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PAPER

DNN-Based Low-Musical-Noise Single-Channel Speech
Enhancement Based on Higher-Order-Moments Matching

Satoshi MIZOGUCHI†a), Nonmember, Yuki SAITO†b), Shinnosuke TAKAMICHI†c),
and Hiroshi SARUWATARI†d), Members

SUMMARY We propose deep neural network (DNN)-based speech en-
hancement that reduces musical noise and achieves better auditory impres-
sions. The musical noise is an artifact generated by nonlinear signal pro-
cessing and negatively affects the auditory impressions. We aim to develop
musical-noise-free speech enhancement methods that suppress the musical
noise generation and produce perceptually-comfortable enhanced speech.
DNN-based speech enhancement using a soft mask achieves high noise re-
duction but generates musical noise in non-speech regions. Therefore, first,
we define kurtosis matching for DNN-based low-musical-noise speech en-
hancement. Kurtosis is the fourth-order moment and is known to correlate
with the amount of musical noise. The kurtosis matching is a penalty term
of the DNN training and works to reduce the amount of musical noise.
We further extend this scheme to standardized-moment matching. The ex-
tended scheme involves using moments whose orders are higher than kur-
tosis and generalizes the conventional musical-noise-free method based on
kurtosis matching. We formulate standardized-moment matching and ex-
plore how effectively the higher-order moments reduce the amount of mu-
sical noise. Experimental evaluation results 1) demonstrate that kurtosis
matching can reduce musical noise without negatively affecting noise sup-
pression and 2) newly reveal that the sixth-moment matching also achieves
low-musical-noise speech enhancement as well as kurtosis matching.
key words: speech enhancement, musical noise, kurtosis, moment match-
ing, deep learning

1. Introduction

Estimating clean speech signals from noisy ones is very im-
portant for speech-based applications [1]–[3], and speech
enhancement takes a role in the front-end of the appli-
cations [4]–[9]. The back-end processes can be classified
into two cases: machine and human. Speech enhance-
ment for the former case (e.g., automatic speech recogni-
tion) should optimize objective measures such as recog-
nition accuracy. Speech enhancement for the latter case
(e.g., speech telecommunication) should improve subjective
measures such as auditory impressions. Although speech
enhancement techniques for machine-oriented applications
have been widely studied [10], techniques that can achieve
better auditory impressions have not been established yet.
Also, speech enhancement for human-oriented applications
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is needed in portable devices because speech telecommuni-
cations often require high portability. One major approach
is multi-channel speech enhancement [11], which typically
involves using a microphone array to model the spatial rela-
tion between microphones and a speaker to estimate a clean
speech signal. However, it is unsuitable for portable de-
vices because the microphone array requires a large physical
space. Therefore, this paper addresses how to improve the
auditory impression of single-channel speech enhancement.

Deep neural network (DNN)-based speech enhance-
ment [4]–[8] involves using a DNN to estimate clean speech
from noisy speech based on a supervised-learning frame-
work. This can achieve better noise suppression thanks to
the non-linearity of DNNs. The major approach in DNN-
based speech enhancement is based on a soft mask. The
DNN in this approach outputs a soft mask from a noisy sig-
nal, and the enhanced signal is estimated by masking the
amplitude spectrogram of the noisy signal. The DNN pa-
rameters are often optimized by minimizing an objective
measure (e.g., the L1,1 norm between amplitude spectro-
grams of target clean and enhanced signals). Although the
trained DNN can significantly reduce noise in an observed
speech signal, it often causes artifacts in the non-speech
regions and degrades the auditory impressions, as shown
in the left half of Fig. 1. A well-known example of such
artifacts is musical noise [12], [13] in non-speech regions,
which is artificial distortion caused by nonlinear signal pro-

Fig. 1 Comparison of conventional and proposed DNN-based speech en-
hancement methods. The conventional method can significantly suppress
noise in the observed signal but causes artifacts in the non-speech regions.
Our method reduces the artifacts by preserving higher-order moments in
the non-speech regions before and after speech enhancement.

Copyright c⃝ 2021 The Institute of Electronics, Information and Communication Engineers



1972
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.11 NOVEMBER 2021

Fig. 2 The remainder of this paper.

cessing (e.g., DNN-based speech enhancement).
To achieve low-musical-noise speech enhancement, we

propose DNN-based speech enhancement using moment
matching. First, we define kurtosis matching as a penalty
term of the DNN training objective. Kurtosis is the fourth-
order moment known to strongly correlate with the amount
of musical noise [14]. The kurtosis matching works to pre-
vent the increase of kurtosis in non-speech regions, as shown
in the right half of Fig. 1. We further extend this scheme
to standardized-moment matching. The extended scheme
generalizes kurtosis matching and involves using moments
whose orders are higher than the kurtosis. We formulate
standardized-moment matching and explore how effectively
high-order moments reduce musical noise, which was not
fully investigated in previous speech enhancement stud-
ies. Our experimental evaluation results 1) demonstrate that
kurtosis matching can reduce musical noise without nega-
tively affecting noise suppression and 2) newly reveal that
the sixth-moment matching also achieves low-musical-noise
speech enhancement as well as kurtosis matching.

The remainder of this paper is organized as follows
(also shown in Fig. 2). Section 2 reviews the conventional
DNN-based speech enhancement method and how it de-
grades auditory impressions due to musical noise. Section 3
describes our proposed method using kurtosis matching, and
Sect. 4 extends our method to standardized-moment match-
ing. Section 5 provides experimental evaluation. Section 6
concludes this paper.

2. Conventional DNN-Based Speech Enhancement

This section describes conventional DNN-based speech en-
hancement using a soft mask. Figure 3 shows the procedure.

2.1 Mask Estimation by DNN

Let X be an amplitude spectrogram of an observed signal,
which is calculated through short-term Fourier transform
(STFT). A DNN f (·), whose model parameters are defined
as Θ, outputs a soft mask S from X (i.e., S = f (X;Θ)). The
enhanced signal’s amplitude spectrogram Z is calculated as
the Hadamard product (i.e., element-wise product) of the in-
put spectrogram and the soft mask (i.e., Z = S ◦ X). The

Fig. 3 Procedure of conventional DNN-based speech enhancement using
a soft mask.

Fig. 4 Example of musical noise. The left and right are amplitude spec-
trograms of observed and enhanced signals, respectively. The red-circled
speckled spectrogram in right figure is musical noise, which sounds artifi-
cial and significantly degrades audio impressions.

X,S, and Z are the (K + 1)-by-T matrices, and their com-
ponents are defined as Xk,t, S k,t and Zk,t, respectively. The
k ∈ K := {0, · · · ,K} represents the frequency bin, and the
t ∈ T := {1, · · · ,T } represents the frame index.

Given a clean signal’s target amplitude spectrogram Y,
the DNN training’s objective function is defined as

L(X,Y;Θ) := ∥S ◦ X − Y∥1,1, (1)

where ∥ · ∥1,1 is the L1,1 norm that indicates the sum of the
absolute values of each element. The DNN model param-
eters (i.e., weight matrices and bias vectors) are optimized
to minimize the sample expectation of Eq. (1) over training
data calculated as

Θ̂ = argmin
Θ

E[L(X,Y;Θ)]

≃ argmin
Θ

1
M

M∑
m=1

L(Xm,Ym;Θ), (2)

where Xm and Ym denote the mth training examples. The
trained DNN outputs a soft mask to extract speech compo-
nents from an observed spectrogram and suppresses noise.
The enhanced signal in the time domain is calculated
through inverse STFT using the masked amplitude spectro-
gram S◦X and the observed signal’s original phase spectro-
gram.
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2.2 Problem: Musical Noise

Non-linear signal processing (e.g., masking amplitudes)
causes musical noise in non-speech regions. Figure 4 shows
an example of musical noise. The speckled spectrogram
in the non-speech regions sounds very artificial and signif-
icantly degrades auditory impressions†. Such speckles can
be seen as outliers of an amplitude’s distribution.

3. Enhancement Using Kurtosis Matching

We define kurtosis matching in Sect. 3.1 and propose DNN-
based speech enhancement using the kurtosis matching in
Sect. 3.2. Figure 5 shows the DNN training procedure.

3.1 Kurtosis Definition

Kurtosis is defined as the fourth-order moment. It can eval-
uate the weight of a probability density function’s skirts.
Therefore, it can quantify outliers of the observed data. The
amount of musical noise in non-speech regions is known to
strongly correlate with kurtosis [14]. Let W be a nonnega-
tive scalar random variable that follows a probability distri-
bution p(w). The nth moment of W is defined as

µn :=
∫ ∞

0
wn p(w)dw, (3)

and the kurtosis of W is defined by using the second and
fourth moments as

KW :=
µ4

µ2
2

. (4)

Note that the original kurtosis definition in statistics is
the central moment; in other words, the moment regard-
ing the random variable’s mean. However, since the zero-
mean (i.e., non-central) second-order moment corresponds

Fig. 5 Procedure of proposed DNN-based speech enhancement with kur-
tosis matching. The matrix M is a mask to determine the non-speech re-
gions, such that all the elements corresponding to the non-speech regions
are 1 and all other elements are 0.

†The speckle is also observed in the speech regions, but its
effect on auditory impressions is negligible.

to noise power in a speech signal, zero-mean kurtosis is ap-
propriate. Therefore, we define Eq. (4) as zero-mean kurto-
sis. Given T observed data W1, · · · ,WT , the sample kurtosis
κW is derived by the Monte Carlo integration as

κW =
1
T

∑T
t=1 W4

t(∑T
t=1 W2

t

)2 . (5)

3.2 Kurtosis Discrepancy

We define the kurtosis discrepancy (KD) to quantify the in-
crease of the kurtosis by DNN-based speech enhancement.
The KD definition is inspired by the generative moment
matching network (GMMN) [15], but our definition differs
in that it does not use a kernel function to calculate the dis-
crepancy. We use the frequency sub-band KD of an ampli-
tude spectrogram in non-speech regions.

We split a set of frequency indices into Ki :=
{ki, · · · , ki+1−1}, where i = 1, · · · ,N−1, k1 = 0, kN = K+1.
A non-speech region’s set of frame indices is denoted as
T ′ ⊂ T . The KD in the non-speech regions is defined as

KD(X, Z) :=
N∑

i=1

αi

∣∣∣K t∈T ′
k∈Ki

(Xk,t) − K t∈T ′
k∈Ki

(Zk,t)
∣∣∣ , (6)

where K t∈T ′
k∈Ki

(Xk,t) is the sample kurtosis of the non-speech
regions’ amplitude spectrogram within the kth sub-bund,
which is calculated by Eq. (5). The α = [α1, · · · , αN] is the
weight parameter of the sample kurtosis for each frequency
sub-band.

The KD shown in Eq. (6) evaluates the increase of
the kurtosis, but the KD value depends on the absolute
value of the increase. Therefore, DNN training using only
the KD term underestimates the kurtosis increase of low-
kurtosis noise (e.g., Gaussian noise). We confirmed this
phenomenon in our preliminary experiment. Therefore, we
define yet another discrepancy called scaled kurtosis dis-
crepancy (SKD) as

SKD(X, Z) :=
N∑

i=1

αi

∣∣∣∣∣∣∣K
t∈T ′
k∈Ki

(Xk,t) − K t∈T ′
k∈Ki

(Zk,t)

K t∈T ′
k∈Ki

(Xk,t)

∣∣∣∣∣∣∣
=

N∑
i=1

αi

∣∣∣∣∣∣∣1 − K
t∈T ′
k∈Ki

(Zk,t)

K t∈T ′
k∈Ki

(Xk,t)

∣∣∣∣∣∣∣ , (7)

which corresponds to the distance between 1 and the kur-
tosis ratio of enhanced and observed amplitude spectro-
grams [14].

3.3 DNN Training

We propose DNN training for speech enhancement that con-
siders the SKD. The SKD term shown in Eq. (7) is added to
the objective function as the penalty term, and it works to
reduce the amount of musical noise. The objective function
is reformulated as
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Fig. 6 Enhanced amplitude spectrograms using the conventional method
(top) and the proposed kurtosis matching method (bottom). The red-
circled parts in the spectrogram enhanced by the conventional method
represent non-speech regions containing musical noise (i.e., speckled ar-
tifacts). The proposed method successfully removes these artifacts and
achieves musical-noise-free speech enhancement.

LSKD(X,Y;Θ) := L(X,Y;Θ)

+ λSKD(X, f (X;Θ) ◦ X), (8)

where λ is a hyperparameter to control the weight of the
kurtosis matching.

Figure 6 shows amplitude spectrograms enhanced by
the conventional method (i.e., without kurtosis matching)
and our proposed method with kurtosis matching. We can
see that speckled artifacts (i.e., musical noise) are removed
by our method.

4. Enhancement Using Standardized-Moment Match-
ing

We theoretically extend DNN training with the kurtosis
matching proposed in Sect. 3. Although the kurtosis ra-
tio is known to have a strong correlation with the amount
of musical noise [14], it contains arbitrariness as an objec-
tive measure. Therefore, we propose a framework that uses
higher-order moments than kurtosis does, and we explore
a new method that successfully achieves low-musical-noise
speech enhancement. First, we generalize kurtosis to a stan-
dardized moment in Sect. 4.1, then we define a new DNN
training objective in Sect. 4.2.

4.1 Standardized Moment [16]

We define the nth standardized moment, which generalizes
the kurtosis definition shown in Eq. (5) as

K(n)
W :=

µn

µn/2
2

, (9)

where the fourth standardized moment corresponds to kur-
tosis (i.e., κ(4)

W = κW ). Since W is a non-negative random
variable (i.e., an element of an amplitude spectrogram), κ(n)

W
represents the amount of outliers when n > 2. Therefore, the

use of the higher-order standardized moments should quan-
tify the amount of musical noise. Given T observed data
W1, · · · ,WT , the sample standardized moment κ(n)

W is derived
by the Monte Carlo integration as

κ(n)
W =

1
T

∑T
t=1 Wn

t(
1
T

∑T
t=1 W2

t

)n/2 = T n/2−1

∑T
t=1 Wn

t(∑T
t=1 W2

t

)n/2 . (10)

4.2 DNN Training with Standardized-Moment Matching

Similar to the kurtosis ratio [14], we define the standardized-
moment ratio as

κ(n)

Ŝ◦X

κ(n)
X

. (11)

The ratio can quantify the increase of the standardized mo-
ment due to the soft-masking process. The nth standardized
moment of the amplitude spectrogram X in non-speech re-
gions is calculated as

SM
Ki,T ′;n

(X) =
T ′n/2−1∑

t∈T ′
∑

k∈Ki
Xn

k,t(∑
t∈T ′
∑

k∈Ki
X2

k,t

)n/2 , (12)

where T ′ denotes the number of frames in the non-speech re-
gions. We define the nth-order scaled standardized-moment
discrepancy (n-SSMD) as

SSMD(n)(X, Z) :=
N∑

i=1

αi

∣∣∣∣∣∣SMKi,T ′;n(X) − SMKi,T ′;n(Z)

SMKi,T ′;n(X)

∣∣∣∣∣∣
=

N∑
i=1

αi

∣∣∣∣∣∣1 − SMKi,T ′;n(Z)

SMKi,T ′;n(X)

∣∣∣∣∣∣ , (13)

which corresponds to the distance between 1 and Eq. (11).
Therefore, the kurtosis matching is the special case of n-
SSMD (i.e., 4-SSMD is equivalent to Eq. (7)).

We propose a training objective for DNN-based speech
enhancement that considers the increase of some standard-
ized moments as the penalty terms. Given the set of moment
orders to be considered N , we define the loss function as

LSSMD(X,Y;Θ) := L(X,Y;Θ)

+ λ
∑
n∈N
γnSSMD(n)(X, f (X;Θ) ◦ X),

(14)

where γn is a hyperparameter that determines the rela-
tive importance of each n-SSMD term, which satisfies∑

n∈N γn = 1. By performing speech enhancement using
DNNs trained to minimize Eq. (14) with various settings of
N and each γn, and evaluating the results subjectively, we
can explore higher-order standardized moments other than
kurtosis that can reduce the amount of musical noise.
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5. Experimental Evaluation

5.1 Experimental Conditions

The training and evaluation data were 31, 869 utterances se-
lected from the JNAS corpus [17] and 200 utterances se-
lected from the JSUT corpus [18]. These corpora were
Japanese clean speech corpora, and the sentences and speak-
ers did not overlap between the corpora. Fixed-length si-
lence regions were concatenated to the utterances. Six kinds
of noise were prepared, and they were artificially added to
the silence-concatenated utterances with {−5, 0, 5, 10} dB of
the SNR settings. They consisted of five real noise record-
ings selected from the DEMAND corpus [19] (PSTATION,
PRESTO, NFIELD, SPSQUARE, and TBUS), and one arti-
ficial Gaussian noise (GAUSS). Table 1 lists the six kinds of
noise we used in this evaluation to cover a wide range of kur-
tosis. Note that we did not build noise-specific enhancement
models, i.e., we trained single DNN by using noisy speech
generated with these six noise cases and four SNR settings.
The sampling rate was 16 kHz. The window function of
STFT was the 1,024-tap Hanning window. The hop size
of STFT was 80. The DNN architecture was U-Net [20],
which consisted of 12 hidden convolutional layers, Leaky
ReLU activation [21], and Dropout [22]. The minibatch size
was set to 32, and the patch length was set to 256. The
number of sub-bands N was set to 4. The sub-band indices
were set to κ1 = [0, · · · , 127] , κ2 = [128, · · · , 255] , κ3 =
[256, · · · , 383], and κ4 = [384, · · · , 512]. Weights of
the SKD terms for each sub-band were empirically set
to [0.01, 1.0, 1.0, 1.0]. A weight of the kurtosis matching
term or standardized-moment matching, i.e., λ in Eq. (8) or
Eq. (14), was empirically set to 1 × 10−4. An Adam opti-
mizer [23] with 0.01 of the learning rate was used for the
DNN training. The number of training iterations was 30.

5.2 Conventional Method vs. Proposed Kurtosis Matching

This section confirms that our proposed kurtosis matching
can reduce musical noise without negatively affecting noise
suppression. The methods to be compared are labeled as
follows.

• Conventional: conventional DNN-based speech en-
hancement (Sect. 2)
• Proposed (kurt): proposed method with kurtosis

matching (Sect. 3)

Table 1 Noise and its kurtosis used for experimental evaluation

Noise Description Kurtosis
GAUSS Gaussian noise 3.00
PSTATION Busy subway station 5.56
PRESTO University restaurant 12.1
NFIELD Sports field 13.3
SPSQUARE Public town square 29.8
TBUS Public transit bus 35.8

5.2.1 Objective Evaluation

We calculated the following objective evaluation metrics of
enhanced signals.

• Signal-to-distortion ratio (SDR) improvement: a ba-
sic criterion to measure speech enhancement perfor-
mance. Higher is better.
• Cepstrum distortion (CD) in speech regions: distor-

tion in speech region. Smaller is better.
• Kurtosis ratio (KR) in non-speech regions: 1 means

that speech enhancement does not change kurtosis.
• Perceptual evaluation of speech quality (PESQ) [24]:

a commonly used criterion to evaluate speech quality of
enhanced speech objectively. Higher is better.

These values were calculated over all the evaluation utter-
ances.

Table 2 lists the median values of the four evaluation
metrics (see Appendix A for their box plots). In all the set-
tings of the SNR and noise, “Proposed (kurt)” slightly de-
teriorates SDR improvement, CD, and PESQ. This is rea-
sonable because the proposed SKD term works as the regu-
larization during training and does not necessarily improve
these criteria more than the conventional method trained to
minimize Eq. (1) (i.e., the L1,1 norm) only. However, the de-
grees of deterioration can be acceptable (< 3 dB for SDR
improvement, < 1.5 dB for CD, and < 0.43 for PESQ), and
we can expect the negative effects of the proposed kurto-
sis matching on noise suppression to be very small. Fo-
cusing on the KR value results, “Proposed (kurt)” signifi-
cantly decreases the values in all the SNR and noise settings
compared with “Conventional.” Note that the KR values of
“Proposed (kurt)” does not match with 1 because the method
does not theoretically guarantee to fix kurtosis before and af-
ter speech enhancement. These results suggest that our pro-
posed method with kurtosis matching reduces musical noise
with little degradation of noise suppression.

5.2.2 Subjective Evaluation

We subjectively evaluated the audio impressions of non-
speech regions after utilizing the conventional and pro-
posed DNN-based speech enhancement methods. The
non-speech regions used for this evaluation were trimmed
from enhanced speech. Preference AB tests (listening
tests) on naturalness were conducted in our crowdsourcing
evaluation system. We used the crowdsourcing platform
“Lancers” [25]. We presented listeners with pairs of the non-
speech regions of the conventional and proposed methods in
random order. Each listener selected the one that sounded
more natural. The listening tests were conducted for each
of the SNR and noise settings. Twenty-four listeners partic-
ipated in each test. Each listener answered for ten pairs, and
240 answers were collected for each test. The total number
of listeners was 6 (noise settings) × 4 (SNR settings) × 24
(listeners) = 576.
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Table 2 Median values of SDR improvement, CD, KR, and PESQ. The values were calculated over
all the evaluation data. Evaluation results of conventional method (“Conventional”), proposed methods
with kurtosis matching (“Proposed (kurt)”), and standardized-moment matching (“Proposed (6th)”) are
listed

Noise SNR
SDR improvement [dB] CD [dB] KR PESQ

Conven-
tional

Proposed
(kurt)

Proposed
(6th)

Conven-
tional

Proposed
(kurt)

Proposed
(6th)

Conven-
tional

Proposed
(kurt)

Proposed
(6th)

Conven-
tional

Proposed
(kurt)

Proposed
(6th)

GAUSS -5 dB 19.53 16.85 16.69 11.65 12.77 12.37 138.07 7.25 4.52 1.89 1.64 1.56
0 dB 17.22 15.42 15.29 10.98 12.63 11.98 223.13 7.79 5.19 2.15 1.89 1.79
5 dB 14.88 13.59 13.62 10.09 12.02 10.78 290.58 8.62 6.04 2.40 2.16 2.01

10 dB 12.66 11.52 11.63 9.02 10.87 9.44 296.59 8.79 6.06 2.66 2.42 2.23
PSTATION -5 dB 17.83 16.28 16.24 8.43 9.42 9.05 60.09 3.16 3.02 1.84 1.74 1.62

0 dB 16.61 14.64 14.70 6.03 7.14 6.96 64.38 7.02 5.30 2.30 2.07 1.92
5 dB 15.02 12.71 12.75 4.42 5.37 5.14 58.30 11.82 8.15 2.62 2.34 2.20

10 dB 13.36 10.66 10.75 3.35 4.03 3.78 47.41 13.37 8.51 2.90 2.61 2.49
PRESTO -5 dB 10.05 10.30 9.40 10.51 11.32 10.95 12.44 2.94 4.31 1.26 1.27 1.20

0 dB 10.94 10.92 10.66 9.25 10.40 10.02 11.41 2.80 3.52 1.73 1.65 1.55
5 dB 10.18 10.14 10.06 7.85 8.91 8.42 11.54 2.13 2.15 2.15 1.99 1.85

10 dB 8.97 8.67 8.64 5.54 6.74 6.26 11.59 2.33 1.73 2.51 2.30 2.14
NFIELD -5 dB 25.84 22.78 22.99 5.18 5.90 4.78 23.36 4.69 3.73 2.63 2.43 2.29

0 dB 23.57 20.36 20.57 3.90 4.31 3.99 20.04 4.94 4.31 2.96 2.74 2.61
5 dB 21.29 17.69 17.86 3.12 3.58 3.44 19.40 5.97 5.85 3.22 2.99 2.90

10 dB 18.42 14.21 14.54 2.50 2.75 2.85 19.22 6.42 6.58 3.47 3.27 3.21
SPSQUARE -5 dB 18.27 17.09 17.08 5.86 6.02 5.00 8.63 3.02 2.52 1.97 1.84 1.71

0 dB 18.05 16.58 16.54 4.34 4.72 4.26 8.23 3.01 2.68 2.41 2.23 2.09
5 dB 17.31 15.36 15.30 3.35 3.80 3.69 9.31 2.62 2.50 2.77 2.58 2.44

10 dB 15.84 13.52 13.48 2.76 3.18 3.26 10.48 3.34 2.88 3.05 2.88 2.77
TBUS -5 dB 26.21 23.27 23.30 4.21 4.58 4.15 8.25 4.23 3.26 2.72 2.55 2.40

0 dB 23.97 21.25 21.25 3.32 3.67 3.64 6.94 4.38 3.72 3.02 2.85 2.72
5 dB 21.89 18.96 19.17 2.56 2.83 2.94 7.79 4.66 4.66 3.32 3.17 3.09

10 dB 18.88 15.46 15.90 2.29 2.41 2.51 9.13 5.27 4.95 3.55 3.44 3.39

Table 3 lists the result. “Proposed (kurt)” significantly
outperforms “Conventional” in almost every case except for
the “GAUSS” case. We predict that the quality deterioration
in the “GAUSS” case will not be a serious problem in prac-
tice since the Gaussian noise is artificially generated. These
results demonstrate that our proposed method with kurtosis
matching can reduce musical noise in DNN-based speech
enhancement to achieve better auditory impressions.

5.3 Kurtosis Matching vs. Standardized-Moment Match-
ing

We investigated the effectiveness of higher-order standard-
ized moments in musical noise reduction by using the pro-
posed standardized-moment matching. Here, we used both
kurtosis and the sixth-order moment, with various weight
parameter settings γ6 = [0.00, 0.25, 0.50, 0.75, 1.00] and
γ4 = 1 − γ6. The setting with γ6 = 0.0 is equivalent to
“Proposed (kurt)” (i.e., using only kurtosis), and that with
γ6 = 1.0 is equivalent to using only the sixth-order moment.
We labeled the latter case “Proposed (6th).”

5.3.1 Objective Evaluation

As in Sect. 5.2.1, we calculated SDR improvement, CD, KR,
and PESQ. Table 2 lists the results of γ6 = 0.0 (“Proposed
(kurt)”) and γ6 = 1.0 (“Proposed (6th)”) settings. No sig-
nificant differences between the two methods are observed
among the SDR improvement, CD, and PESQ. Curiously,
“Proposed (6th)” improves the KR values more than “Pro-
posed (kurt)” does using some settings; although it was out

Table 3 Preference scores on naturalness of noise with ξ2-test’s p-
values. Conventional method (“Conventional”) and Proposed method with
kurtosis matching (“Proposed (kurt)”) are compared. Bold indicates sig-
nificantly (p-value < 0.05) better scores

Noise
label

Input
SNR

Conven-
tional

Proposed
(kurt) p-value

GAUSS −5 dB 0.688 0.313 < 10−10

0 dB 0.804 0.196 < 10−10

5 dB 0.725 0.275 < 10−10

10 dB 0.863 0.138 < 10−10

PSTATION −5 dB 0.408 0.592 5.34 × 10−5

0 dB 0.417 0.583 2.45 × 10−4

5 dB 0.404 0.596 2.36 × 10−5

10 dB 0.271 0.729 < 10−10

PRESTO −5 dB 0.517 0.483 4.66 × 10−1

0 dB 0.421 0.579 4.98 × 10−4

5 dB 0.354 0.646 < 10−10

10 dB 0.483 0.517 4.66 × 10−1

NFIELD −5 dB 0.250 0.750 < 10−10

0 dB 0.221 0.779 < 10−10

5 dB 0.200 0.800 < 10−10

10 dB 0.192 0.808 < 10−10

SPSQUARE −5 dB 0.367 0.633 2.94 × 10−9

0 dB 0.383 0.617 2.34 × 10−7

5 dB 0.225 0.775 < 10−10

10 dB 0.250 0.750 < 10−10

TBUS −5 dB 0.238 0.763 < 10−10

0 dB 0.258 0.742 < 10−10

5 dB 0.167 0.833 < 10−10

10 dB 0.238 0.763 < 10−10

of the consideration during training. This result newly re-
veals that the sixth-moment matching can also reduce the
amount of musical noise as a side effect similar to kurtosis
matching. Note that the use of intermediate settings (i.e.,
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Table 4 Preference scores on naturalness of noise with ξ2-test’s p-
values. Proposed methods with kurtosis matching (“Proposed (kurt)”) and
standardized-moment matching (“Proposed (6th)”) are compared. Bold in-
dicates significantly (p-value < 0.05) better scores

Noise
label

Input
SNR

Proposed
(kurt)

Proposed
(6th) p-value

GAUSS −5 dB 0.508 0.492 8.00 × 10−1

0 dB 0.456 0.544 1.64 × 10−1

5 dB 0.560 0.440 5.78 × 10−2

10 dB 0.476 0.524 4.48 × 10−1

PSTATION −5 dB 0.432 0.568 3.15 × 10−2

0 dB 0.464 0.536 2.55 × 10−1

5 dB 0.444 0.556 7.66 × 10−2

10 dB 0.524 0.476 4.48 × 10−1

PRESTO −5 dB 0.444 0.556 7.66 × 10−2

0 dB 0.484 0.516 6.13 × 10−1

5 dB 0.504 0.496 8.99 × 10−1

10 dB 0.516 0.484 6.13 × 10−1

NFIELD −5 dB 0.424 0.576 1.62 × 10−2

0 dB 0.428 0.572 2.28 × 10−2

5 dB 0.336 0.664 2.15 × 10−7

10 dB 0.312 0.688 2.76 × 10−9

SPSQUARE −5 dB 0.544 0.456 1.64 × 10−1

0 dB 0.544 0.456 1.64 × 10−1

5 dB 0.564 0.436 4.30 × 10−2

10 dB 0.476 0.524 4.48 × 10−1

TBUS −5 dB 0.648 0.352 2.87 × 10−6

0 dB 0.612 0.388 3.97 × 10−4

5 dB 0.620 0.380 1.48 × 10−4

10 dB 0.644 0.356 5.27 × 10−6

γ6 = {0.25, 0.50, 0.75}) does not show any improvements
(see Appendix B), and the following subjective evaluation
compares only “Proposed (kurt)” and “Proposed (6th).”

5.3.2 Subjective Evaluation

As in Sect. 5.2.2, the preference AB tests were conducted on
the naturalness of non-speech regions processed by “Prop
(kurt)” and “Prop. (6th).” Table 4 lists the result. The
scores of “Proposed (6th)” are comparable or better than
those of “Proposed (kurt)” in all cases except for “TBUS”
noise. This result indicates that we can use both kurtosis
and the sixth-order moment to achieve low-musical-noise
speech enhancement. One possible reason for the quality
degradation in the “TBUS” case is unstable modeling due
to the highest kurtosis among the six noise settings, which
increases the ratio of outliers and makes the training based
on standardized-moment matching more difficult.

6. Conclusion

We proposed DNN-based speech enhancement with kurtosis
or standardized-moment matching. The scaled discrepancy
between kurtosis or the standardized moment of enhanced
and observed amplitude spectrograms is introduced as the
penalty term of DNN training, which works to reduce mu-
sical noise in non-speech regions. The experimental evalu-
ation results 1) demonstrated that DNN training with kurto-
sis matching reduced musical noise and 2) newly revealed
that the sixth-moment matching also achieved low-musical-
noise speech enhancement as well as kurtosis matching. Our

future work includes a detailed investigation of the hyperpa-
rameter settings of the proposed method.
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Appendix A: Detailed Visualizations for Objective
Measures

To deeply discuss the objective evaluation results shown
in Table 2, we show the box plots of the SDR improve-
ment, CD, KR, and PESQ values in Fig. A· 1, Fig. A· 2,
Fig. A· 3, and Fig. A· 4, respectively. The box indicates the
first, second (i.e., median), and third quartiles. An upper
limit of whisker is 1.5 times longer than an interquartile
range. Points denote outlier values. As one example, results

Fig. A· 1 Box plots of SDR improvement. The conventional method and
proposed method with kurtosis matching are compared. Higher is better.

of “PSTATION” noise were drawn. The median values of
the criteria are different among SNR settings, but the overall
tendencies of the two methods’ results are similar regardless
of the settings.

Fig. A· 2 Box plots of CD. The conventional method and proposed
method with kurtosis matching are compared. Lower is better.

Fig. A· 3 Box plots of KR. The conventional method and proposed
method with kurtosis matching are compared. 1 indicates no increase in
kurtosis by speech enhancement.

Fig. A· 4 Box plots of PESQ. The conventional method and proposed
method with kurtosis matching are compared. Higher is better.

http://dx.doi.org/10.1109/TASL.2012.2196513
http://dx.doi.org/10.1109/TASL.2012.2196513
http://dx.doi.org/10.1109/TASL.2012.2196513
http://dx.doi.org/10.1109/TASL.2012.2196513
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/ICASSP.2001.941023
http://dx.doi.org/10.1109/ICASSP.2001.941023
http://dx.doi.org/10.1109/ICASSP.2001.941023
http://dx.doi.org/10.1109/ICASSP.2001.941023


MIZOGUCHI et al.: LOW-MUSICAL-NOISE SPEECH ENHANCEMENT
1979

Appendix B: Investigation of Combined Kurtosis and
Standardized-Moment Matching

Fig. A· 5 Box plots of SDR improvement. Our standardized-moment-
matching-based proposed method with several weight settings are com-
pared. Higher is better.

Fig. A· 6 Box plots of cepstrum distortion. Our standardized-moment-
matching-based proposed method with several weight settings are com-
pared. Lower is better.

Fig. A· 7 Box plots of kurtosis ratio. Our standardized-moment-
matching-based proposed method with several weight settings are com-
pared. 1 indicates no increase in kurtosis by speech enhancement.

Fig. A· 8 Box plots of PESQ. Our standardized-moment-matching-based
proposed method with several weight settings are compared. Higher is
better.

We investigated the effects of the combinations of hyper-
parameters (γ4, γ6) used in Sect. 5.3.1. As in Appendix
A, we show the box plots of SDR improvement, CD, KR,
and PESQ with various settings of γ6 in Fig. A· 5, Fig. A· 6,
Fig. A· 7, and Fig. A· 8, respectively. These results allow
us to empirically determine that the intermediate settings of
the fourth and sixth moments matching methods (i.e., γ6 =

{0.25, 0.50, 0.75}) do not benefit the objective evaluation cri-
teria, compared with “Proposed (kurt)” (i.e., γ6 = 0.0) and
“Proposed (6th)” (i.e., γ6 = 1.0).
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