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PAPER

Neural Incremental Speech Recognition Toward Real-Time
Machine Speech Translation

Sashi NOVITASARI†, Nonmember, Sakriani SAKTI†,††,†††a), and Satoshi NAKAMURA†,††, Members

SUMMARY Real-time machine speech translation systems mimic hu-
man interpreters and translate incoming speech from a source language to
the target language in real-time. Such systems can be achieved by perform-
ing low-latency processing in ASR (automatic speech recognition) module
before passing the output to MT (machine translation) and TTS (text-to-
speech synthesis) modules. Although several studies recently proposed se-
quence mechanisms for neural incremental ASR (ISR), these frameworks
have a more complicated training mechanism than the standard attention-
based ASR because they have to decide the incremental step and learn the
alignment between speech and text. In this paper, we propose attention-
transfer ISR (AT-ISR) that learns the knowledge from attention-based non-
incremental ASR for a low delay end-to-end speech recognition. ISR
comes with a trade-off between delay and performance, so we investigate
how to reduce AT-ISR delay without a significant performance drop. Our
experiment shows that AT-ISR achieves a comparable performance to the
non-incremental ASR when the incremental recognition begins after the
speech utterance reaches 25% of the complete utterance length. Additional
experiments to investigate the effect of ISR on translation tasks are also
performed. The focus is to find the optimum granularity of the output unit.
The results reveal that our end-to-end subword-level ISR resulted in the
best translation quality with the lowest WER and the lowest uncovered-
word rate.
key words: attention transfer, incremental speech recognition, real-time
speech translation

1. Introduction

As globalization rapidly expands, language barriers con-
tinue to be the most notorious restriction on free commu-
nication among different language speakers. In some situ-
ations, the problems can be solved by human interpreters.
Their services are needed especially for direct human-to-
human communications, where the participants do not speak
in the same language. An example of such a situation is
real-time lecture translation for audiences from various na-
tionalities where the interpretation is done simultaneously
to the lecturer’s speech so the audience can follow it. Pro-
fessional interpretation services, however, are expensive be-
cause speech interpretation is a complex skill that takes
years to master. The availability of language pairs also re-
mains scarce.

Manuscript received January 14, 2021.
Manuscript revised June 1, 2021.
Manuscript publicized August 27, 2021.
†The authors are with the Augmented Human Communication

Lab, Nara Institute of Science and Technology, Ikoma-shi, 630–
0192 Japan.
††The authors are with the RIKEN, Center for Advanced Intel-

ligence Project AIP, Ikoma-shi, 630–0192 Japan.
†††The author is with Japan Advanced Institute of Science and

Technology, Nomi-shi, 923–1292 Japan.
a) E-mail: ssakti@is.naist.jp

DOI: 10.1587/transinf.2021EDP7014

Speech-to-speech translation (S2ST) technology [1], in
other words recognizing speech and translating it into an-
other language, is one innovative technology that can pro-
vide support in many everyday situations. S2ST systems
commonly consist of three components: automatic speech
recognition (ASR) system, machine translation (MT) sys-
tem, and text-to-speech synthesis (TTS) system. In conven-
tional modular S2ST systems, MT starts the translation from
the source language into the target language after receiving
a complete sentence from the ASR [2], and TTS begins its
synthesis after receiving a complete sentence from the MT
system [3]. Recent studies also focus on end-to-end S2ST
systems [4]–[6], where all processes are done by a single
model. Both kinds of systems, however, suffer from a long
translation processing delay since the length of the complete
sentences in some talks can be long, complicated, or poorly
structured. Consequently, such systems are not practical in
situations where the delivery delay of the translation result
to the user is critical. A solution to this problem is a real-
time S2ST system that can mimic human interpreters, who
generally recognize and translate the speech based on partial
information with minimum delay.

Real-time S2ST systems require a low-latency ASR as
the foremost component. Several studies recently proposed
sequence mechanisms for incremental speech recognition
(ISR) that transcribe the speech within a low delay [7]–
[13]. For low delay recognition, ISR needs to decide the
incremental steps to extract the transcription information
from a short part of the speech. For this reason, the train-
ing mechanisms and frameworks of neural ISR systems are
more complex than standard non-incremental neural ASRs
that do not need to consider the speech segment boundaries.
Among the existing ISR frameworks, neural transducer has
the most similar neural network structure to the standard
neural ASR [7]. This framework performs end-to-end in-
cremental speech recognition through fix-sized speech seg-
ments recognition by learning the alignment between speech
and text segments. The construction of it requires several
alignment computations and updates through the training
process, which cause the framework to be more complicated
than the standard attention-based ASR.

In this work, we propose attention-transfer ISR (AT-
ISR) for low delay speech recognition. AT-ISR employs
the original architecture of a standard attention-based ASR
to do the incremental recognition with the shorter se-
quences. It learns the incremental step from the stan-
dard non-incremental ASR, therefore, we consider the non-
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Fig. 1 Modular S2ST system: conventional framework (a) and real-time framework (b).

incremental ASR as a teacher model and ISR as a student
model. Attention transfer allows AT-ISR to mimic the align-
ments that are produced by teacher ASR’s attention com-
ponent. AT-ISR construction only uses a standard non-
incremental model, from which the AT-ISR parameter can
be initialized, allowing a simple mechanism in the model
construction and the incremental recognition process.

Toward real-time speech translation, we performed ad-
ditional experiments and explored two factors in ISR that
might affect the translation: ISR delay and ISR output
unit. End-to-end neural MT (NMT) systems are generally
designed to process subwords, whereas the basic end-to-
end neural ASR is generally trained to model speech-to-
character. Therefore, we investigate the interdependency of
both components’ construction in terms of ISR output and
NMT input unit parity. As developing incremental NMT
is not part of this study, we evaluate the ISR using a stan-
dard NMT as a downstream task to see how the ISR per-
formance and error affect the translation. The languages in-
volved in the experiment are English, the source language,
and French, the target language.

2. Overview of Speech-to-Speech Translation System

2.1 Components

Modular S2ST system consists of three main, intercon-
nected components: ASR, MT, and TTS. An illustration of
modular S2ST systems can be seen in Fig. 1. The following
are the details of each component.

2.1.1 Automatic Speech Recognition (ASR)

An ASR system converts the speech signal into a corre-
sponding transcription. The conversion is done by generat-
ing a sequence of text unit Y(src) from source speech features
X(src) extracted from the speech signal. Text generation is
done by satisfying the following condition:

Ŷ(src) = argmax
y(src)

P(Y(src)|X(src)). (1)

Attention-based end-to-end ASR, which consists of
an encoder-decoder with an attention mechanism, predicts
character or subword sequence from a speech features se-
quence by modeling the conditional probability in Eq. (1)
directly. In the remaining parts of this paper, we simplify
the notations in Eq. (1) by denoting X(src) as X and denoting
Y(src) as Y.

2.1.2 Machine Translation (MT)

An MT system translates transcription in a certain language
into the target language. In the S2ST system, it translates
ASR output Y(src) into text in target language Y(tgt). The
translation is done by satisfying the following condition:

Ŷ(tgt) = argmax
y(tgt)

P(Y(tgt)|Y(src)). (2)

We utilized attention-based NMT system for our experi-
ment. Both NMT input and output are represented as a se-
quence of subwords in the corresponding language.

2.1.3 Text-to-Speech Synthesis (TTS)

In an S2ST system, TTS synthesizes a speech from a tran-
scription that is given by MT. This model takes hypothe-
sis text Y(tgt) from MT and produces a sequence of speech
features X(tgt). The resulting speech is uttered in the target
language with the same meaning as the source speech.

X̂(tgt) = argmax
x(tgt)

P(X(tgt)|Y(tgt)). (3)

In this paper, we did not involve TTS in the experiment be-
cause we aimed to focus only on the ASR system and its
connection to MT system.

2.2 Real-time Speech Translation

A real-time S2ST system is illustrated in Fig. 1(b). It con-
sists of the same components as the conventional S2ST sys-
tem in Fig. 1(a). The difference between both systems lies
in the starting condition of each component’s process. In
the conventional S2ST system, each component has to wait
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for the complete result from the previous component. The
translated speech can be only heard after the source speech
is finished. On the other side, the real-time system does not
limit each component to wait for the complete result from
the other component. It just waits for a part of input rather
than a complete input and works on the fly.

The performance of speech translation task involves
output delivery speed and accuracy. Output delivery speed
corresponds to the delay or time lag that occurs during the
speech translation task. Delay is a time difference between
the source speech start time and the initial time when the
system produces the output [14]. Time delay in the conven-
tional system (Fig. 1(a)) equals the total length of the source
speech and the delay in the real-time system (Fig. 1(b))
equals the size of the first-recognized speech segment and
is shorter than the conventional system. The actual delay
also includes computational delay.

In many situations, a short speech translation delay is
more preferable than a long delay. A short delay can relax
the listener and facilitate indirect communication between
the source speaker and the listener [15]. In real-time speech
translation by human from English speech, the delay gen-
erally ranges from two to six seconds [16], [17], or roughly
about four to twelve words [18], [19]. A short delay is also
beneficial for human translators because it does not burden
their short-term memory heavily.

Although it costs a long waiting time, a longer delay
implies that we can get more information about the speech
content, so the understanding of it for the translation can
be improved [20]. For human interpreters, however, a long
delay might also cause the translation quality to decrease
because it can burden their working memory. In contrast to
humans, memory load is not a vital issue in speech interpre-
tation by a machine. However, a machine cannot understand
speech utterance well like a human does unless it is trained
using a large amount and variety of data. In this work, we
not only construct ISR but also investigate how the delay of
ISR system affects speech recognition and translation qual-
ity.

3. Sequence-to-Sequence ASR Framework

A neural sequence-to-sequence (seq2seq) ASR consists of
encoder and decoder components with an attention mecha-
nism [21], [22]. It directly models P(Y|X) in Eq. (1) given
a speech utterance feature sequence X = [x1, ..., xS ] with
length S and corresponding transcription Y = [y1, ..., yT ]
with length T . The encoder in the network transforms input
sequence X into hidden states he. The decoder then predicts
target sequence probability pyt , given previous output Y<t,
current context information ct, and current decoder hidden
states hd

t . Context information ct is produced by attention
modules [23] at time t with the following formula:

ct =

S∑
s=1

at(s) ∗ he
s, (4)

at(s) =
exp(S core(he

s, h
d
t ))

S∑
s=1

exp(S core(he
s, hd

t ))
. (5)

The scoring for the context can be done using one of
the following scoring functions [24]:

Score(he
s, h

d
t ) =


⟨he

s, h
d
t ⟩, dot product,

he⊺
s Wshd

t , bilinear,

V⊺s tanh(Ws[he
s, h

d
t ]), MLP.

(6)
The model loss function is formulated:

LossASR(y, py) = − 1
T

T∑
t=1

C∑
c=1

1(yt = c) ∗ log pyt [c], (7)

where C is the number of output classes.

4. Proposed Attention-Transfer ISR (AT-ISR)

We applied seq2seq ASR architecture to our ISR. Incremen-
tal recognition was done by applying attention transfer dur-
ing the training phase and performing segment-based recog-
nition. The details are explained in the following subsec-
tions.

4.1 Recognition Method

AT-ISR predicts the transcription Y with length T from
a speech utterance X with length S through N recogni-
tion steps, where each step performs a short-segment-based
recognition. In each recognition step n = [1, ...,N], the
model takes the n-th speech segment from X, which seg-
ment consists of w frames, denoted as Xn, to predict the n-th
text segment of Y that consists of kn tokens, denoted as Yn.
The following is the mechanism of each model component
for each recognition step n.

4.1.1 Encoding

In each step n, ISR encodes Xn = [x(n−1)w+1, ..., x(n−1)w+w],
which is the n-th speech segment from X, inside the input
window with a fixed-length of w frames, where w < S . The
input delay or the waiting time for the encoder to start the
encoding is calculated as:

delay = w · f eatshi f t + ( f eatwin − f eatshi f t), (8)

where f eatwin and f eatshi f t are the speech feature window
length and window shift length. In the experiment, we al-
lowed the encoder to look at several frames ahead of the
main input frames. The look-ahead frames are regarded as
the contextual input to enrich the information of the main
input.

4.1.2 Decoding

After the encoding in step n finishes, the decoder predicts
Yn = [yn,1, ..., yn,kn ], which is the n-th text segment of Y
with a length of kn, where 0 ≤ kn < T . Yn aligns with Xn.
If the encoder input also includes the contextual frames, Yn

only aligns with the main input speech. In the text segment,
yn,kn is a segment delimiter that is learned by the ISR during
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Fig. 2 Attention-transfer ISR training.

training. We define the text segment delimiter as an end-of-
block symbol denoted as </m>. In the actual transcription,
the actual last token in Yn is yn,kn−1. During the decoding
in step n + 1, yn+1,k1 is a token next to yn,kn−1 in the actual
transcription.

The decoding process in step n starts by taking yn−1,kn−1

as the decoder’s first token input, which is the actual last
token from the previous step. When the decoder predicts
</m> token, it marks that the text prediction from Xn has
finished. The prediction of Yn is done by attending only
to Xn. To avoid additional computation delay, we applied
greedy decoding in our experiment.

The recognition in step n + 1 starts by shifting the in-
put window w frames while keeping the model states from
the previous step. If the encoder is set to take contextual in-
put frames, the window shift equals the length of the main
input frames. These incremental recognition processes are
repeated until the step reaches the N-th speech segment or
until an end-of-sentence token is predicted.

4.2 Training

We applied attention information transfer from a non-
incremental ASR to train an AT-ISR, which mechanism is
illustrated in Fig. 2. To enable short-segment-based speech
recognition, AT-ISR is trained using Yn that is followed by
an end-of-block </m> as the target of Xn. The Xn and Yn

pairs are decided based on alignments from the attention
component of the non-incremental ASR, which acts as a
teacher, during a teacher-forcing text generation. Here the
alignments are generated once without using another sys-
tem.

In the alignment, output token yt at time t is aligned to
s-th input frame xs, which correspond to encoder state he

s.
Speech frame index s which yt aligns to (lt) is chosen by
following the monotonic condition:

lt = argmax
lt−1≤s≤lt+1

S core(he
s, h

d
t ). (9)

In the training data based on the obtained alignments,
each transcription segment Yn consists of the output tokens,
where each token is sequentially aligned to one of the speech
frames in Xn. If states downsampling [25] is applied in the
encoder, encoder state he

s will correspond to multiple speech
frames, depending on the downsampling rate. The AT-ISR
incremental unit or delay can be controlled by combining
consecutive alignment units during the training. The short-
est or basic incremental unit equal the number of speech
frames that an encoder state represents in the attention align-
ment.

The transfer of attention information aims to make AT-
ISR mimic the alignments by a non-incremental ASR. AT-
ISR applies identical architecture as the non-incremental
ASR. By priorly adding the special tokens in the non-
incremental ASR output vocabulary, AT-ISR also can be
initialized with the non-incremental ASR parameters. At-
tention transfer mechanism is only applied during AT-ISR
training, therefore, AT-ISR inference is done without involv-
ing the teacher model.

4.3 Output Unit

In this work, we considered two types of ISR output rep-
resentation units based on token granularity: characters and
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subwords. We did not consider whole-word units as our ISR
output because word vocabulary is large so it is impractical
when the ISR is utilized in the translation system. The word-
level ISR also could not cope with the out-of-vocabulary
condition.

4.3.1 Characters

Figure 3(a) illustrates character-level ISR. It models an end-
to-end relation between acoustic features and character se-
quences. Character unit is one of the basic token units that
is commonly used in end-to-end ASR [21], [26], [27]. Since
character-level representation enhances the ASR general-
ity, it can prevent overfitting and out-of-vocabulary condi-
tions [27].

In our experiment, character-level ISR’s output vocab-
ulary only included alphabet tokens and special tokens re-
quired for ISR. A special token that symbolizes whitespace
was placed between character sequences that belong to dif-
ferent words so they could be segmented back into a word
sequence.

4.3.2 Subwords

A subword-level ISR predicts a sequence of subwords, as
shown in Fig. 3(b). Subword is a sequence of characters
that is tokenized from a word. We can consider a word as a
combination of one or several subwords. In terms of token
granularity level, subwords have a coarser granularity than
characters, but finer than words. The subwords that we dis-
cuss in this work are subwords that are generally used in the
machine translation system. This kind of subword unit is
also used in the recent end-to-end ASR systems [28], [29].
The utilization of subword unit in ASR is generally done
to avoid out-of-vocabulary conditions, similar to character-
level ASR, and also to keep a longer context of a word.
Subword sequences of different words are separated with a
whitespace token.

In this work, we constructed a subword vocabulary
by training a word-to-subword segmentation model using
a byte-pair-encoding (BPE) algorithm [30], which is imple-
mented in the SentencePiece tokenizer toolkit [31]. Here
the segmentation model is trained based on text sentences

Fig. 3 End-to-end character level ISR (a) and subword-level ISR (b).

that consist of word tokens. The BPE algorithm first trains
the model by initializing the subword vocabulary with a
list of unique characters and converting each word from
the training data into a character sequence. In the subse-
quent processes, the algorithm iteratively replaces the most
frequent token pair in the training data with a new token,
which merged from that token pair, and adds it to the vo-
cabulary. The segmentation model construction is done us-
ing only text sentences, without depending on language and
phonemes. In inference, given a word, the segmentation
model converts the word into subwords by representing it
as a character sequence and applying the merge operation
learned by the model.

5. Experiment Settings

5.1 Dataset

We utilized the Wall Street Journal (WSJ) dataset [32] to
train our basic non-incremental ASR and proposed ISR, and
compared those systems with other speech recognition sys-
tems that used different frameworks. The WSJ dataset con-
sists of multi-speaker speech utterances recorded by read-
ing English news passages. We used the SI-284 set as the
training set, dev93 as the development set, and eval92 as
the evaluation set. The SI-284 set consists of 81 hours of
speech. All models that were trained with the WSJ set were
character-level models.

We utilized our proposed ISR in a speech translation
task. Automatic real-time lecture translation is a challenging
task that requires a real-time speech translation system. In
this work, since we focus on ISR for lecture translation tasks
with a less-restricted content domain, we used corpora that
were collected from TED talks to create our ISR system and
an NMT system for modular speech translation.

Data from TED talks consist of lecture speech and tran-
scription that were presented at TED talks. The lectures
covered various topic domains that were spoken by speak-
ers with various speaking styles. Following this condition,
and also since the speech originated from actual talks, the
transcription and translation texts were written in a spoken
language style, which is slightly different from a written lan-
guage style. These conditions lead to ISR and NMT systems
with highly diversified training examples in a matching lan-
guage style.

We trained the ISR model using the TED-LIUM release
1 dataset [33]. TED-LIUM release 1 corpus consists of 118
hours of English speech data that were recorded from TED
talks. This dataset was split into training, development, and
evaluation sets based on the Kaldi recipe [34]. The acous-
tic features for the ISR input consisted of 80 dimensions of
Mel-spectrogram with a 0.05 seconds window ( f eatwin) and
0.0125 seconds shift ( f eatshi f t).

The NMT model was trained using English-French
translation dataset from the IWSLT 2017 shared task [35].
This dataset consists of English speech transcription and
French translation texts from TED talks. We used the in-
domain IWSLT 2017 training set to train the model and
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dev2010 as the development data. The translation evalua-
tion was done based on tst2010 set for the translation from
the correct text and ISR text.

To minimize the dissimilarity between the ISR and
NMT training materials, we removed the punctuation and
normalized the numbers in the NMT training texts. The Uni-
code symbols in the English texts were also normalized into
basic Latin alphabet letters due to TED-LIUM release 1 text
conditions that did not contain punctuation, numbers, and
Unicode letters. The TED-LIUM release 1 transcriptions
contain speech fillers, unlike the NMT dataset. Therefore,
we removed the fillers in the ISR output before passing it to
NMT.

The NMT model in our experiment applied subword
units as the input and output representation. Each input and
output vocabulary consisted of 16,000 subwords. All the
subword vocabularies were constructed using the BPE algo-
rithm in the SentencePiece tokenizer based on the cleaned
NMT training data in their respective languages. The En-
glish subword tokenizer was also utilized to tokenize the
training texts for the subword-level ISR model.

5.2 Model Configuration

The following are the descriptions of the model configu-
rations. In this work, we did not utilize external language
model in any neural non-incremental ASR, ISR, and NMT
models.

5.2.1 ISR

We used attention-based network with an encoder and a de-
coder [21]–[23] to construct our non-incremental ASR and
ISR, and applied the similar structure to the character- and
the subword-level models.

The encoder consisted of a feed-forward layer (512
units) followed by three stacked bidirectional long-short
term memory neural network (BiLSTM) layers (256 units).
The encoder applied state downsampling with a downsam-
pling rate that equal eight states into one state. Conse-
quently, the shortest alignment unit in the attention transfer
for an output token was eight speech feature frames (0.14
seconds). In this work, we define eight speech frames as
one block of speech features.

The decoder side consisted of an embedding layer (256
units), an LSTM layer (512 units), and a softmax layer. The
embedding layer and the softmax layer sizes were config-
ured according to the model output unit. In the attention
component, we applied an attention mechanism with MLP-
scoring based on multi-scale alignment and contextual his-
tory [36].

We evaluated the AT-ISR by comparing it to the teacher
non-incremental ASR as the topline and also to the base-
line ISR. The baseline ISR was an ISR that applied the
same architecture as the topline and AT-ISR, but the in-
cremental steps were taught based on the alignments gen-
erated with forced-alignment procedure [34], [37] by hid-
den Markov model and Gaussian mixture model (HMM-
GMM) ASR [38], which is the standard alignment gener-

ation method that applied in neural transducer based on
the HMM-GMM alignments. The baseline subword- and
character-level alignments were obtained by aligning all the
tokens (in their respective unit) of a word into speech seg-
ments where the word ends [8].

We also compared our AT-ISR to a neural ISR without
an attention mechanism. The structure consisted of unidi-
rectional LSTM network layers with a connectionist tempo-
ral classification (CTC) training objective and the optimal
incremental output was determined through beam-searching
with depth-pruning [39].

5.2.2 NMT

The NMT model was constructed by applying an encoder-
decoder structure with an attention mechanism. The NMT
encoder consists of an embedding layer (256 units), a feed-
forward layer (512 units), and two BiLSTM layers (256
units). The decoder side consists of an embedding layer
(512 units), two LSTM layers (512 units), and a softmax
layer.

6. Experiments Result and Discussion

6.1 ISR Performance in Error Rates

We first evaluated our non-incremental ASR and ISR sys-
tems on basic character-level speech recognition task on
WSJ dataset, which results is shown in Table 1. The average
length of the full-utterance speech in this experiment was
7.88 seconds. The performance scores here are reported as
the character error rate (CER). For our proposed AT-ISR and
the baseline ISR, the reported delays are the input delay that
corresponds to the size of the input window for an incremen-
tal step. Here the ISR computational delay was below 0.05
seconds; our non-incremental ASR computational delay av-
eraged 0.3 seconds. Our non-incremental ASR, which is a
standard encoder-decoder network with an attention mecha-
nism, achieved the best performance.

By using our non-incremental ASR, we taught two AT-
ISR models for incremental speech recognition with the in-
put window size of 0.24 seconds and 0.54 seconds each.
In each kind of input window, the main speech input seg-

Table 1 Character-level speech recognition performance on WSJ: Aver-
age full speech utterance duration was 7.88 sec. (↓ = lower is better; m =
main input frame block; la = look-ahead input frame block; 1 block = 8
frames = 0.14 sec.)

Model CER ↓ (%) WER ↓ (%) UCR ↓ (%)

Topline: Non-incremental ASR
CTC [40] 8.97 - -
Att Enc-Dec Content [40] 11.08 - -
Att Enc-Dec Location [40] 8.17 - -
Joint CTC+Att (MTL) [40] 7.36 18.20 -
Att Enc-Dec (ours; AT-ISR teacher) 6.26 16.49 7.69

Baseline ISR: Att Enc-Dec ISR + HMM-GMM alignment
delay = 0.24 sec (1 m + 1 la) 20.15 49.75 25.10
delay = 0.54 sec (1 m + 4 la) 11.95 30.77 16.93
Proposed ISR: AT-ISR
delay = 0.24 sec (1 m + 1 la) 18.37 43.59 20.14
delay = 0.54 sec (1 m + 4 la) 7.52 20.06 11.10

Other existing ISR
LSTM + CTC [39] 10.96 38.37 -
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Fig. 4 Examples of attention matrix generated by a non-incremental ASR and ISRs during inference
on a 5.50 sec-long speech from WSJ eval92 set. In all ISR attention matrices presented, attention scores
to speech segments that were not in the range of the input window were filled with zero. (d = delay; 1
block = 8 frames = 0.14 sec.)

ment was set to a block of speech frames, which consists
of eight frames, to see the ISR performance with the ba-
sic incremental unit that implies the shortest delay that it
could made. However, based on our exploration, ISR with-
out a contextual input could not perform a reliable recog-
nition [41]. So in addition to the main input, we used con-
textual input, which was look-ahead speech segment, to im-
prove the ISR performance. We used look-ahead segment
with a size of one or four speech frame blocks to keep the
recognition delay low with a reliable performance†. Our ex-
periment results show that AT-ISR resulted in a better per-
formance than the baseline model and a close CER to the
teacher model.

We further examined the attention sequence of AT-ISR
to see how it mimicked the teacher’s attention alignments.
Figure 4 shows the attention matrices generated during the
inference by teacher non-incremental ASR, AT-ISR, and
baseline ISR. The ISRs attention matrices were normalized
from the original matrices by padding the matrices. Since
the ISRs here performed window-based recognition, these
models did not attend to the speech segments that were not
within the input window. Therefore, we filled each row
with zero for the segments outside the input window in the
corresponding incremental steps. Furthermore, before the
normalization, the baseline’s and AT-ISR’s attention com-
ponent has the highest attention score on the last speech
block in the input window for each decoding step because
the models anticipated the end-of-block token that marks the
end of an incremental step. To simplify the comparison with

†Parts of this work have been presented in [41]. The work
here provides a more comprehensive and systematic description of
the method, additional experiments related to translation task, and
deeper analyses of the experiment results. We also updated our
results on WSJ with our recent scores.

the teacher model, we removed the attention score that cor-
responded to the last speech block in each incremental step.
In all our experimental settings, the last speech block in an
incremental step was the last block of the contextual input
segment.

Figure 4 shows that the AT-ISR attention sequences had
a similar pattern to the teacher model’s attention sequences.
AT-ISR’s attention concentrated most on the main speech
segment for each incremental step, and it also attended the
necessary contextual segment to improve the recognition.
This figure shows that the attention-transfer training enabled
the AT-ISR to mimic how its teacher attends the necessary
information in the speech sequence to predict the transcrip-
tion token. Attention-transfer training also resulted in an
ISR with a cleaner and more monotonic attention sequence
than the baseline method. Here the AT-ISR with a delay of
0.54 seconds resulted in the most similar attention pattern
to the teacher and achieved the best score among the other
ISR models. In the teacher’s attention matrix, each text to-
ken scored high attention scores to several speech blocks
consecutively, with an average of three consecutive speech
blocks. As a result, the AT-ISR with a short input window
size or delay might not receive enough information to pre-
dict the token sequences correctly. An example of such a
condition can be seen in our ISR result with a delay of 0.24
seconds, in which the input window only consists of two
speech blocks.

In the second experiment, we made a deeper analysis
of the AT-ISR model by using TED-LIUM release 1 dataset.
The speech recognition performance on TED-LIUM release
1 is shown in Table 2. We also performed statistical t-
test to see the statistical difference between the ISR mod-
els with a significance level of 5%. The results are rep-
resented as symbols next to the performance score in Ta-
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ble 2. The performance comparison is done based on CER,
word error rate (WER), and uncovered-word rate (UCR).
An uncovered-word is one that does not exist in the train-
ing data because of one or several character-level mistakes
in that word. For this reason, an uncovered-word could be
a word that does not have linguistical meaning. A lower
UCR implies a lower uncovered-word number and a better
performance. The UCR of the correct transcription in the
evaluation set was 1.55%. We set the AT-ISR input size to
one and four main frame blocks, with the addition of two or
four look-ahead blocks. The input size here was chosen to
keep the output quality with a limited delay.

With the same amount of delay, AT-ISR WER and CER
outperformed the baseline. The baseline ISR was better in
producing semantically recognizable words, but it struggled
to produce the correct words. The performance difference
between the baseline ISR and AT-ISR might be caused by
the precision difference in the ground alignments of both
models. The baseline learned the alignments that were orig-
inally at the word-level. Here the precise alignments of char-
acter or subword units cannot be inferred, therefore, all units
within a word were aligned into a speech segment where
that word ends. It implies that some token alignments are
delayed by several segments. As a result, if the speech seg-
ment window cannot include the necessary segments, the
baseline ISR cannot produce the tokens that form correct
words. On the other hand, the AT-ISR learns from more
precise alignments based on its teacher’s attention module,
so it can immediately recognize the tokens from a speech
segment without delaying it to the next segment. The base-
line might have a better UCR because it learned to produce
all tokens of a word in one recognition step.

Table 2 Speech recognition performance on TED-LIUM release 1:
Symbols in some scores indicate statistical significance test result with
p < 0.05. (↓ = lower is better; ⋆ = significantly different from baseline
with identical output units; ⋄ = not significantly different from baseline
with identical output units; • = significantly different from character-level
model with identical delay and framework; † = not significantly different
from character-level model with identical delay and framework; e2e = end-
to-end model; m = main input frame block; la = look-ahead input frame
block; 1 block = 8 frames = 0.14 sec.)

Model Output Unit (e2e) CER ↓ (%) WER ↓ (%) UCR ↓ (%)

Topline: Teacher Non-incremental ASR (Att Enc-Dec)
delay = 7.58 sec (avg.)
Character 15.21 27.37 3.02
Subword 13.35 • 23.98 • 0.54 •
Baseline ISR: Att Enc-Dec ISR + HMM-GMM alignment
delay = 0.84 sec (4 m + 4 la)
Character 27.89 43.10 2.10
Subword 28.43 • 39.77 • 0.37 •
Proposed ISR: AT-ISR
delay = 0.44 sec (1 m + 2 la)
Character 24.65 ⋆ 46.14 ⋆ 9.95 ⋆
Subword 27.53 ⋄ • 45.39 ⋆ † 0.54 ⋆ •
delay = 0.54 sec (1 m + 4 la)
Character 21.00 ⋆ 41.10 ⋆ 11.7 ⋆
Subword 21.28 ⋆ † 36.78 ⋆ • 0.66 ⋆ •
delay = 0.84 sec (4 m + 4 la)
Character 16.22 ⋆ 31.04 ⋆ 5.19 ⋆
Subword 15.20 ⋆ † 28.26 ⋆ • 1.04 ⋆ •

Based on our result in Table 2, the subword-level
model outperformed the character-level model in all non-
incremental and incremental recognition tasks. Statistically,
although the CERs of character- and subword-level AT-ISR
models were not different, there were some differences in
the WERs and the UCRs, especially in the models with a
longer delay. Subword sequence is more reliable in forming
correct words because it retains a longer word context than
a character. During inference, character-level output might
also contain more low-level errors than subwords. As a re-
sult, when the characters are concatenated into a word, the
chance of forming an uncovered-word will be higher than
the concatenation from subwords. In conclusion, subword-
level AT-ISR improves speech recognition performance, es-
pecially in terms of WER and UCR. We will discuss how
these affected the translation task in Sect. 6.3.

As we expected, non-incremental ASR’s performance
is better than ISR because the former is allowed to analyze
the entire speech sequence. However, non-incremental ASR
is not suitable for tasks that require simultaneous or real-
time processing because it could cost a high delay. The
amount of delay in ISR has to be configured carefully be-
cause the output quality might drop if the delay is too short.
In this experiment, AT-ISR with a delay of 0.84 seconds
achieved a close performance to that of non-incremental
ASR that requires a delay of 7.58 seconds on average. It
shows that AT-ISR with an appropriate delay could result in
output with quality that is close to the non-incremental ASR.

6.2 ISR Performance in Delay and Output Unit

Figure 5 shows how the AT-ISR delay and output unit af-
fected the speech recognition performance. Delays shown
here are the size of the input segment of an incremental step.
All AT-ISR models in this figure included two look-ahead
blocks in addition to the main blocks in their input window.
Here we made the size of the look-ahead segment shorter
than those in Table 2 to limit the delay.

In speech recognition tasks, there is a trade-off between
recognition delay and performance. It is shown in Fig. 5,
where the AT-ISR WER decreases along with the increase
of the delay. Since ISR with a short speech recognition de-

Fig. 5 WER of end-to-end character- and subword-level AT-ISR with
various delays. (S = average speech utterance length in TED-LIUM release
1 set (7.58 sec); 1 block = 8 frames = 0.14 sec.)



NOVITASARI et al.: NEURAL INCREMENTAL SPEECH RECOGNITION TOWARD REAL-TIME MACHINE SPEECH TRANSLATION
2203

lay and a close performance to the non-incremental ASR is
more preferable, we need to find a delay configuration that
keeps the balance between the recognition delay and per-
formance. In our delay investigation here, we found that
character-level AT-ISR performance improvement did not
happen significantly between the following delays: 25% of
utterance length, 50% of utterance length, and full-utterance
length. Here when the recognition delay was equal to 2.04
seconds or 25% of the full-utterance length, it also started to
achieving a comparable WER to the non-incremental ASR
that took a full-utterance at once to generate the transcrip-
tion. This result shows that the character-level model was
able to retain the balance between recognition delay and
performance when the delay was 2.04 seconds or 25% of
the full-utterance length.

Interestingly, the subword-level models outperformed
the character-level models in general, but the character-level
AT-ISR achieved a closer performance to the teacher with a
shorter delay than the subword-level model. In Fig. 5, when
the AT-ISR delay was 25% of the full-utterance length, the
WER difference between character-level student and teacher
models was 1.38%. In our experiment, this model achieved
CER 15.73%, which was higher only 0.52% than the teacher
model. With an identical delay, subword-level AT-ISR WER
was 3.7% higher than the teacher. In addition, its CER was
15.24% or 1.89% higher than the teacher. In the subse-
quent delays that we explored, the subword-level also had
not shown the balance point between the speed and per-
formance, unlike the character-level AT-ISR. The character-
level AT-ISR is better at mimicking the teacher because the
necessary information to predict a character token can be
satisfied by a shorter speech segment than for predicting a
subword token. Figure 6 shows the examples of character-
level and subword-level attention matrices that were gener-
ated using non-incremental ASR in the corresponding unit-
level. It shows that the subword token scored a high score to
several encoder states consecutively more than the character
token. This is because a subword token consists of several
characters. Therefore, the subword-level ISR’s performance
cannot approach the teacher’s level when the input window
cannot include or fails to reach the other speech segments
with a high attention score.

Fig. 6 Examples of attention matrix generated by the non-incremental
ASR during inference. From these matrices, in AT-ISRs training, a text
token is aligned to a speech segment, which corresponds to an encoder
state, with the monotonically highest alignment score.

Since a subword consists of several characters, the
subword-level ISR requires a longer speech context than the
character-level ISR. Theoretically, when the input segment
is very short, the character-level ISR should be able to result
in a better performance than the subword-level ISR. In our
experiment, however, the subword-level ISR outperformed
the character-level ISR in every delay that we tried. This
is because our ISRs looked at look-ahead blocks when tak-
ing an input segment. In our data, a subword token con-
sists of seven characters on average, and one speech frame
block was aligned to two characters on average. Our short-
est input window configuration utilized one main block with
two look-ahead blocks, which contained information of six
characters on average; it might have a similar amount of
information as the character-level recognition. When the
recognition delay was below 50% of the average utterance
length, the WER difference between the character- and the
subword-level ISRs was around 1%. So within that de-
lay, the quality of both models was similar, although the
subword-level ISR was slightly better.

Figure 7 shows the examples of subword-level ISR out-
put sequences that are aligned to the corresponding input
speech segment. Many subword tokens resembled words
due the size of our subword vocabulary. AT-ISR predicted
the subwords well when the input window covered all the
speech parts where the subwords were uttered. Mistakes
occurred when a subword’s speech duration exceeded the
length of the window. In this picture, for example, token
’impurities‘ was predicted by the AT-ISR as three subwords:
‘em’, ‘pha’, and ‘ities’. The AT-ISR split the prediction of
this token into two incremental steps, causing the recogni-
tion in both steps to overlook some information and output
inaccurate sequences. The non-incremental ASR also strug-
gled to recognize this token correctly but it results in a word
with the sound that resembles the target word since it had
a longer information context. ISR improvement might be
made by splitting a subword token with a long speech dura-
tion into several subword tokens when training the ISR.

6.3 Effect of ISR Delay and Output Unit in Speech Trans-
lation

We performed additional experiments by exploring the ISR
delay and output units that might affect the translation. As
developing incremental NMT is not part of this study, we
evaluated the ISR using a standard NMT as a downstream
task by connecting these systems.

NMT systems generally adopt subwords as the input
and output representation [42]–[44]. Subword representa-
tion could avoid out-of-vocabulary condition, which often
happens in the word-level model, and preserve the word’s
context better than the character-level token. For these fac-
tors, our experiment focused on the subword-level transla-
tion and see how the ISR affects the translation performance.
In this experiment, the AT-ISR models were the models that
were trained with TED-LIUM release 1 dataset.

Since translation by a subword-level NMT requires
subword-level tokens as input, we unified the ISR tokens
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Fig. 7 Examples of speech and subword token alignment of a 3.1 sec speech based on non-
incremental ASR and ISR (delay 0.84 sec) inference. The black-colored tokens are the correctly rec-
ognized tokens, whereas the red-colored tokens are the incorrect tokens. For the non-incremental ASR
alignments, each subword is aligned to the speech part that scored the highest attention score. (‘ ’ =
whitespace token; ‘- -’ = no text output or only output ‘</m>’ token; 1 block = 8 frames = 0.14 sec.)

into subwords that can be recognized by the NMT system.
We performed two approaches to unify and connect the
ISR into a subword-level NMT, which approaches shown
in Fig. 8. The first approach converted the character-level
ISR output into subwords that were covered by the NMT in-
put vocabulary. Since uniforming the ISR output and NMT
input vocabularies with the best performance for both sys-
tems might be time-consuming, this approach is suitable
when a subword-level ISR with the same output vocabu-
lary as the NMT input vocabulary is unavailable. In this
approach, when a character sequence from ISR forms a
word, this word is segmented into subwords using a word-
to-subword segmentation model. In our experiment, the
word-to-subword segmentation model was the Sentence-
Piece model that we used to tokenize the words in the NMT
source language training data into subwords. The second
approach was a direct ISR and NMT integration, where the
ISR is a subword-level model with a matching output vo-
cabulary with the NMT input vocabulary.

The speech recognition performance and translation
quality on tst2010 set can be seen in Table 3. We marked
the results based on the statistical significance test result
with a significance level of 5%. The translation quality was
measured by 1-gram and 4-gram BLEU (bilingual evalua-
tion understudy) [46] scores, NIST [47], TER (translation
error rate), and METEOR (metric for evaluation of trans-
lation with explicit ordering) [48] scores of the translation
result. BLEU score measures the position-independent n-
gram word matches between the hypothesis and the refer-
ence. NIST evaluation metric is an alteration from BLEU,
in which it gives more weight to the correct n-gram that is
rare to occur. TER measures the minimum number of edits
that are required to change the translation result so it exactly
matches the reference, where the possible edits are insertion,

Fig. 8 ISR in speech translation task (En-Fr): (a) end-to-end character-
level ISR is connected to NMT via character-to-subword conversion with
SentencePiece tokenizer; (b) end-to-end subword-level ISR directly con-
nected to subword-level NMT.

deletion, and substitution. METEOR is an evaluation metric
that calculates the score based on the harmonic mean of uni-
gram precision and recall. Translation result with the higher
BLEU, NIST, and METEOR scores represents a higher per-
formance, while a lower TER is better. Since the ASR re-
sults contain errors, the translation quality degrades com-
pared to the translation from the correct transcription. The
low translation quality from the ISR output was caused by
the nature of incremental recognition, in which the model is
forced to produce outputs based on a short input segment.
This situation affected the translation quality.

With the condition of low delay speech recognition,
end-to-end subword-level AT-ISR resulted in the best speech
recognition and translation performance. The translation re-
sult from the character-level AT-ISR output that was con-
verted into subwords was less successful than the end-to-
end subword-level AT-ISR due to its low speech recognition
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Table 3 Speech recognition and English-French translation performance on tst2010 set: Symbols in
some scores indicate statistical significance test result with p < 0.05. (↓ = lower is better; ↑ = higher is
better; ch-sw (spm) = character-level ASR with character-to-subword conversion using SentencePiece;
sw (e2e) = end-to-end subword-level ASR; ⋆ = significantly different from baseline with identical
output units; ⋄ = not significantly different from baseline with identical output units; • = significantly
different from ch-sw (spm) with identical delays; † = not significantly different from ch-sw (spm) with
identical delays; m = main input frame block; la = look-ahead input frame block; 1 block = 8 frames =
0.14 sec.)

ASR Output
Speech Recognition Translation

CER ↓ WER ↓ UCR ↓ BLEU1 ↑ BLEU4 ↑ NIST ↑ TER ↓ METEOR ↑
Correct transcription 0.0 0.0 1.36 59.4 31.6 7.34 53.7 52.0

Topline: Non-incremental ASR (delay = 7.58 sec (avg.))
ch-sw (spm) 15.11 26.75 2.67 47.1 21.1 5.37 69.1 39.4
sw (e2e) 12.39 • 22.43 • 0.50 • 50.0 • 23.1 • 5.80 • 65.4 • 42.2 •
Baseline ISR: Att Enc-Dec ISR + HMM-GMM alignment
delay = 0.84 sec (4 m + 4 la)
ch-sw (spm) 28.03 42.50 1.74 37.8 13.3 3.93 79.8 28.7
sw (e2e) 31.17 • 38.31 • 0.44 • 41.5 • 15.9 • 4.47 • 74.8 • 31.1 •
Proposed: AT-ISR
delay = 0.54 sec (1 m + 4 la)
ch-sw (spm) 21.56 ⋆ 41.39 ⋄ 10.07 ⋆ 38.0⋄ 13.5⋄ 4.00 ⋄ 80.9 ⋆ 29.8 ⋄
sw (e2e) 21.52 ⋆ † 36.56 ⋆ • 0.60 ⋆ • 42.6 ⋆ • 16.3 ⋆ • 4.66 ⋆ • 74.3 ⋆ • 33.4 ⋆ •
delay = 0.84 sec (4 m + 4 la)
ch-sw (spm) 19.18 ⋆ 33.09 ⋆ 4.45 ⋆ 44.0 ⋆ 17.9 ⋆ 4.87 ⋆ 72.8 ⋆ 34.8 ⋆
sw (e2e) 15.71 ⋆ • 28.17 ⋆ • 0.86 ⋆ • 47.2 ⋆ • 20.6 ⋆ • 5.38 ⋆ • 68.7 ⋆ • 39.1 ⋆ •

Table 4 Speech translation performance of our system and other works
on IWSLT 2015 English-French translation task tested on tst2015. (↓ = the
lower the better; ↑ = the higher the better)

System
Performance

BLEU4 ↑ TER ↓
Official IWSLT system result[45] 16.98 80.4
Ours with correct source text (topline) 31.41 54.5
Ours with non-incremental ASR 19.95 72.5
Ours with AT-ISR (proposed) 16.67 75.1

performance and error propagation. The translation qual-
ity from subword-level AT-ISR text also approached those
of published system with an NMT, which the results com-
parison on IWSLT 2015 English-French speech translation
task [49] is shown in Table 4.

AT-ISR delay affected not only the speech recognition
but also the translation performance; a higher delay resulted
in a lower WER and a higher BLEU score. Figure 9 shows
how the AT-ISR delay and output adaptation approach af-
fected the translation 4-gram BLEU score.

Interestingly, although the character-level AT-ISR and
the subword-level AT-ISR might have a similar WER in with
the same delay, the translation quality from the subword-
level AT-ISR still outperformed the character-level AT-ISR.
It can be seen in Fig. 9 at the point of AT-ISR delay of 50%
of the total utterance length. In that condition, although the
WERs of both AT-ISR systems were close, the ISR UCRs
and BLEUs were significantly different; the best UCR and
BLEU scores were achieved by the end-to-end subword-
level AT-ISR. A similar trend was observed in the other
translation metrics. It implies that speech translation quality
is not only affected by the WER but also by the UCR that
represents the number of words that do not exist in the NMT
word vocabulary. Since language translation is depends on
word semantics, ISR token sequences that did not resem-

Fig. 9 The effect of AT-ISR delay on the speech translation task. The
evaluation was done on tst2010 set. (’ch-sw (spm)‘ = character-level ASR
with character-to-subword conversion using SentencePiece; ’sw (e2e)‘ =
end-to-end subword-level ASR; S = average speech utterance length in
tst2010 set (7.58 sec); 1 block = 8 frames = 0.14 sec.)

ble a word with meaning, which might not appear in NMT
training material, could decrease the speech translation per-
formance. Subwords maintains a longer context of a word
than characters, so it could resulted in better translation than
the character-level model.

7. Related Works

ISR system is a necessary component in a modular real-time
speech translation system. The HMM-based ASR [38], [50],
the conventional ASR approach, could perform real-time
speech recognition because it recognizes the speech incre-
mentally. The HMM-based ASR, however, cannot perform
end-to-end recognition, which is the current state-of-the-art
approach, although the prediction accuracy could be better
than end-to-end systems. End-to-end ASR [21], [22], [28]
use attention-based encoder-decoder architecture to do the
recognition by combining the acoustic, lexicon, and lan-
guage model components in the conventional ASR into a
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single neural network model. Previously, several neural net-
work frameworks that can be applied for ISR tasks were
proposed. Hwang et al. [39] proposed a neural ISR that
uses unidirectional LSTM with CTC training objective and
beam-search mechanism with depth-pruning. Jaitly et al. [7]
proposed a neural transducer framework that consists of an
attention-based structure. This framework recognizes the
speech segment-by-segment with a fixed window. Segment-
based speech recognition is achieved by learning the align-
ment during the training phase. In the original work [7],
the alignment can be either generated by an external sys-
tem, such as HMM-GMM ASR, or with the neural trans-
ducer itself by computing and updating the approximately
best alignment several times through dynamic programming
type of methods. But, as we mentioned earlier, since the
neural transducer is required to compute and update the best
alignment within the segment in order to lean the incremen-
tal recognition, this framework becomes more complicated
than the standard attention-based ASR.

After finishing our experiment, we noticed recent pa-
pers that also introduced approaches for a neural incremen-
tal ASR. For example, Inaguma et al. (2020) proposed an
ISR based on a seq2seq model with monotonic chunkwise
attention, whose model learns from the alignment taken
from a hybrid ASR model [9]. ISR frameworks were also re-
cently proposed that utilize a recurrent neural network trans-
ducer (RNN-T) and a frame-synchronous model [10], [11].
An ISR model with an RNN-T consists of an RNN-T en-
coder, an RNN-T decoder, and a standard attention-based
seq2seq re-scorer. ISRs based on a neural transformer with
CTC were also proposed in which the model did incremen-
tal recognition by segmenting the input [12] or by limiting
the attention range [13]. The related ISR works generally
focused on ISR for mobile-based applications, and utiliza-
tion on a speech translation task remains uninvestigated. As
we mentioned above, the recent ISR frameworks also re-
quire a more complicated structure than the standard non-
incremental ASR. In our framework, we tackled this prob-
lem by tuning the non-incremental ASR for incremental
recognition tasks by learning from its attention alignment,
allowing an ISR with a simple mechanism and a close per-
formance to the non-incremental recognition task. In this
work, we demonstrated it using an LSTM-based seq2seq
model. Our approach can also be applied to other attention-
based neural network structures, such as Transformer, which
we postpone to future work because here we are focusing
on an attention transfer mechanism between a teacher and a
student model with identical structure to build a simple ISR.

ISR-MT or ASR-MT integration is a challenging
problem due to error propagation and the incompatibil-
ity of training materials in both modules. By using non-
incremental systems, several studies addressed this chal-
lenge by adapting the ASR output to MT [51], [52]. Wang et
al. [53] previously constructed a real-time system prototype
by unifying an HMM-based ASR system and an online MT
system [54]. Recently, Ren et al. proposed an end-to-end
simultaneous speech translation with wait-k strategy [55].

Compared to the number of ISR studies, the study about
the utilization of neural ISR in speech translation remains
limited.

8. Conclusion

In this work, we constructed neural ISR for low-delay
end-to-end speech recognition. We proposed attention-
transfer ISR (AT-ISR) that learns attention knowledge from
its teacher neural non-incremental ASR and adopts the
teacher’s structure. Low delay speech recognition is fol-
lowed by a trade-off between delay and performance. Our
character-level AT-ISR showed a comparable performance
to the non-incremental ASR when the delay equals to or
more than 25% of the total utterance length, therefore, we
could use this configuration for this model to keep the bal-
ance between speech recognition latency and performance.
ISR’s performance closeness to the teacher depends on the
granularity of the output unit. When the output unit has
a coarse granularity, such as subword, it might result in
higher recognition performance than the model with finer
output unit granularity, such as character. On the other side,
ISR with a fine-granulated output unit is faster to achieve a
teacher-like performance than ISR with a coarse-granulated
output unit. In the downstream task with NMT, our end-to-
end subword-level ISR resulted in the best translation qual-
ity with the lowest WER and the lowest uncovered-word
rate.

For future work, we are interested in the exploration
to improve ISR and construct a full-fledged real-time S2ST
system.
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Estève, “The LIUM ASR and SLT systems for IWSLT 2015,” Proc.
IWSLT, pp.50–54, 2015.

[46] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “BLEU: A method for
automatic evaluation of machine translation,” Proc. ACL, pp.311–
318, July 2002.

[47] G. Doddington, “Automatic evaluation of machine translation qual-
ity using N-gram co-occurrence statistics,” Proc. HLT, pp.138–145,
2002.

[48] S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments,” Proc.
ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for
Machine Translation and/or Summarization, pp.65–72, June 2005.

[49] M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, R. Cattoni, and M.
Federico, “The IWSLT 2015 evaluation campaign,” Proc. IWSLT,
pp.2–14, 2015.

[50] L. Rabiner, “A tutorial on hidden Markov models and selected ap-
plications in speech recognition,” Proc. IEEE, vol.77, no.2, pp.257–
286, Feb. 1989.

[51] D. Dechelotte, H. Schwenk, G. Adda, and J. Gauvain, “Improved
machine translation of speech-to-text outputs,” Proc. Interspeech,

http://dx.doi.org/10.1109/ICASSP40776.2020.9054098
http://dx.doi.org/10.1109/ICASSP40776.2020.9054098
http://dx.doi.org/10.1109/ICASSP40776.2020.9054098
http://dx.doi.org/10.1109/ICASSP40776.2020.9054188
http://dx.doi.org/10.1109/ICASSP40776.2020.9054188
http://dx.doi.org/10.1109/ICASSP40776.2020.9054188
http://dx.doi.org/10.1109/ICASSP40776.2020.9054188
http://dx.doi.org/10.1109/ICASSP40776.2020.9054188
http://dx.doi.org/10.1109/ICASSP40776.2020.9054188
http://dx.doi.org/10.1109/ICASSP40776.2020.9054188
http://dx.doi.org/10.1109/ICASSP40776.2020.9054715
http://dx.doi.org/10.1109/ICASSP40776.2020.9054715
http://dx.doi.org/10.1109/ICASSP40776.2020.9054715
http://dx.doi.org/10.1109/ICASSP40776.2020.9053165
http://dx.doi.org/10.1109/ICASSP40776.2020.9053165
http://dx.doi.org/10.1109/ICASSP40776.2020.9053165
http://dx.doi.org/10.1109/ICASSP40776.2020.9054476
http://dx.doi.org/10.1109/ICASSP40776.2020.9054476
http://dx.doi.org/10.1109/ICASSP40776.2020.9054476
http://dx.doi.org/10.7202/004626ar
http://dx.doi.org/10.7202/004626ar
http://dx.doi.org/10.1007/s10590-008-9047-0
http://dx.doi.org/10.1007/s10590-008-9047-0
http://dx.doi.org/10.1007/s10590-008-9047-0
http://dx.doi.org/10.1007/978-1-4615-9077-4_28
http://dx.doi.org/10.1007/978-1-4615-9077-4_28
http://dx.doi.org/10.1007/978-1-4615-9077-4_28
http://dx.doi.org/10.1109/ICASSP.2003.1198756
http://dx.doi.org/10.1109/ICASSP.2003.1198756
http://dx.doi.org/10.1109/ICASSP.2003.1198756
http://dx.doi.org/10.21437/Interspeech.2006-204
http://dx.doi.org/10.21437/Interspeech.2006-204
http://dx.doi.org/10.1075/target.3.2.03gil
http://dx.doi.org/10.1075/target.3.2.03gil
http://dx.doi.org/10.1075/target.3.2.03gil
http://dx.doi.org/10.1109/ICASSP.2016.7472621
http://dx.doi.org/10.1109/ICASSP.2016.7472621
http://dx.doi.org/10.1109/ICASSP.2016.7472621
http://dx.doi.org/10.18653/v1/D15-1166
http://dx.doi.org/10.18653/v1/D15-1166
http://dx.doi.org/10.18653/v1/D15-1166
http://dx.doi.org/10.1007/978-3-642-24797-2_2
http://dx.doi.org/10.1007/978-3-642-24797-2_2
http://dx.doi.org/10.1109/ICASSP.2018.8462576
http://dx.doi.org/10.1109/ICASSP.2018.8462576
http://dx.doi.org/10.1109/ICASSP.2018.8462576
http://dx.doi.org/10.1109/ICASSP.2018.8462105
http://dx.doi.org/10.1109/ICASSP.2018.8462105
http://dx.doi.org/10.1109/ICASSP.2018.8462105
http://dx.doi.org/10.1109/ICASSP.2018.8462105
http://dx.doi.org/10.1109/ICASSP.2018.8462105
http://dx.doi.org/10.21437/Interspeech.2019-2277
http://dx.doi.org/10.21437/Interspeech.2019-2277
http://dx.doi.org/10.21437/Interspeech.2019-2277
http://dx.doi.org/10.18653/v1/P16-1162
http://dx.doi.org/10.18653/v1/P16-1162
http://dx.doi.org/10.18653/v1/P16-1162
http://dx.doi.org/10.18653/v1/D18-2012
http://dx.doi.org/10.18653/v1/D18-2012
http://dx.doi.org/10.18653/v1/D18-2012
http://dx.doi.org/10.3115/1075527.1075614
http://dx.doi.org/10.3115/1075527.1075614
http://dx.doi.org/10.1109/SLT.2018.8639528
http://dx.doi.org/10.1109/SLT.2018.8639528
http://dx.doi.org/10.1109/SLT.2018.8639528
http://dx.doi.org/10.21437/Interspeech.2017-1386
http://dx.doi.org/10.21437/Interspeech.2017-1386
http://dx.doi.org/10.21437/Interspeech.2017-1386
http://dx.doi.org/10.1561/2000000004
http://dx.doi.org/10.1561/2000000004
http://dx.doi.org/10.1561/2000000004
http://dx.doi.org/10.1109/ICASSP.2016.7472696
http://dx.doi.org/10.1109/ICASSP.2016.7472696
http://dx.doi.org/10.1109/ICASSP.2016.7472696
http://dx.doi.org/10.1109/ICASSP.2017.7953075
http://dx.doi.org/10.1109/ICASSP.2017.7953075
http://dx.doi.org/10.1109/ICASSP.2017.7953075
http://dx.doi.org/10.21437/Interspeech.2019-2985
http://dx.doi.org/10.21437/Interspeech.2019-2985
http://dx.doi.org/10.21437/Interspeech.2019-2985
http://dx.doi.org/10.18653/v1/P18-1007
http://dx.doi.org/10.18653/v1/P18-1007
http://dx.doi.org/10.18653/v1/P18-1007
http://dx.doi.org/10.18653/v1/W18-1207
http://dx.doi.org/10.18653/v1/W18-1207
http://dx.doi.org/10.18653/v1/W18-1207
http://dx.doi.org/10.3115/1073083.1073135
http://dx.doi.org/10.3115/1073083.1073135
http://dx.doi.org/10.3115/1073083.1073135
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/5.18626


2208
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.12 DECEMBER 2021

pp.2441–2444, 2007.
[52] E. Matusov and H. Ney, “Lattice-based ASR-MT interface for

speech translation,” IEEE Trans. Audio, Speech, Language Process.,
vol.19, no.4, pp.721–732, May 2011.

[53] X. Wang, A. Finch, M. Utiyama, and E. Sumita, “A prototype auto-
matic simultaneous interpretation system,” Proc. COLING, pp.30–
34, Dec. 2016.

[54] X. Wang, A. Finch, M. Utiyama, and E. Sumita, “An efficient and
effective online sentence segmenter for simultaneous interpretation,”
Proc. WAT, pp.139–148, Dec. 2016.

[55] Y. Ren, J. Liu, X. Tan, C. Zhang, T. QIN, Z. Zhao, and T.Y. Liu,
“SimulSpeech: End-to-end simultaneous speech to text translation,”
Proc. ACL, pp.3787–3796, July 2020.

Sashi Novitasari received her B.S. degree
in Informatics (cum laude) from Bandung In-
stitute of Technology, Indonesia, in 2018. She
continued her studies at the Graduate School of
Science and Technology, Nara Institute of Sci-
ence and Technology, Japan, and received her
M.E. in 2020. She is currently taking a doctoral
course at Nara Institute of Science and Technol-
ogy, Japan. She is a recipient of the Japanese
Ministry of Education, Culture, Sport, Science,
and Technology (MEXT) scholarship. Her re-

search interests include speech recognition and spoken language translation
systems.

Sakriani Sakti received her B.E. degree
in Informatics (cum laude) from Bandung Insti-
tute of Technology, Indonesia, in 1999. In 2000,
she received DAAD-Siemens Program Asia 21st
Century Award to study in Communication
Technology, University of Ulm, Germany, and
received her MSc degree in 2002. During
her thesis work, she worked with Speech Un-
derstanding Department, DaimlerChrysler Re-
search Center, Ulm, Germany. Between 2003–
2009, she worked as a researcher at ATR SLC

Labs, Japan, and during 2006–2011, she worked as an expert researcher
at NICT SLC Groups, Japan. While working with ATR-NICT, Japan, she
continued her study (2005–2008) with Dialog Systems Group University
of Ulm, Germany, and received her Ph.D. degree in 2008. She actively
involved in collaboration activities such as Asian Pacific Telecommunity
Project (2003–2007), A-STAR, and U-STAR (2006–2011). In 2009–2011,
she served as a visiting professor of Computer Science Department, Uni-
versity of Indonesia (UI), Indonesia. In 2011–2017, she was an assistant
professor at the Augmented Human Communication Laboratory, NAIST,
Japan. She also served as a visiting scientific researcher of INRIA Paris-
Rocquencourt, France, in 2015–2016, under JSPS Strategic Young Re-
searcher Overseas Visits Program for Accelerating Brain Circulation. In
2018–2021, she was a research associate professor at NAIST and a re-
search scientist at RIKEN, Center for Advanced Intelligent Project AIP,
Japan. Currently, she is an associate professor at JAIST, adjunct associate
professor at NAIST, visiting research scientist at RIKEN AIP, and adjunct
professor at the University of Indonesia. She is a member of JNS, SFN,
ASJ, ISCA, IEICE, and IEEE. She is also a committee member of IEEE
SLTC (2021–2023) and an associate editor of the IEEE/ACM Transactions
on Audio, Speech, and Language Processing (2020–2023). Furthermore,
she is the chair of ELRA/ISCA Special Interest Group on Under-resourced
Languages (SIGUL) and a Board Member of Spoken Language Technolo-
gies for Under-Resourced Languages (SLTU). Her research interests in-
clude statistical pattern recognition, graphical modeling framework, deep
learning, multilingual speech recognition and synthesis, spoken language
translation, affective dialog system, and cognitive-communication.

Satoshi Nakamura is Professor of Graduate
School of Science and Technology, Nara Insti-
tute of Science and Technology, Japan, Project
Leader of Tourism Information Analytics Team
of RIKEN, Center for Advanced Intelligence
Project AIP, Honorarprofessor of Karlsruhe In-
stitute of Technology, Germany, and ATR Fel-
low. He received his B.S. from Kyoto Institute
of Technology in 1981 and Ph.D. from Kyoto
University in 1992. He was Associate Profes-
sor of Graduate School of Information Science

at Nara Institute of Science and Technology in 1994–2000. He was Di-
rector of ATR Spoken Language Communication Research Laboratories
in 2000–2008 and Vice president of ATR in 2007–2008. He was Direc-
tor General of Keihanna Research Laboratories and the Executive Director
of Knowledge Creating Communication Research Center, National Insti-
tute of Information and Communications Technology, Japan in 2009–2010.
He is currently Director of Augmented Human Communication laboratory
and a full professor of Graduate School of Information Science at Nara
Institute of Science and Technology. He is interested in modeling and sys-
tems of speech-to-speech translation and speech recognition. He is one of
the leaders of speech-to-speech translation research and has been serving
for various speech-to-speech translation research projects in the world in-
cluding C-STAR, IWSLT and A-STAR. He received Yamashita Research
Award, Kiyasu Award from the Information Processing Society of Japan,
Telecom System Award, AAMT Nagao Award, Docomo Mobile Science
Award in 2007, ASJ Award for Distinguished Achievements in Acoustics.
He received the Commendation for Science and Technology by the Min-
ister of Education, Science and Technology, and the Commendation for
Science and Technology by the Minister of Internal Affair and Communi-
cations. He also received LREC Antonio Zampolli Award 2012. He has
been Elected Board Member of International Speech Communication As-
sociation, ISCA, since June 2011, IEEE Signal Processing Magazine Ed-
itorial Board Member since April 2012, IEEE SPS Speech and Language
Technical Committee Member since 2013, and IEEE Fellow since 2016.

http://dx.doi.org/10.1109/TASL.2010.2060483
http://dx.doi.org/10.1109/TASL.2010.2060483
http://dx.doi.org/10.1109/TASL.2010.2060483
http://dx.doi.org/10.18653/v1/2020.acl-main.350
http://dx.doi.org/10.18653/v1/2020.acl-main.350
http://dx.doi.org/10.18653/v1/2020.acl-main.350

