPKREC(x) is added to the input of the TTS decoder
both during supervised and unsupervised processes):

1. Supervised learning of ASR and TTS with speech-
to-text paired monolingual data
First, ASR and TTS are trained in supervised learn-
ing with the speech-to-text paired Japanese and
English data or the speech-to-text paired Mandarin and
English data (mixed data of monolingual sets con-
stituting a CS language pair) as shown in Fig. 7 (a).
Once ASR receives the speech and the correspond-
ing text (xMono, yMono), ASR recognizes speech ŷMono

using teacher-forcing, which is an algorithm that
trains efficiently and converges faster by direct train-
ing with the target label. Then, the loss between out-
put text ŷMono and reference text yMono is calculated
LMono

ASR (ŷMono, yMono) using Eq. (9). TTS also generates
speech x̂Mono from the input text yMono, and the loss
between generated speech x̂Mono and reference speech
xMono is calculated LMono

TTS (x̂Mono, xMono), where the loss
function in case of single-speaker is Eq. (10) and the
loss function in case of multi-speaker is Eq. (13). The
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Fig. 7 Overview of the proposed framework based on [5], [7]: (a) su-
pervised learning of ASR and TTS with speech-to-text paired monolingual
data of two languages; (b) unsupervised learning of ASR and TTS together
through machine speech chain with unpaired CS text data or unpaired CS
speech data; (c) loop connection from TTS to ASR with only unpaired CS
text data; (d) loop connection from ASR to TTS with only unpaired CS
speech data.

parameters are tuned to decrease the loss with gradient
descent optimization.

2. Unsupervised learning of ASR and TTS together in
a machine speech chain
We performed a machine speech chain, where we
trained ASR and TTS together with an unpaired CS text
or an unpaired CS speech data (Fig. 7 (b)).
The learning process during the unsupervised learning
of the machine speech chain consists of the following
two processes:

a. Loop connection from TTS to ASR with only
unpaired CS text data
This process (Fig. 7 (c)) only uses unpaired CS
text data yCS. TTS outputs speech x̂CS from the
input CS text yCS, and ASR also predicts text tran-
scription ŷCS from the synthesized speech. Then
loss LCS

ASR(ŷCS, yCS) can be computed between out-
put text ŷCS and input text yCS to tune the ASR
parameters.

b. Loop connection from ASR to TTS with only
unpaired CS speech data
This process (Fig. 7 (d)) only uses unpaired CS
speech data xCS. Once ASR receives speech xCS,
ASR outputs predicted transcription ŷCS, and TTS
generates speech x̂CS from the text of the ASR out-
put. The loss between output speech x̂CS and orig-
inal speech xCS can be computed LCS

TTS(x̂CS, xCS)
for tuning the TTS parameters.

During the learning process of unsupervised learning,
we also continue the supervised learning process. The
supervised learning loss and unsupervised learning loss
are integrated into a single loss:

LChain = α(LMono
ASR + LMono

TTS ) + β(LCS
ASR + LCS

TTS), (14)

θASR = Optim(θASR,∇θASR LChain), (15)

θTTS = Optim(θTTS,∇θTTS LChain), (16)

where the hyperparameters α and β tune the balance of the
losses. They balance the influence between the supervised
and unsupervised, and between the monolingual and CS
data.

6.2 Language-Aware Code-Switching Machine Speech
Chain

In a language-aware CS machine speech chain, we handle
CS more efficiently with language information. To achieve
this, we put additional functions, LID for ASR and language
embedding for TTS. As Fig. 8 shows, the LID architecture
performs multi-task learning in the ASR softmax layers.
The architecture trains the projection between the speech
input and the two outputs of the text transcription and the
language information with two softmax layers (Fig. 8). The
language information is given to each character by the lan-
guage ID. For language IDs, Japanese is denoted as “JA,”
English is denoted as “EN,” Chinese is denoted as “ZH,”
and an unknown language is denoted as “<unk>.”

The language embedding of TTS maps a one-hot vec-
tor representing a language ID into continuous vectors.
Then, it concatenates with the character embedding and
goes through the encoder LSTM, attention, decoder, and
generates speech. In the case of handling multiple speakers,
the speaker vector z = SPKREC(x) is added to the input of
the TTS decoder both during supervised and unsupervised
training.

The training process is almost same as the basic CS
machine speech chain, but the language-aware CS machine
speech chain trains language information. The following is
the training process:

1. Supervised learning of ASR and TTS with speech-
to-text paired monolingual data
As shown in Fig. 9 (a), we first train the ASR
and TTS systems with the speech-to-text paired
monolingual corpora from several languages us-
ing English (En), Japanese (Ja), and Chinese
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Fig. 8 Language-aware code-switching machine speech chain.

Fig. 9 Training overview of language-aware CS machine speech chain [8]: (a) supervised training
of ASR or TTS with speech-to-text paired monolingual data; (b) unsupervised training of a machine
speech chain with unpaired CS text or CS speech data.

(Zh). With speech-to-text paired monolingual data
(xMono, yMonoChr, and yMonoLn�), ASR generates se-
quences of characters ŷMonoChr and language infor-
mation ŷMonoLn� with teacher-forcing and calculates
the sum of losses LMonoChr

ASR (ŷMonoChr, yMonoChr) and
LMonoLn�

ASR (ŷMonoLn�, yMonoLn�). The loss function for opti-
mizing ASR (Eq. (9)) changes to the following function
in accordance with the incorporating LID loss:

LLn�A�r
ASR = λChrLChr

ASR + λLn�L
Ln�
ASR, (17)

where it’s a summation of two negative log-likelihood,
tuning those weights by the hyperparameters λChr

and λLn�. TTS generates sequence of speech fea-
tures x̂Mono with teacher-forcing, and we calculate loss
LMono

TTS (x̂Mono, xMono). The TTS loss function does not
change from Eq. (13) since the TTS output does not
change. The parameters are tuned to reduce the loss
with gradient descent optimization.

2. Unsupervised training of ASR and TTS together in
a machine speech chain

a. Loop connection from TTS to ASR with only
unpaired CS text data of characters and lan-
guage information

This process (Fig. 9 (b), left side) uses only
unpaired CS text data of characters and lan-
guage information [yCSChr, and yCSLn�]. TTS
outputs speech x̂CS from the unpaired CS text
data of the characters and language information
[yCSChr, yCSLn�]. The generated speech is tran-
scribed by ASR to the CS text [ŷCSChr, ŷCSLn�].
Then the sum of losses LCSChr

ASR (ŷCS Chr, yCSChr) and

LCSLn�
ASR (ŷCSLn�, yCSLn�) can be computed to update

the ASR parameters.
b. Loop connection from ASR to TTS with only

unpaired CS speech data
This process (Fig. 9 (b), right side) only uses
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CS speech xCS as input. With unlabeled CS
speech xCS, ASR generates sequences of char-
acters ŷCSChr and language information ŷCSLn�.
TTS generates CS speech x̂CS with output CS
characters and language information from ASR.
Then TTS parameters are tuned to decrease loss
LCS

TTS(x̂CS, xCS).

In the end, the losses of the supervised monolingual
and unsupervised CS losses are combined into a single
loss:

LLn�A�r
Chain = α((λChrLMonoChr

ASR + λLn�L
MonoLn�
ASR )

+ LMono
TTS )

+ β((λChrLCSChr
ASR + λLn�L

CSLn�
ASR )

+ LCS
TTS), (18)

θASR = Optim(θASR,∇θASR LLn�A�r
Chain ), (19)

θTTS = Optim(θTTS,∇θTTS LLn�A�r
Chain ), (20)

where the hyperparameters α and β tune the balance of the
losses. They balance the influence between the supervised
and unsupervised, and between the monolingual and CS
data. After training, we can perform the ASR and TTS on
zero-shot CS.

7. Experiments

7.1 Datasets

7.1.1 BTEC

We used the Basic Travel Expression Corpus (BTEC) col-
lected by the Advanced Telecommunications Research In-
stitute International (ATR) [43], [44] and prepared datasets
for a single CS language pair and for multiple CS language
pairs respectively.

For a single CS language pair, we used monolingual
Japanese and English BTEC and chose randomly 50k sen-
tences for training, 500 sentences for a development set,
and 500 sentences for a test set from BTEC1-4. We also
constructed an English-Japanese CS dataset from mono-
lingual Japanese and English BTEC sentences and created
word-level and phrase-level intra-sentential CS. Figure 10
shows an overview of the construction of the CS text data,
and more details are described in [45]. We generated their
speech utilizing the Google TTS (gTTS) python library [46]
because collecting the speech data for CS from bilingual
speakers is time-consuming and expensive. Table 1 shows
the statistics of these datasets used for a single CS language
pair’s machine speech chain.

For multiple CS language pairs, we used the monolin-
gual Japanese, English, and Chinese of BTEC [43], [44].
We chose sentences that could be separated into phrases
by commas. From those sentences, we randomly selected
25k Japanese sentences, 25k English sentences, and 25k

Fig. 10 Japanese-English CS text data construction [45].

Table 1 Statistics of BTEC for a single CS language pair’s machine
speech chain.

subset hours utterances
train mono Ja25k+En25k (JaTTS) 50.7 50000

Ja25k+En25k (MixTTS) 39.6 50000
CS EnJaCS10k (JaTTS) 9.5 10000

EnJaCS10k (MixTTS) 8.9 10000
EnJaCS20k (JaTTS) 19.0 20000

EnJaCS20k (MixTTS) 17.8 20000
EnJaCS20k (Ja+MixTTS) 18.4 20000

test mono TstJa (JaTTS) 0.7 500
TstEn (EnTTS) 0.6 500

CS TstEnJaCS (JaTTS) 1.1 500
TstEnJaCS (MixTTS) 0.7 500

Chinese sentences: “Ja25k+En25k+Zh25k.” We also se-
lected 500 Japanese sentences, 500 English sentences, and
500 Chinese sentences for the development and test sets. We
artificially created CS sentences from the selected monolin-
gual BTEC sentences by translating the first phrase switched
at the comma of the sentences to the other languages and
inserting it into the original sentences again (similar to
our previous approach [45]). We constructed an English-
Japanese CS, “EnJaCS,” a Japanese-Chinese CS, “JaZhCS,”
a Chinese-English CS “ZhEnCS,” an English-French CS
“EnFrCS,” and a French-Chinese CS, “FrZhCS.” They were
also generated with Google TTS [46]. For the CS natural
speech corpus, we also collected 1k utterances made by an
English-Japanese bilingual CS user who often uses CS in
his daily life. He created natural CS text from a BTEC
English-Japanese translation corpus. After that, we recorded
the reading speech by another English-Japanese bilingual
speaker. We used every 100 utterances for a development set
and a test set and the remaining 800 utterances of data for a
training set. We divided the collected 1k utterances into 0.2k
labeled data, 0.7k unlabeled data denoted as “NatEnJaCS,”
and 0.1k test data denoted as “TstNatEnJaCS.” The labeled
data were also divided between Japanese and English, which
can be used for monolingual data. Those data will be later
called “NatJa” and “NatEn.” Table 2 shows the statistics of
these corpora used for multiple CS language pairs’ machine
speech chain.
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Table 2 Statistics of BTEC for multiple CS language pairs’ machine
speech chain.

subset hours utterances
train mono Ja25k+En25k+Zh25k 82.1 78000

NatJa0.2k+NatEn0.2k 0.3 400
CS EnJaCS10k 11.8 10000

JaZhCS10k 10.4 10000
ZhEnCS10k 10.9 10000
EnFrCS10k 9.6 10000

NatEnJaCS0.7k 1.1 700
test mono Ja 0.9 500

En 0.7 500
Zh 0.8 500

CS EnJaCS 0.8 500
JaZhCS 0.7 500
ZhEnCS 0.7 500

TstNatEnJaCS 0.2 100

7.1.2 LibriSpeech

We used LibriSpeech [47] for supporting monolingual train-
ing when training the machine speech chain with the natural
speech of the SEAME data. LibriSpeech, an English speech
corpus, is based on free public domain audiobooks read by
volunteers. We used an officially prepared 100-hour subset.

7.1.3 AISHELL-1

We used AISHELL-1 [48] for supporting monolingual train-
ing when training the machine speech chain with the nat-
ural speech of the SEAME data. AISHELL-1 is a read
Mandarin speech corpus. Most of its speakers are from
Northern China, and some are from Southern China,
Guangdong-Guangxi-Fujian, and others. It contains 150
hours of speech, but we only used 100 hours.

7.1.4 SEAME

We used the SEAME [9] corpus for a single CS language
pair’s machine speech chain with natural speech. SEAME
is a conversational Mandarin-English CS corpus, collected
from Singaporean and Malaysian speakers. We divided it
into train, devman, and devs�e datasets in accordance with
previous works [49]. devman is a test set dominated by
Mandarin words, and devs�e is a test set dominated by
English words. We also divided the train dataset into mono-
lingual and CS subsets. We combined the SEAME mono-
lingual subset with a 100-hour subset of LibriSpeech and
a 100-hour subset of AISHELL-1 to train the monolingual
model. We also used the SEAME CS subset for machine
speech chain training. We applied data augmentation of
speed perturbation [50], [51] with 90%, 100%, and 110% to
both the monolingual and CS training data. For controlling
the accented problems, we utilized PASM sub-word units,
which are sub-word units optimized for accents by taking
the alignments between phonemes and characters [10]. Ta-
ble 3 shows the statistics of these datasets used for a sin-
gle CS language pair’s machine speech chain with natural
speech.

Table 3 Statistics of LibriSpeech, AISHELL-1, and SEAME for a single
CS language pair’s machine speech chain with natural speech.

subset speakers hours utterances
train mono LibriSpeech 251 100.6 28539

AISHELL-1 340 100.0 80066
SEAME 134 31.5 42911

all 725 232.1 151516
CS SEAME 134 69.6 51027

test devman mono 10 1.6 2228
CS 10 5.9 4303
all 10 7.5 6531

devs�e mono 10 1.8 3156
CS 10 2.1 2165
all 10 3.9 5321

7.2 Settings

We sampled all the speech signals at a sampling rate of 16-
kHz. Then we applied pre-emphasis and normalized the
speech signals between −1 and 1. We extracted the spectro-
gram features using a short-time Fourier transform (STFT)
with the Librosa library [52]. The frame had a 50-ms length
and a 12.5-ms shift, and the FFT points are 2048. From
the spectrogram, we computed the magnitude spectrogram
and mapped it to the Mel-scale spectrogram. Those features
were transformed to log-scale and normalized into 0 mean
and unit variances. Finally, we got 80 dimensions of log
Mel-spectrogram features and 1025 dimensions of log mag-
nitude spectrograms.

All the text characters were converted to lowercase let-
ters and punctuation marks [, : ? .] were removed. We
converted all BTEC characters into the lowercase alphabet.
For Japanese words, we applied a morphological analyzer
Mecab [53] to convert into katakana. Then we converted
the katakana into English letters with pykakasi [54]. We
also used pypinyin to the Chinese characters [55] and con-
verted them into pinyin. The text consists of 26 letters (a-z),
one mark (-) for stretching Japanese sounds, and three tags
that denote the start of sentences (<s>), the end of sentences
(</s>), and the spaces between words (<spc>). In the case of
LibriSpeech, AISHELL-1, and SEAME, we utilized PASM
sub-word units, which is a sub-word unit optimized for ac-
cents by taking alignments between phonemes and charac-
ters [10].

We implemented both ASR and TTS with the PyTorch
library [56]. For the hyperparameters balancing between the
supervised and unsupervised loss, most of our experiments
used α = 0.5, β = 1.

7.3 Experimental Results on Single Code-Switching Lan-
guage Pair (Synthetic Speech; Single Speaker)

In this experiment, we used the BTEC corpus prepared for
single CS language pair.

Baseline Systems
We had four types of test sets for our evaluation:
(1) TstJa (JaTTS): a Monolingual Japanese test set
generated using a Japanese TTS; (2) TstEnJaCS
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Fig. 11 ASR baseline performances of single CS language pair (syn-
thetic speech; single speaker) in CER.

Fig. 12 TTS baseline performances of single CS language pair (synthetic
speech; single speaker) in L2-norm squared of the log-Mel spectrogram.

(JaTTS): an English-Japanese intra-sentential CS test
set, where both the Japanese part and the English part
of the TstEnJaCS are generated using a Japanese TTS;
(3) TstEnJaCS (MixTTS): an English-Japanese intra-
sentential CS test set generated using a mixed English-
Japanese TTS, where we concatenated the speech gen-
erated by English TTS for the English part of CS and
the speech generated by Japanese TTS for the Japanese
part of CS; (4) TstEn (EnTTS): a Monolingual
English test set generated using an English TTS. Al-
though we do not have an inter-sentential CS test set,
the TstJa (JaTTS) and TstEn (EnTTS) combination
are identical to the inter-sentential CS. We evaluated
the generated transcription by the character error rate
(CER). CER is the edit distance between the reference
and the predicted transcription. We also assessed the
statistical significance compared to the baseline sys-
tems by a matched-pair sentence-segment word error
test [57]. For the TTS evaluation, we used the L2-norm
squared of the log-Mel spectrogram between the refer-
ence and the predicted speech features.
The baseline system performances of ASR and TTS are
individually shown in Figs. 11 and 12. The baseline
systems were trained in supervised learning using
an attention-based encoder-decoder model framework

without a machine speech chain framework. Four
types of baselines were evaluated: (1) Ja50k (JaTTS):
a 50-k monolingual Japanese ASR or TTS trained
with Japanese speech generated using a Japanese
TTS; (2) Ja25k+En25k (JaTTS): a 25-k monolin-
gual Japanese plus a 25-k English ASR or TTS trained
with Japanese speech generated using a Japanese TTS
(inter-sentential CS); (3) Ja25k+En25k (MixTTS): a
25-k monolingual Japanese plus a 25-k English ASR
or TTS trained with Japanese speech generated us-
ing a Japanese TTS and English speech generated us-
ing an English TTS (inter-sentential CS); (4) En50k
(EnTTS): a 50-k monolingual English ASR or TTS
trained with speech generated using an English TTS.
As Fig. 11 shows, the CER of the Ja50k (JaTTS) ASR
was low in the Japanese test, but very high in the
English test. In the same way, the CER of the En50k
(EnTTS) ASR was very low in the English test but
increased in the Japanese test. The Ja25k+En25k
(JaTTS) learned English sentences and the Japanese
sentences, but when the speech was generated using
Japanese TTS, the English test performance remained
unsatisfactory. A similar tendency was slightly shown
in the TTS results. Ja25k+En25k (MixTTS), which
was trained using speech generated by a Japanese TTS
and an English TTS, controlled the balance well among
the Japanese, English, and English-Japanese CS test
sets. Therefore, we use this Ja25k+En25k (MixTTS)
as our baseline model.
Proposed Systems
Our proposed models aim to improve ASR and TTS to
handle CS input well even without labeled CS for train-
ing while keeping the performance of the monolingual
test. Table 4 shows the ASR and TTS performances
of the proposed CS machine speech chain framework.
After we individually trained ASR and TTS using la-
beled monolingual Ja25k and En25k, Ja25k+En25k
(MixTTS), we carried out a machine speech chain on
the following settings: (1) EnJaCS (JaTTS): semisu-
pervised learning with unlabeled code-switching
EnJaCS (JaTTS); (2) EnJaCS (MixTTS): semisuper-
vised learning with unlabeled code-switching EnJaCS
(Mix TTS); (3) EnJaCS (Ja+MixTTS): a semisuper-
vised learning with unlabeled code-switching EnJaCS
(JaTTS) and unlabeled code-switching EnJaCS
(MixTTS). We excluded TstEnJaCS (JaTTS) from the
test sets because many English words are pronounced
as Japanese words generated by the Japanese TTS.
Our results show that our proposed model with un-
labeled EnJaCS20k (Ja+MixTTS) improved the ASR
performance on the CS test, TstEnJaCS (MixTTS),
from 18.1% CER to 5.1%, which reduced the absolute
CER by 13.0%. It has statistically significant differ-
ence. Monolingual performances are often damaged
by optimizing the CS performance, but our proposed
model maintained its performance on the monolingual
test. It only slightly changed from 1.7% CER to 1.8%
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Table 4 ASR and TTS performances of a single CS language pair (synthetic speech; single speaker)
machine speech chain in CER% and L2-norm squared, respectively. Left side of arrows in the LID is
λLn� value during the supervised learning process, and right side is λLn� value during the unsupervised
learning process, where λChr = 1 − λLn�. The p-values compared to the baseline system for statistical
significance are presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

TstJa (JaTTS) TstEnJaCS (MixTTS) TstEn (EnTTS)
Model LID type ASR TTS ASR TTS ASR TTS

[Baseline] Supervised learning: labeled mono
labeled Ja25k+En25k (MixTTS) No LID 1.7 .312 18.1 .489 3.0 .437

[Proposed Machine Speech Chain] Semisupervised learning: labeled mono + unlabeled CS
+ unlabeled EnJaCS10k (JaTTS) No LID 1.9 .311 19.7 .484 4.8 .444
+ unlabeled EnJaCS20k (JaTTS) No LID 1.9 .306 17.2 .489 4.7 .441
+ unlabeled EnJaCS10k (MixTTS) No LID 1.8 .312 5.4 ∗∗∗ .374 3.7 .437
+ unlabeled EnJaCS20k (MixTTS) No LID 1.9 .310 5.5 ∗∗∗ .368 3.6 .440
+ unlabeled EnJaCS20k (Ja+MixTTS) No LID 1.8 .305 5.1 ∗∗∗ .372 4.1 .439
+ unlabeled EnJaCS20k (Ja+MixTTS) LID (0.25→0.0) 1.7 .394 3.7 ∗∗∗ .353 3.2 .563
+ unlabeled EnJaCS20k (Ja+MixTTS) LID (0.25→0.1) 1.7 .384 3.4 ∗∗∗ .347 3.3 .558

[Topline] Supervised learning: labeled mono + labeled CS
+ labeled EnJaCS20k (Ja+MixTTS) No LID 5.1 .321 3.5 ∗∗∗ .276 9.8 .595

Table 5 Performance comparison between ASR systems trained in pro-
posed machine speech chain with different λLn� (where λChr = 1 − λLn�)
in CER %. Left side of arrows is λLn� value during supervised learn-
ing process with labeled Ja25k+En25k (MixTTS) and right side is λLn�

value during unsupervised learning process with unlabeled EnJaCS20k
(Ja+MixTTS).

TstJa TstEnJaCS TstEn
λLn� (JaTTS) (MixTTS) (EnTTS)
No LID 1.8 5.1 4.1
0.25→0.0 1.7 3.7 3.2
0.25→0.1 1.7 3.4 3.3
0.25→0.25 1.9 3.9 3.5
0.25→0.5 1.8 4.1 3.8
0.25→0.75 2.1 4.5 3.9
0.5→0.0 1.9 3.5 3.5
0.5→0.1 1.9 4.2 3.7
0.5→0.25 1.7 3.6 3.5
0.5→0.5 2.0 4.3 3.8
0.5→0.75 1.8 5.7 4.2

for the Japanese test and from 3.0% CER to 4.1% for
the monolingual English test. It also improved the
TTS performance on the CS test TstEnJaCS (MixTTS),
where the L2-norm squared decreased from 0.489 to
0.372; the performance on the Japanese and monolin-
gual English tests was maintained. Compared with the
topline model that uses full-set data (speech+text), the
proposed model reached a similar performance.
Moreover, we investigated the performance of ASR
trained by the language-aware CS machine speech
chain with unlabeled EnJaCS20k (Ja+MixTTS), which
model is denoted as “+LID” under “the unlabeled
EnJaCS20k (Ja+MixTTS)”. The performances among
systems with some different hyperparameters λLn�

are shown in Table 5. The best performance on
TstEnJaCS (MixTTS) is 3.4% CER with λLn�

(0.25→0.1), which improved even more than the Ba-
sic CS machine speech chain. The model with
λLn� (0.25→0.0) performed the best performance on
TstJa (JaTTS), so Table 4 shows both LID results of
(0.25→0.0) and (0.25→0.1). Here, 0.0 indicates that

the language information is used for character predic-
tion of the unsupervised learning process while main-
taining the language information trained during the
supervised learning process. Both cases of the LID
showed statistically significant difference with p <
.001.

7.4 Experimental Results on Single Code-Switching Lan-
guage Pair (Natural Speech; Multi-Speaker)

In this experiment, we used SEAME, AISHELL-1, and
LibriSpeech corpora.

Evaluation of our End-to-end ASR against Previous
Researches
First, we compared our attention-based encoder-
decoder models with Hybrid CTC/attention ap-
proaches [49] using supervised learning of the SEAME
data. Following the counterpart’s evaluation crite-
rion, in this experiment, we evaluated a character-based
model and a sub-word-based model with the token er-
ror rate (TER). The TER, which is calculated by the
Word Error Rate (WER) for English and the Character
Error Rate (CER) for Mandarin, is frequently adopted
for evaluating the ASR of Mandarin-English CS be-
cause it is not affected by segmentation algorithms. For
sub-words, we utilized PASM [10], whose effective-
ness has already been shown for overcoming the byte-
pair encoding (BPE) of sub-word units [58]. As shown
in Table 6, our encoder-decoder-based model can be
similar performances as the CTC-based models.

Baseline and Proposed Systems
Next we conducted machine speech chain experi-
ments with the SEAME data. We first trained the
base model with LibriSpeech, AISHELL-1, and the
SEAME monolingual data. Then we performed a
speech chain by the unlabeled SEAME CS data while
continuing the supervised training of LibriSpeech and
AISHELL-1 and the SEAME monolingual data. Ta-
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ble 7 shows the ASR results in TER. The baseline is
the model trained with the labeled monolingual data
of LibriSpeech and AISHELL-1 and SEAME. The
proposed machine speech chain model improved the
ASR performances on both the CS test sets of devman

and devs�e more than the baseline performances: from
47.7% to 37.4% and from 57.7% to 47.1%. Optimizing
the CS performances only slightly degraded the perfor-
mances on the monolingual evaluation sets. Still, our
proposed model also improved the ASR on the over-
all performances from 44.9% to 37.6% on devman and
from 53.6% to 49.5% on devs�e. The topline is the
model retrained with the labeled SEAME CS data from
the model trained with the labeled monolingual data of
LibriSpeech and AISHELL-1 and SEAME. Compared
to the topline model, the proposed model achieves a
similar performance, although it did not use the labeled
CS at all while the topline model used only labeled
data. Label propagation is a semisupervised model re-
trained by newly labeling with the supervised model’s
output. Label propagation without any labeled CS
data (semisupervised learning: labeled mono + unla-
beled CS) performed the worst on all evaluation set of
devman and devs�e. It used the CS label generated from
the monolingual model, which does not know the CS
speech and text, for the retraining model. As a result,
although the performance on monolingual is better than
the proposed model since it retrains with the hypothe-
sis generated from the model based on monolingual, it

Table 6 ASR comparison between our attention-based encoder-decoder
models and Hybrid CTC/attention approaches with SEAME data (in
TER %).

Model devman devs�e
Hybrid CTC/attention char [49] 26.5 38.4

+LID [49] 25.6 37.0
Hybrid CTC/attention sub-word (BPE) [49] 26.4 36.1

+LID [49] 26.0 35.8
Att Enc-Dec char (ours) 26.2 37.8

Att Enc-Dec sub-word (PASM) (ours) 25.7 36.6

Table 7 ASR performances of a single CS language pair (natural speech; multi-speaker) machine
speech chain in TER %. Left side of arrows in the LID is λLn� value during the supervised learning
process, and right side is λLn� value during the unsupervised learning process, where λChr = 1 − λLn�.
The p-values compared to the baseline system for statistical significance are presented using ∗∗∗, ∗∗, ∗,
and no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

Model devman devs�e
mono CS all mono CS all

Supervised learning: labeled mono
Baseline 33.3 47.7 44.9 47.8 57.7 53.6

Semisupervised learning: labeled mono + unlabeled CS
Label propagation 37.7 48.4 46.4 54.6 59.2 57.3

Proposed speech chain 38.6 37.4 ∗∗∗ 37.6 ∗∗∗ 52.9 47.1 ∗∗∗ 49.5 ∗∗∗
+LID (0.25→0.0) 34.0 32.5 ∗∗∗ 32.8 ∗∗∗ 48.8 42.3 ∗∗∗ 45.0 ∗∗∗
+LID (0.25→0.1) 35.1 33.7 ∗∗∗ 33.9 ∗∗∗ 50.0 42.8 ∗∗∗ 45.8 ∗∗∗

Semisupervised learning: labeled mono + labeled CS + unlabeled CS
Label propagation 34.5 45.4 ∗∗∗ 43.3 ∗∗∗ 50.7 54.5 ∗∗∗ 52.9

Supervised learning: labeled mono + labeled CS
Topline 34.4 28.6 ∗∗∗ 29.7 ∗∗∗ 51.4 39.1 ∗∗∗ 44.2 ∗∗∗

degraded the performances both on mono and CS test
sets than the baseline model in TER. Therefore we re-
moved 300 utterances as unlabeled CS and added 300
utterances (0.2% of the total CS) as labeled CS. The
label propagation result (semisupervised learning: la-
beled mono + labeled CS + unlabeled CS) improved
slightly from the baseline on the CS test, but it required
labeled CS and not better than the proposed model. On
the other hand, our proposed speech chain model im-
proved the ASR performance without any labeled CS.
It showed statistically significant improvements with
p < .001 on CS and all of both evaluation sets. More-
over, the performance with LID is even better. The
LID(0.25→0.0) produced 32.5% TER on devman CS
and 42.3% TER on devs�e CS.
We also checked the CER for the ASR performances
(Table 8) and the L2-norm squared of a log-Mel spec-
trogram for the TTS performances (Table 9). They
showed the same tendency as the TER results. There-
fore, the proposed machine speech chain model im-
proved the ASR and TTS performances on SEAME
data without any labeled CS data.

7.5 Experimental Results on Multiple Code-Switching
Language Pairs

In this experiment, we used the BTEC corpus prepared for
multiple CS language pairs.

ASR Evaluation
First, we checked the influence of the additional LID
architecture to confirm whether that additional infor-
mation hindered the original quality. We used the base-
line model, an ASR Ja25k+En25k+Zh25k (labeled)
trained with labeled monolingual data of 25k Japanese
and 25k English and 25k Chinese. Table 10 shows the
baseline performance of ASR without LID that only
generated character transcription and of ASR with LID
that generated both character and language informa-
tion sequences. In the case of (λChr, λLn�) = (1, 1), we
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Table 8 ASR performances of a single CS language pair (natural speech; multi-speaker) machine
speech chain in CER %. Left side of arrows in the LID is λLn� value during the supervised learning
process, and right side is λLn� value during the unsupervised learning process, where λChr = 1 − λLn�.
The p-values compared to the baseline system for statistical significance are presented using ∗∗∗, ∗∗, ∗
and no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

Model devman devs�e
mono CS all mono CS all

Supervised learning: labeled mono
Baseline 32.4 56.9 52.4 34.9 59.3 47.0

Semisupervised learning: labeled mono + unlabeled CS
Label propagation 36.4 55.5 ∗∗∗ 52.0 40.9 59.3 50.1

Proposed speech chain 39.8 39.6 ∗∗∗ 39.6 ∗∗∗ 39.1 44.4 ∗∗∗ 41.7 ∗∗∗
+LID (0.25→0.0) 34.0 33.3 ∗∗∗ 33.5 ∗∗∗ 35.2 38.3 ∗∗∗ 36.7 ∗∗∗
+LID (0.25→0.1) 35.5 34.6 ∗∗∗ 34.7 ∗∗∗ 36.3 39.0 ∗∗∗ 37.6 ∗∗∗

Semisupervised learning: labeled mono + labeled CS + unlabeled CS
Label propagation 33.4 53.1 ∗∗∗ 49.5 ∗∗∗ 37.0 55.4 ∗∗∗ 46.1 ∗

Supervised learning: labeled mono + labeled CS
Topline 35.2 28.7 ∗∗∗ 29.9 ∗∗∗ 37.9 36.5 ∗∗∗ 37.2 ∗∗∗

Table 9 TTS performances of a single CS language pair (natural speech;
multi-speaker) machine speech chain in L2-norm squared. Left side of
arrows in the LID is λLn� value during the supervised learning process, and
right side is λLn� value during the unsupervised learning process, where
λChr = 1 − λLn�.

Model devman devs�e
mono CS all mono CS all

Supervised learning: labeled mono
Baseline .310 .613 .503 .315 .597 .426

Semisupervised learning: labeled mono + unlabeled CS
Label propagation .331 .630 .512 .326 .618 .433

Proposed speech chain .289 .559 .465 .297 .553 .397
+LID (0.25→0.0) .277 .549 .456 .285 .542 .390
+LID (0.25→0.1) .273 .543 .451 .281 .536 .385

Semisupervised learning: labeled mono+ labeled CS+ unlabeled CS
Label propagation .292 .592 .489 .314 .592 .416

Supervised learning: labeled mono + labeled CS
Topline .276 .529 .441 .284 .522 .379

Table 10 Comparison performance (in CER%) between ASR baselines
with/without LID. The p-values compared to the baseline system for sta-
tistical significance are presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001,
∗∗p < .01, ∗p < .05).

Train: (λChr ,λLn�) Ja En Zh
Ja25k+En25k+Zh25k

ASR without LID [chr] No LID 8.8 9.1 5.8
ASR with LID [chr,lng] (1,1) 8.9 8.5 5.1
ASR with LID [chr,lng] (0.75,0.25) 7.3 ∗∗∗ 7.3 ∗∗∗ 5.1 ∗

found there was no statistically significant difference
from ASR without LID in any of the tests. However,
in the case of (λChr, λLn�) = (0.75, 0.25), which are the
λ values during the supervised learning process of the
best model on a single CS (Table 5), the results raised
the possibility that the architecture with LID could as-
sist the ASR performance.
Next, we investigate how our proposed approach per-
formed on multiple CS language pairs, including the
unknown CS excluded from the training data.
We individually trained ASR and TTS using labeled
monolingual Ja25k, En25k, and Zh25k and carried out
a machine speech chain on the following three dif-
ferent scenarios: (1) EnJaCS10k+JaZhCS10k (un-

labeled): semisupervised learning with unlabeled
EnJaCS 10k and JaZhCS 10k (ZhEnCS for a zero-shot
target); (2) EnJaCS10k+ZhEnCS10k (unlabeled):
semisupervised learning with unlabeled EnJaCS 10k
and ZhEnCS 10k (JaZhCS for a zero-shot target);
(3) EnZhCS10k+ZhJaCS10k (unlabeled): semisu-
pervised learning with unlabeled EnZhCS 10k and
ZhJaCS 10k (EnJaCS for a zero-shot target).
There are four types for LID: (1) the “No LID” systems
without using language information; (2) “LngChr” sys-
tems, which output the language information with char-
acter together like (Jp-a, Jp-b, Jp-c, . . . , Jp-z, En-a,
En-b, En-c, . . . , En-z, Zh-a, Zh-b, Zh-c, . . . , Zh-z);
(3) LID (0.25→0.0), where 0.25 is λLn� value during
supervised learning process and 0.0 is λLn� value during
unsupervised learning process; (4) LID (0.25→0.1),
where 0.25 is λLn� value during supervised learning
process and 0.1 is λLn� value during unsupervised
learning process.
As Table 11 shows, compared to the baseline model,
our proposed model of any language pairs improved
the ASR performance on all CS, including zero-shot
CS. Compared to the No LID and LngChr, the LID
(0.25→0.0) overcame them on all CS test sets. All
of the machine speech chain models showed statistical
significance with p < .001.
We also investigated whether our proposed machine
speech chain improved the ASR performance on mul-
tiple CS language pairs, including the natural speech
CS. We applied the last model among the trained mod-
els of 60 epochs since we could not include the natu-
ral speech CS in the development sets. Since natural
CS may switch multiple times within a single utter-
ance, it tends to be more complicated than the synthetic
one. Besides, the natural CS was just only 1k, which
is insufficient for training. As shown in Table 12, the
performances were not as good as only the synthetic
data. However, our proposed machine speech chain
model improved ASR, showing statistical significance
in the multiple CS language pairs, including the natural
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Table 11 ASR performance in CER% of multiple CS language pairs machine speech chain (The bold
figures show the unused CS during training). Left side of arrows in the LID is λLn� value during the
supervised learning process, and right side of arrows is λLn� value during the unsupervised learning or
fine-tuning process, where λChr = 1− λLn�. The p-values compared to the baseline system for statistical
significance are presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

Monolingual Code-switching
LID type Ja En Zh EnJaCS JaZhCS ZhEnCS

[Baseline] Supervised learning of only labeled monolingual data
Ja25k+En25k+Zh25k (labeled) No LID 8.8 9.1 5.8 11.5 12.3 13.3

LID (0.25) 7.3 ∗∗∗ 7.3 ∗∗∗ 5.1 ∗ 10.1 11.2 ∗∗ 11.4 ∗∗∗
[Machine Speech Chain] semisupervised learning of unlabeled two CS data

+ EnJaCS10k+JaZhCS10k (unlabeled) No LID 8.8 9.7 5.9 8.2 ∗∗∗ 6.9 ∗∗∗ 7.7 ∗∗∗
LngChr 8.9 9.2 5.4 7.9 ∗∗∗ 7.2 ∗∗∗ 7.2 ∗∗∗

LID (0.25→0.0) 8.3 7.6 5.2 7.7 ∗∗∗ 6.7 ∗∗∗ 7.1 ∗∗∗
LID (0.25→0.1) 8.6 8.4 5.1 8.6 ∗∗∗ 6.9 ∗∗∗ 7.4 ∗∗∗

+ EnJaCS10k+ZhEnCS10k (unlabeled) No LID 8.9 9.9 5.9 8.5 ∗∗∗ 7.0 ∗∗∗ 7.5 ∗∗∗
LngChr 9.1 9.3 5.6 8.3 ∗∗∗ 7.1 ∗∗∗ 7.4 ∗∗∗

LID (0.25→0.0) 8.5 7.4 5.7 7.8 ∗∗∗ 6.8 ∗∗∗ 7.1 ∗∗∗
LID (0.25→0.1) 8.7 8.8 5.3 8.1 ∗∗∗ 7.4 ∗∗∗ 7.2 ∗∗∗

+ ZhEnCS10k+JaZhCS10k (unlabeled) No LID 9.0 10.2 5.9 8.6 ∗∗∗ 7.0 ∗∗∗ 7.6 ∗∗∗
LngChr 9.0 9.4 5.5 8.3 ∗∗∗ 6.9 ∗∗∗ 7.4 ∗∗∗

LID (0.25→0.0) 8.5 7.5 5.2 7.8 ∗∗∗ 6.8 ∗∗∗ 6.9 ∗∗∗
LID (0.25→0.1) 8.8 8.8 5.2 8.6 ∗∗∗ 7.0 ∗∗∗ 7.7 ∗∗∗

[Topline] Supervised learning of labeled two or three CS data
+ EnJaCS10k+JaZhCS10k (labeled) LID (0.25→0.0) 8.4 8.5 7.9 7.8 ∗∗∗ 6.4 ∗∗∗ 6.8 ∗∗∗
+ EnJaCS10k+ZhEnCS10k (labeled) LID (0.25→0.0) 8.3 8.0 7.2 7.7 ∗∗∗ 6.5 ∗∗∗ 6.6 ∗∗∗
+ ZhEnCS10k+JaZhCS10k (labeled) LID (0.25→0.0) 9.3 9.4 5.2 7.8 ∗∗∗ 6.6 ∗∗∗ 6.7 ∗∗∗
+ EnJaCS10k+JaZhCS10k+ZhEnCS10k (labeled) LID (0.25→0.0) 8.1 8.1 7.0 7.6 ∗∗∗ 6.4 ∗∗∗ 6.6 ∗∗∗

Table 12 ASR performance in CER% of multiple CS language pairs machine speech chain using
natural CS (The bold figures show the unused CS during training). Left side of arrows in the LID
is λLn� value during the supervised learning process, and right side of arrows is λLn� value during
the unsupervised learning or fine-tuning process, where λChr = 1 − λLn�. The p-values compared to
the baseline system for statistical significance are presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001,
∗∗p < .01, ∗p < .05).

Monolingual Code-switching
LID type Ja En Zh EnJaCS JaZhCS ZhEnCS TstNatEnJaCS

[Baseline] Supervised learning of labeled monolingual data
Ja25k+En25k+Zh25k plus No LID (0.25) 8.8 9.7 5.4 11.5 13.4 14.0 33.0
NatJa0.2k+NatEn0.2k (labeled) LID 8.6 7.7 5.1 10.9 11.0 ∗∗∗ 11.0 ∗∗∗ 31.8

[Machine Speech Chain] Semisupervised learning of unlabeled two CS and one natural CS data
+ EnJaCS10k+JaZhCS10k plus No LID 9.2 12.1 5.4 9.3 ∗∗∗ 7.7 ∗∗∗ 8.7 ∗∗∗ 14.2 ∗∗∗
NatEnJaCS0.7K (unlabeled) LngChr 9.2 11.0 6.3 9.0 ∗∗∗ 8.0 ∗∗∗ 9.6 ∗∗∗ 14.0 ∗∗∗

LID(0.25→0.0) 8.8 10.1 5.6 8.7 ∗∗∗ 7.2 ∗∗∗ 7.9 ∗∗∗ 11.8 ∗∗∗
LID(0.25→0.1) 9.3 11.0 5.3 9.4 ∗∗∗ 9.1 ∗∗∗ 8.5 ∗∗∗ 13.7 ∗∗∗

[Topline] Supervised learning of labeled two CS and one natural CS data
+ EnJaCS10k+JaZhCS10k plus
NatEnJaCS0.7K (labeled)

LID (0.25→0.0) 8.7 9.0 7.1 7.6 ∗∗∗ 6.8 ∗∗∗ 6.9 ∗∗∗ 9.6 ∗∗∗

speech CS.
We also investigated French and Chinese CS (FrZhCS)
performance with French as an unknown language.
Since the system has never been trained with French
data in supervised learning, it did not have a chance
to learn the relation between French speech and the
corresponding transcription. LID did not have an op-
portunity to identify the French language. Table 13
shows the ASR performance. The results reveal that the
proposed model still improved the ASR performance
on the FrZhCS test data even though no monolingual
French labeled data are available, and even though
the French language is unknown. Amazingly, when
the amount of EnFrCS training data increased to 10k,

the topline results worsened. The topline model was
trained in supervised learning, but the target FrZhCS
was never trained. This condition might degrade the
supervised learning performance because of the mis-
match as the non-target CS training data increased. The
LngChr model become worsen by the speech chain
training, showing it was difficult to handle the unknown
language. However, our proposed model improved the
performance even in an unknown language, zero-shot
CS.
TTS Evaluation
We evaluated the zero-shot CS speech generated by
the TTS of the proposed multilingual and zero-shot CS
machine speech chain. We conducted an AB prefer-
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Table 13 ASR performance (in CER%) of a multiple CS language pairs
machine speech chain on the zero-shot CS with the unknown language,
where labeled monolingual French data are unavailable, and the French
language is unknown. Left side of arrows in the LID is λLn� value during
the supervised learning process, and right side of arrows is λLn� value dur-
ing the unsupervised learning or fine-tuning process, where λChr = 1−λLn�.
The p-values compared to the baseline system for statistical significance are
presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

Train data LID type FrZhCS
Baseline

Ja25k+En25k+Zh25k (labeled) No LID 33.7
LID (0.25) 33.0

Machine Speech Chain
+EnJaCS10k+JaZhCS10k+ No LID 23.6 ∗∗∗
EnFrCS5k (unlabeled) LngChr 48.0

LID (0.25→0.0) 23.6 ∗∗∗
LID (0.25→0.1) 22.1 ∗∗∗

+EnJaCS10k+JaZhCS10k+ No LID 24.0 ∗∗∗
EnFrCS10k (unlabeled) LngChr 44.8

LID (0.25→0.0) 22.4 ∗∗∗
LID (0.25→0.1) 21.6 ∗∗∗

Topline
+EnJaCS10k+JaZhCS10k+
EnFrCS5k (labeled)

LID (0.25→0.0) 14.5 ∗∗∗

+EnJaCS10k+JaZhCS10k+
EnFrCS10k (labeled)

LID (0.25→0.0) 16.4 ∗∗∗

Fig. 13 Comparison of AB preference subjective evaluation between
generated zero-shot CS speech from the model with/without language-
embedding.

ence subjective evaluation between the generated zero-
shot CS speech from the model with/without language-
embedding [yCSChr, yCSLn�]. All language pairs of the
zero-shot CS were evaluated by ten bilingual speak-
ers who compared two speech utterances while looking
at the transcription and chose which speech was better
in terms of being more native. They were also given
the option to admit they could not determine which
sounded more native. They compared 20 pairs shown
randomly. The results (Fig. 13) show our method sup-
ports the quality of synthesized speech, particularly on
the switching places between two languages.

8. Conclusion

We introduced a machine speech chain for semisupervised
learning of CS ASR and TTS. We first individually trained

ASR and TTS systems with labeled monolingual data in su-
pervised learning. Then, we carried out a machine speech
chain with unsupervised learning of either CS text or CS
speech. We investigated the improvements to CS ASR and
TTS with natural CS data as well as synthetic data. Our
results revealed that such a mutually complementary archi-
tecture of machine speech chain trains ASR and TTS to-
gether and improves performance even without any labeled
CS data. Our proposed machine speech chain model im-
proved the performance of the CS ASR and CS TTS while
maintaining the performance of the monolingual input.

We also introduced a language-aware CS machine
speech chain. We expanded our model to handle CS bet-
ter by integrating language embedding and LID into the ma-
chine speech chain. We confirmed that the machine speech
chain model with language embedding and LID could pro-
duce satisfactory performances both on a single CS lan-
guage pair and multiple CS language pairs, including un-
known CS that were excluded from the training data.
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