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FCA-BNN: Flexible and Configurable Accelerator for Binarized
Neural Networks on FPGA

Jiabao GAO†a), Member, Yuchen YAO†, Zhengjie LI†, Nonmembers, and Jinmei LAI†b), Member

SUMMARY A series of Binarized Neural Networks (BNNs) show the
accepted accuracy in image classification tasks and achieve the excellent
performance on field programmable gate array (FPGA). Nevertheless, we
observe existing designs of BNNs are quite time-consuming in change of
the target BNN and acceleration of a new BNN. Therefore, this paper
presents FCA-BNN, a flexible and configurable accelerator, which em-
ploys the layer-level configurable technique to execute seamlessly each
layer of target BNN. Initially, to save resource and improve energy effi-
ciency, the hardware-oriented optimal formulas are introduced to design
energy-efficient computing array for different sizes of padded-convolution
and fully-connected layers. Moreover, to accelerate the target BNNs effi-
ciently, we exploit the analytical model to explore the optimal design pa-
rameters for FCA-BNN. Finally, our proposed mapping flow changes the
target network by entering order, and accelerates a new network by com-
piling and loading corresponding instructions, while without loading and
generating bitstream. The evaluations on three major structures of BNNs
show the differences between inference accuracy of FCA-BNN and that
of GPU are just 0.07%, 0.31% and 0.4% for LFC, VGG-like and Cifar-
10 AlexNet. Furthermore, our energy-efficiency results achieve the results
of existing customized FPGA accelerators by 0.8× for LFC and 2.6× for
VGG-like. For Cifar-10 AlexNet, FCA-BNN achieves 188.2× and 60.6×
better than CPU and GPU in energy efficiency, respectively. To the best of
our knowledge, FCA-BNN is the most efficient design for change of the
target BNN and acceleration of a new BNN, while keeps the competitive
performance.
key words: BNN, FPGA accelerators, hardware-oriented optimal formu-
las, analytical mode, mapping flow

1. Introduction

Field programmable gate arrays (FPGAs) offer high flex-
ibility, performance and energy-efficiency, thus there is a
lot of attention in FPGA for accelerating convolutional neu-
ral networks (CNNs) [1]–[5]. Nevertheless, most designs of
CNNs generally have sub-millisecond latency, high power
consumption and low energy-efficiency. To overcome the
above issues, Binarized Neural Networks (BNNs) [6] on
FPGAs have recently attracted a growing attention [7]–[12].
Fasfous et al. [13] provide a solution for accurate BNN [14],
which employs DSPs to execute the multiplications and
XNOR-Popcount operations concurrently, but they just give
the evaluation of processing element without realization of
a whole network. Moreover, the computing performance
is bound by limited DSP resource in FPGAs [15]. There-
fore, FPGAs with abundant LUT resources are ideal for
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accelerating BNNs with only XNOR-Popcount operations
to better support real-time embedded applications with ac-
ceptable accuracy [7].

However, for efficiently switching BNN models with
respect to different requirements and accelerating a new
BNN on mobile platforms, a framework for building FPGA
accelerators to the corresponding BNN models is worth re-
searching. Recently, there are already some frameworks
proposed for building the corresponding FPGA accelera-
tors for different models [16]–[19]. To accelerate different
target models, these authors need to call the correspond-
ing code templates of required operations to construct the
computing arrays with respect to the design parameters, and
then implement corresponding accelerators. Firstly, accord-
ing to structures of SFC, LFC and VGG-like models, and
their respective performance requirements, FINN proposed
in [16] first determines scale parameters to describe comput-
ing units of each layer, and then employs these parameters
to generate different accelerators for each BNN model. Sec-
ondly, FP-BNN proposed in [17] employs design parameters
of tiling and scheduling to implement the respective hard-
ware accelerators for MLP, VGG-like, and AlexNet models.
Thirdly, the design method of ReBNet [18] is similar to that
of both FINN and FP-BNN, which allows users to specify
the parallelism computing factors of each layer, and then
generates the corresponding accelerators to SLC, VGG-like
and AlexNet models. Finally, different from FINN, FP-
BNN and ReBNet, LUTNet [19] directly utilizes the basic
resource LUTs to implement accelerator design. Moreover,
LUTNet uses the self-design implementation flow of FPGA
to generate the corresponding accelerators to LFC, VGG-
like and AlexNet models. In short, the existing works need
to at least load the bitstream into the FPGA while switch
of the target model, and even generate the bitstream to a
new target model. Nevertheless, loading bitstream can af-
fect the efficiency of the target model change, and generat-
ing bitstream is the very time-consuming process [16]–[19],
which usually takes at least several hours for large-scale
design. Therefore, it is worth of exploring a flexible and
configurable accelerator, which can switch the target BNNs
quickly for different application and reprogram to the target
FPGA rapidly after each improvement of BNNs.

Under the premise of ensuring that the accelerator can
rapidly complete switch of the target model and acceleration
of a new model, the improvements of inference accuracy and
performance are also crucial.

Firstly, to minimize the differences of inference
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accuracy (DoIA) between on FCA-BNN and on GPU, many
works employ padding operations to input feature maps
(IFM) in CNOV layers, achieving small DoIA [12], [16],
[17]. However, the computing arrays of existing designs are
just needed to complete a specific model with the certain
sizes of padded CONV operations to reduce DoIA.

Secondly, to achieve required performance at minimal
hardware resource cost, the corresponding analytical mod-
els are proposed to determine the design parameters for their
accelerators [16], [17]. Umuroglu et al. [16] develop the
customized roofline model to their accelerator framework
by using the methodology in [20], and obtain required per-
formance for LFC and VGG-like models; Liang et al. [17]
also propose their customized analytical model, and use this
model to estimate resource cost, determine the size of task
tiles, then get remarkable performance for MPL, VGG-like
and AlexNet models. However, the existing analytical mod-
els are not applicable to our goal to accelerate multiple mod-
els on a uniform accelerator.

To sum up, there are several challenges to design a
flexible and configurable accelerator at reasonable resource
cost. Firstly, the computing array needs to calculate differ-
ent sizes of padded CONV and FC operations while still
using 1 bit to represent activations ±1, padding value 0 and
invalid output, which makes the arrays maintain binary de-
sign while achieving small DoIA. Secondly, the analytical
model needs to determine the optimal design parameters
which make different BNN models accelerate on a uniform
accelerator efficiently. Thirdly, the process of the mapping
flow for switching target network and accelerating a new
network needs to be quick. To overcome these challenges,
we propose FCA-BNN accelerator with its corresponding
analytical model and mapping flow. Specifically, the main
contributions of this work are as follows:

• Efficient adaptivity to different sizes of padded CONV
and FC operations. By using the character of Popcount
operations, the original formulas are transformed into the
hardware-friendly formulas to design the energy-efficient
computing arrays, achieving binary design and small DoIA.
• Efficient acceleration for most popular BNN models.

The analytical model is proposed to explore the optimal de-
sign parameters for the uniform computing arrays. This
makes FCA-BNN achieve the competitive results in terms
of performance, and energy efficiency.
• Efficient mapping to change of the target BNN and ac-

celeration of a new target BNN. The mapping flow is de-
veloped to switch the target BNN by just entering order and
accelerate a new target BNN by compiling and loading in-
structions, without loading and generating bitstream.
• Combining all the contributions above, we implement

FCA-BNN on XC7Z100 FPGA and evaluate it for LFC,
VGG-like, Cifar-10 AlexNet. The results show these BNNs
on FCA-BNN achieve small DoIA and high performance.

The rest of this paper is organized as follows: Sect. 2
proposes the hardware-oriented optimization formulas for
FCA-BNN. The corresponding hardware accelerator design

is presented in Sect. 3. The analytical model and mapping
flow both for FCA-BNN are introduced in Sects. 4 and 5, re-
spectively. Experimental results will be discussed in Sect. 6,
and conclusion will be given in Sect. 7.

2. Hardware-Oriented Optimization Formulation

2.1 BNN Inference

Since BNN is an extreme version of CNN, its construct is
also a stack of CONV layers followed by a Pooling layer,
and FC layers. However, benefited from the weights and
activizations constrained to +1 and −1, BNNs can replace
the MAC operations with the XNOR-Popcount operations.
Hence, the calculation process of CONV and FC is shown
as follows:

pl,n,r,c =

ICl−1∑
m=0

Kl−
⌈ Kl

2

⌉∑
j=−

⌊ Kl
2

⌋
Kl−

⌈ Kl
2

⌉∑
i=−

⌊ Kl
2

⌋(wl,n,m, j,i � fl−1,m,r+ j,c+i)

yl,n,r,c = 2pl,n,r,c − Ll + biasl,n (1)

fl,n,r,c = sign(bn(yl,n,r,c))

Where � represents XNOR logic operation; bn and
sign are batch normalization (BN) and binarization (BIN)
functions, respectively. The meanings of the subscripts in
Eq. (1): l represents the lth layer of BNN; r and c denote the
rth row and the cth column in the output feature map (OFM);
m and n denote the mth input and the nth output channels.
The meanings of the variables in Eq. (1): IC and K repre-
sent the number of input channels and the kernel size; L and
bias are the count of weights used for computing one OFM
and the bias value, respectively; f and w are the feature map
and weights; p is the sum of number of +1 s which output
from w � f ; y is the result of convolution. Note that K is
equal to odd numbers, i.e., 1, 3, 5, 7 and 11 in most network
models [6], [16], [21], [22].

2.2 XNOR-Popcount Optimized to FCA-BNN

As shown in Eq. (1), the CONV and FC layers insist of
a large number of XNOR-Popcount operations, however,
FPGAs have limited resources. Hence, these operations are
divided into tiles of a reasonable size by the loop tiling tech-
nique of FPGA hardware design [12], [16], [17]. Assume
the computing array (Sect. 3.3) has N PEs for N parallel
output channels. Moreover, each PE, including H XNOR
engines, H Adder trees and H Accumulators (ACCU), is
responsible for calculating the outputs of H columns of the
same raw in one channel. Each XNOR engine has W XNOR
elements for one output. Hence, the parameters of maxi-
mum possible parallelism can be expressed as follows:

PICm =

⌊
log2

(
W
Kl

)⌋

PICOLm = (H − 1) ∗ Sl + Kl

POCm = N (2)
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POCOLm = H

Here, S is the stride of the convolution; PICm is the max
count of parallel input channels which is generally equal to
a powers-of-2 positive integer in most layers except the first
layer [6], [16], [21], [22]; PICOLm is the max count of paral-
lel input columns; POCm and POCOLm are the max count of
parallel output channels and columns. Besides, the numbers
of parallel input and output rows both equal to 1.

To match with the computing array, we develop
a Channel-Column-Tile partition (CCTP) pattern, which
broadcasts PICm ∗ PICOLm inputs to each PE at each cy-
cle. Hence, when the lth layer has more input channels than

the array can handle, it is divided into Tic =

⌈
ICl

PICm

⌉
tiles.

After finishing one tile, the integer variable ti increases one,
which ranges from 0 to Tic − 1.

Specifically, PICOLm inputs of each channel are first
partitioned into H groups by the rule with Kl consecutive
inputs and Sl stride. Afterwards, Kl consecutive inputs with
the same locations from PICm input channels in each tile
are regrouped into H input blocks, and then the blocks are
separately brought into H XNOR engines. Consequently,
the results from the XNOR operations are fed into Adder
tree to calculate ptl,n,r,c which accumulates for Tic ∗Kl cycles
in ACCU to produce the POP result phl,n,r,c. Hence, ptl,n,r,c
and phl,n,r,c are calculated as follows:

ptl,n,r,c =

(ti+1)∗PICm−1∑
m=ti∗PICm

Kl−
⌈ Kl

2

⌉∑
i=−

⌊ Kl
2

⌋(wl,n,m, j,i � fl−1,n,m,r+ j,c+i)

ti = (0, 1, . . . ,Tic − 1) (3)

phl,n,r,c =

Tic−1∑
ti=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Kl−

⌈ Kl
2

⌉∑
j=−

⌊ Kl
2

⌋(ptl,n,r,c)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
However, to simultaneously meet different kernel sizes

of CONV and FC, W XNOR elements and PICm ∗ Kl in-
puts satisfy the inequation W ≥ PICm ∗ Kl. Suppose there
are XNORidle idle XNOR elements in the current operations.
Hence, the relationship between W, PICm ∗Kl and XNORidle

can be expressed as:

W = PICm × Kl + XNORidle, XNORidle ≥ 0 (4)

Meanwhile, to reduce DoIA, zero-padding is used to
IFM, which means adding zeros around the outside of the
IFM when either r + j or c + i is smaller than 0. Obvi-
ously, since the idle XNOR elements and zero-padding are
introduced, the hardware design needs at least two bits to
represent +1, −1 and 0, which leads to high resource cost.
However, we observe that Popcount operations are used to
count the number of +1 s from XNOR operations. Inspired
by this observation, we use a set bit (1) and an unset bit (0)
to represent +1 and {−1, 0}, respectively, which implements
binary design. Besides, we use the two functions, reset and
clock enable, of flip-flop to implement the control of idle

elements and zero-padding, respectively, which means the
elements do not use additional LUT resource. Therefore,
the calculation of ptl,n,r,c can be transformed as follow:

pt′l,n,r,c =
(ti+1)∗PICm−1∑

m=ti∗PICm

Kl−
⌈ Kl

2

⌉∑
i=−

⌊ Kl
2

⌋
(
(wl,n,m, j,i� fl−1,n,m,r+ j,c+i) · P̄

)

+

XNORidle−1∑
id=0

vid |clk EN=Ī (5)

Where P̄ and Ī are the reset and clock enable signals
of flip-flop, respectively; vid is the output from the idth idle
XNOR element. More specifically, when P̄ is active, the
XNOR element output 0 with no regard for f and w, mean-
ing that 0-padding enable is valid; When Ī is active, the
clock transition of the XNOR element is ignored, meaning
that the idle elements can save energy. Accordingly, the POP
result ph′l,n,r,c can be got by accumulating pt′l,n,r,c.

To sum up, we employ hardware-oriented optimization
formula to design energy-efficient computing array which
efficiently supports different sizes of padded CONV and FC
operations. More importantly, it keeps binary design with
saving LUT resource and improving energy efficiency.

2.3 Max Pooling (MP) Optimized to FCA-BNN

In most popular BNNs [6], [16], [21], [22], 2 × 2 and 3 × 3
MPs both with a stride of 2 are the most commonly used
MP operations. However, to support the two MPs concur-
rently, the hardware design at least needs 4 3-input com-
parators. To reduce the resource cost, we propose the three-
stage-comparison (TSCMP) engine shown as follows:

Stage 1−>M1′l,n,r,c = max(ph′l,n,r,c, ph′l,n,r,c+1, ph′l,n,r,c+2)

M2′l,n,r,c = max(ph′l,n,r+1,c, ph′l,n,r+1,c+1, ph′l,n,r+1,c+2)

Stage 2−>M12′l,n,r,c = max(M1′l,n,r,c,M2′l,n,r,c)

M3′l,n,r,c = max(ph′l,n,r+2,c, ph′l,n,r+2,c+1, ph′l,n,r+2,c+2)

Stage 3−>pm′l,n,r,c = max(M12′l,n,r,c,M3′l,n,r,c) (6)

Where, max is the function for taking the maximum
value. For 3 × 3 MP: In stage 1, 2 3-input comparators are
used to take the max values M1′l,n,r,c and M2′l,n,r,c from the
POP outputs of the first and second rows, respectively; In
stage 2, the 2-input comparator is used to get the max value
M12′l,n,r,c of between M1′l,n,r,c and M2′l,n,r,c. Meanwhile, one
of the 2 3-input comparators is used to take the max value
M3′l,n,r,c from POPs of the third row; In stage 3, another 2-
input comparator is used to get the max value pm′l,n,r,c of
between M12′l,n,r,c and M3′l,n,r,c. Additionally, for 2 × 2 MP,
the TSCMP is just needed the first two stages to take the
max value, and then output it to BN engine by pipeline in
stage 3.

To sum up, the TSCMP just insists of 2 3-input and
2 2-input comparators, which means it uses lower resource
cost to efficiently support 2 × 2 and 3 × 3 MPs. Note that
for the CONV layer without MP, the pm′l,n,r,c is equal to the
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POP output ph′l,n,r,c, meaning that the MP is bypassed.

2.4 Batch Normalization (BN) Optimized to FCA-BNN

For the output pm′l,n,r,c from MP, there are three extra calcu-
lation phases to calculate the input fl,n,r,c of the next layer.
Firstly, the pm′l,n,r,c is converted into the result y′l,n,r,c. Sec-
ondly, the y′l,n,r,c is normalized in BN which is compulsory
for high accuracy in BNNs [8], [9]. Finally, the output x′l,n,r,c
from BN is binarized in BIN by comparing with 0. This
calculation process is shown as follows:

CONV−>y′l,n,r,c = 2pm′l,n,r,c − Ll + biasl,n

BN−>x′l,n,r,c =
y′l,n,r,c − μ√
σ2

γ + β (7)

BIN−> fl,n,r,c = sign(x′l,n,r,c) =

{
+1 x′l,n,r,c ≥ 0
−1 x′l,n,r,c < 0

Obviously, BN is the complex operation shown in
Eq. (7). To reduce the cost of the hardware design, the BN
together with BIN is transformed into the threshold-based
comparison [8], [10], [16]. Furthermore, to better keep the
accuracy of the output, we propose an optimization which
considers bias in the threshold-based comparison. This cal-
culation process is as follows:

x′l,n,r,c =
y′l,n,r,c − μ√
σ2

γ + β = 0

⇒ thl,n =
1
2
×

(
Ll − biasl,n + μ −

√
σ2

γ
× β

)

⇒ fl,n,r,c =

{
+1 pm′l,n,r,c ≥ thl,n

−1 pm′l,n,r,c < thl,n
(8)

However, when fl,n,r,c is not needed to binarized in the
final layer, the above optimization is no longer adapted for
this condition. Hence, linear operation including bias is pro-
posed, which replaces the BN along with the bias. This re-
placing process is as follows:

fl,n,r,c = x′l,n,r,c =
y′l,n,r,c − μ√
σ2

γ + β

fl,n,r,c =
(2pm′l,n,r,c − Ll + biasl,n) − μ

√
σ2

γ + β

fl,n,r,c = A × pm′l,n,r,c + B

⇒ A =
2γ√
σ2
, B = β +

(biasl,n − Ll − μ) × γ√
σ2

(9)

For Eq. (8), ph′l,n,r,c is directly compared with threshold
thl,n. For Eq. (9), pm′l,n,r,c needs to multiply the scale param-
eter A, and then plus the bias parameter B.

3. Accelerator Architecture

3.1 Overview

Figure 1 shows an overview of the BNN inference

Fig. 1 The overview of computing acceleration.

Table 1 Structures of five types of macro layers.

accelerator. When FCA-BNN starts accelerating the target
BNN, Global Controller controls the schedule of the fol-
lowing phases to complete acceleration of the target BNN.
During a load data instruction, the image data and trained
parameters are transferred from Off-chip Memory (DDR3)
to Feature Map Buffers (FMB) and Param Buffers (PB)
blocks, respectively. During a compute acceleration instruc-
tion, Layer-Level Configurable Registers (LLCR) block
(Sect. 3.2) based control configures Computing Acceler-
ation for BNN (CA-BNN), including Computing Arrays
(Sect. 3.3), Pooling (Sect. 3.4) and Batchnorm (Sect. 3.5), as
the required type of macro layer, and then enables the CA-
BNN to execute seamlessly each layer of the target BNN
by pipeline mode. Moreover, during inference, the CA-
BNN takes inputs and trained parameters from FMB and PB
(Sect. 3.6), respectively, to output results which are stored in
FMB for the computing of the next macro layer.

For change of a target BNN among the existing BNNs,
the mapping flow (Sect. 5) is just needed to enter the cor-
responding order, and then FCA-BNN performs the above
phases. For acceleration of a new BNN, the mapping flow is
needed to compile the corresponding instructions and data
for the new BNN. Afterwards, by the communication be-
tween PC and ARM-based Processor, the instructions and
data are loaded into LLCR block and DDR3, respectively.
Finally, FCA-BNN starts accelerating the new BNN.

3.2 Layer-Level Configurable Registers (LLCR) Design

To be compatible with the structures of most popular BNNs,
the LLCR block stores the instructions which are used to
configure and enable the CA-BNN to different types of
macro layers shown in Table 1. Hence, FCA-BNN executes
seamlessly operations of each layer to complete the target
BNN. One instruction of each macro layer consists of the
following signals.
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Fig. 2 Architecture of BCAs and NBCAs. Purple double arrows repre-
sent the instructions and control from LLCR and Global Controller, respec-
tively.

Fig. 3 (a) XNOR element; (b) NOT element.

FCA En is used to enable Global Controller and start
CA-BNN. IFM Type is used to set either BCAs or NBCAs
in Computing Arrays as the active array. CONV FC is used
to configure the active array as either CONV or FC oper-
ations. IFM Size and Kernel Size are the IFM and ker-
nel sizes of CONV layers, respectively. MP En denotes
whether or not MP operation is needed. MP Size stands for
the size of MP. BN Type is used to set either BN-BA or BN-
NBA in Batchnorm block as the active engine. Layer Done
and Net Done denote the current macro layer done and the
network done, respectively.

3.3 Energy-Efficient Computing Arrays Design

As shown in Fig. 1, the Computing Array block consists of
BCAs and NBCAs which are used to perform both padded
CONV and FC operations for binary input and signed fixed-
point input, respectively. Hence, BCAs and NBCAs employ
the same architecture of computing array except computing
element (CE) of PE which is used to calculate different types
of inputs.

Figure 2 shows the architecture of BCAs and NBCAs.
As stated in Sect. 2.2, N PEs are responsible for the
XNOR-Popcount operations of N parallel output channels
in one tile. FMAM and WAM employ the CCTP pattern
and its corresponding weights allocation technique, respec-
tively. For operations of each layer, initially, either BCAs
or NBCAs accepts the instruction (including IFM Type,
IFM Size and Kernel Size signals) and the control from
LLCR and Global Controller. Afterwards, FMAM and
WAM fetch the inputs and weights from FMB and PB, and
then allocate them to the corresponding PEs. Consequently,
the outputs are passed to Pooling block.

For CE (XNOR element) used to calculate binary input
in BCAs, we adopt Eq. (5) to design it shown in Fig. 3 (a),
which insists of an XNOR gate and a FF. When the

element executes padding operation, its output is always
equal to “0”, otherwise its output is equal to the result from
XNOR operation between FM and weight. Additionally,
for CE (Not element) used to calculate fixed-point input in
NBCAs, it insists of one 8-bit NOT gate and one 2-input
MUX, as shown in Fig. 3 (b). When the weight value is 1,
the output is equal to the input, otherwise the output is equal
to the opposite of the input including padding bit 0. Fur-
thermore, clock enable signal Ī is invalid except that of the
activating CEs to save energy, meaning that the computing
arrays can improve the overall energy efficient.

For CONV operations, the PEs adopt CCTP. Hence,
PICm ∗ PICOLm inputs and POCm ∗ PICm ∗ Kl weights
are brought into the PEs to calculate the partial results of
POCm ∗ POCOLm POPs. For FC operations, since there are
just two dimensions including input and output neurons, W
XNOR elements of each XNOR engine are used to receive
PINm inputs and PINm weights, and then N ∗H engines pro-
duce the partial results of PONm POPs. Therefore, as shown
in Eq. (10), the PEs take TCONV and TFC cycles to finish the
CONV and FC operations, respectively, by Eq. (2).

TCONV =
NOC
POCm

∗ NC ∗ NR ∗ NIC ∗ Kl ∗ Kl

POCOLm ∗ PICm ∗ Kl

TFC =
NON
PONm

∗ NIN
PINm

, (PONm ≤ N ∗ H, PINm ≤ W)

(10)

Here, NOC, NIC, NR and NC denote the number of the
output and input channels, and the rows and columns of the
IFM, respectively, in CONV layer. NIN and NON represent
the input and output neurons, respectively, in FC layer.

Furthermore, to detail how FMAM and WAM allocate
inputs and weights to N × H × W XNOR elements for the
computing of different sizes of the padded CONV and FC
operations. Suppose N = 1, H = 2, and W = 6. For CONV
layer with NOC = 2, NIC = 2, NR = NC = 2, Kl = 5,
and Sl = 1, we get POCm = 1, PICm = 1, POCOLm = 2,
PICOLm = 6 and XNORidle = 1 by Eqs. (2) and (4). As
illustrated in Fig. 4 (a), from 1/11 to 10/20 cycles, the PE
can generate POPs of two columns of the first row in the
first and second output channels, respectively; from 21/31 to
30/40 cycles, other two POPs of the second row in the two
output channels can be generated. During the process, the
XNOR element produces 0 when it receives padding enable
signal (Pi). Moreover, XNORidle = 1 means the clock enable
signal of one XNOR element in each engine is always in-
valid in the whole process. Similarly, for CONV layer with
the same parameters except Kl = 3, we can get POCm = 1,
PICm = 2, POCOLm = 2, PICOLm = 4 and XNORidle = 0,
and thus the PE takes 12 cycles to finish the computations
of all POPs by Eq. (10). More importantly, H engines of
each PE share the same weights at each cycle which can re-
duce the bit-width of weights transmission to save power.
Besides, for FC layer with NON = 2 and NIN = 12, we
get PONm = 2 and PINm = 6 by Eq. (10). As illustrated
in Fig. 4 (b), the PE just needs 2 cycles to produce 2 POPs
for the output neurons. Therefore, the computing arrays can
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Fig. 4 Examples for Data allocation technology of FMAM and WAM.
(a) 5 × 5 CONV operations; (b) FC operations.

Fig. 5 Three-stage-comparison (TSCMP) engine.

efficiently support different sizes of padded CONV opera-
tions such as 3 × 3, 5 × 5, etc., and FC operations.

3.4 Pooling Design

The Pooling block receives the instruction from LLCR
which has MP En and MP Size signals. When MP En is
low, the block is set to Bypass mode, meaning that POPs
are forward directly to Batchnorm block. Otherwise, it is
set to either 2 × 2 or 3 × 3 MP by MP Size. To ensure
the block processes these POPs in a pipeline fashion, it in-
sists of N × (H/3) TSCMP engines, which can avoid using a
great deal of storage to store POPs. As shown in Fig. 5, we
employ Eq. (6) to design TSCMP. More importantly, to be
compatible with 2 × 2 and 3 × 3 MPs, the TSCMP contains
3 row buffers of 3 16-bits each shown in the bule boxes of
Fig. 5. Initially, it receives POPs then stores them into the
row buffers. Afterwards, for 3 × 3 MP, while 3 rows and 3
columns of POPs are ready, the TSCMP also takes the max
value after three stages; For 2×2 MP, the TSCMP stops read-
ing new POPs at the third stage, and {(1, 3), (2, 3), (3, 3)} are
always 0, where (i, j) represent the ith row and jth column.

Fig. 6 (a) Comparison engine; (b) linear-operation engine.

Hence, while 2 rows and 2 columns of POPs are ready, the
TSCMP also takes the max value after three stages. Note
that both for the two MP operations, the oldest row buffer
is refilled with the next row of POPs at the third stage since
the oldest row of POPs will never be used. Consequently,
the result pm′ is send to the Batchnorm block.

3.5 Batchnorm Design

The Batchnorm block receives BN Type signal from LLCR.
When BN Type is high/low, the Batchnorm is set to BN-
BA/BN-NBA when the activation type is binary/non-binary.
As shown in Fig. 6 (a) and (b), Eqs. (8) and (9) are employed
to design the two types of BN engines, Comparison engine
and Linear-operation engine. Initially, the block receives the
result from MP pm′ and starts computing. For Comparison
engine, it produces 1 if pm′ ≥ thl,n, otherwise, it produces 0;
For Linear-operation engine, its output is equal to pm′∗A+B.
Consequently, the output activation stored in FMB is used to
the input of the next macro layer. Note that thl,n, A and B are
done offline without additional computing cost in hardware
inference.

3.6 On-Chip Memory (OCM) Deign

OCM, including FMB and PB, receives the instruction and
control from LLCR and Global Controller to complete data
transmission. To overlap transmission with computing,
FMB employs the popular ping-pong technique. Hence,
it has two buffers, which both can provide IFMs and save
OFMs. After each layer done, the two buffers switch their
functions each other.

To improve the efficiency of data read and write, the
storage strategies of FMB and PB are needed to cooper-
ate with FMAM and WAM, respectively. As introduced
in Sect. 3.3, suppose the CONV operation needs inputs of
the nrth row in all the PICm input channels of the ti tile,
PICm ∗ NC inputs are retrieved from ti ∗ nr address of FMB
and reserved the corresponding PICm ∗ PICOLm inputs by
FMAM. Meanwhile, POCm∗PICm∗Kl weights are retrieved
from WAddrCONV address of PB shown in Eq. (11); Addi-
tionally, suppose the FC operation needs inputs of the TIN =
NIN/PINm tile, PINm inputs and PONm ∗ PINm weights are
retrieved from TIN address of FMB and WAddrFC address of
PB shown in Eq. (11), respectively. Afterwards, the inputs
and weights are fed into the corresponding PEs by FMAM
and WAM. Consequently, the outputs are stored into FMB
for the next layer by FMAM.

WAddrCONV =
noc

POCm
∗ nic

PICm
∗ Kl +

nic
PICm

∗ Kh + Kl
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WAddrFC =
noe

PONm
∗ nie

PINm
+

nie
PINm

(11)

Where nic and noc are the nicth input and nocth output
channels in the CONV layer; nie and noe are the nieth input
and noeth output neurons in the FC layer.

4. Analytical Model

To simultaneously achieve high performance and high flex-
ibility, an analytical model is introduced to determine the
optimal design parameters of the computing array including
N, H and W.

Firstly, build a LUT resource cost model. By using
Xilinx Vivado design suite, we observe the resource cost
of the three basic and most operation units including the
XNOR element, NOT element, and 2-input unsigned and
signed fixed-point adder, as shown in Table 2. Hence, the
LUTCA, the cost of the computing array, can be estimated
as:

LUT1 = N1 ∗ H1 ∗W1 ∗ 1︸���������������︷︷���������������︸
LUTs for XNOR

+N1 ∗ H1 ∗
⎛⎜⎜⎜⎜⎜⎝

I∑
i=1

(
W1

2i
∗ i

)⎞⎟⎟⎟⎟⎟⎠
︸�������������������������︷︷�������������������������︸

LUTs for Adder trees of BCA

+ N1 ∗ H1 ∗ I︸�������︷︷�������︸
LUTs for ACCU

I = 
log2 W1�

LUT2 = (N2∗H2∗W2)∗4︸��������������︷︷��������������︸
LUTs for NOT

+N2∗H2∗
⎛⎜⎜⎜⎜⎜⎝

J∑
j=1

((
W2

2 j

)
∗(8+ j)

)⎞⎟⎟⎟⎟⎟⎠
︸������������������������������︷︷������������������������������︸

LUTs for Adder trees of NBCA

+ N2 ∗ H2 ∗ (8 + J)︸���������������︷︷���������������︸
LUTs for ACCU

J = 
log2 W2�
LUTCA = LUT1 + LUT2 < 50% ∗ LUTFPGA (12)

Where (N1,H1,W1) and (N2,H2,W2) are the scale pa-
rameters of BCAs and NBCAs which employ LUT1 and
LUT2 numbers of LUTs, respectively. I and J represent the
numbers of levels in adder trees of BCAs and NBCAs, re-
spectively. The ith and jth levels have (W1/2i) and (W2/2 j)
numbers of 2-input adders, and their bit-widths are i-bits
and (7 + j)-bits, respectively. Therefore, each adder in the
ith and the jth levels adder trees uses i and (8 + j) LUTs,
respectively. Furthermore, LUTCA, the sum of LUT1 and
LUT2, is smaller than half of LUTFPGA which is the avail-
able number of LUTs in the target FPGA. The ratio of 50%
is got by engineering experience, as presented in Sect. 6.1.

Secondly, build a compatibility model. We observe that

Table 2 Resource cost of basic operations.

the structures of most BNNs have the following characters.
Firstly, the input channel and neuron dimensions in most
CONV and FC layers are multiples of 16; Secondly, the
minimum width of FM (WFMmin) is generally equal to 8
in CONV layers. Finally, the popular kernel sizes are 3 × 3,
5×5, 7×7, and 11×11, and the sizes of popular MPs are 2×2
and 3 × 3. Furthermore, combining the analysis in Sect. 3.3,
N is equal to multiples of 16 for the computations of output
channels; H is equal to multiples of 3 due to 3×3 MP, and it
is equal to or greater than WFMmin; W is equal to or greater
than multiples of the production 16 times Kl, since it needs
to satisfy the CCTP pattern. Moreover, we give priority to
the computing efficiency of Kl = 3 which is the most pop-
ular kernel size. Therefore, the constraint conditions can be
expressed as follows:

N = 16 × n1

H = 3 × n2 ≥ WFMmin

W ≥ Kl × 16 × n3, (Kl = 3) (13)

Here, n1, n2 and n3 are positive integers. The value
of n3 is aimed at making the number of the idle computing
elements as small as possible when the computing arrays
perform CONV operations of each popular kernel size.

Thirdly, build a performance model. As shown in
Eq. (10), we can get the relationship between the number
of clock cycles and the scale parameters for CONV and FC
layers shown as follows:

TCONV =

⌈
NIC ∗ Kl ∗ Kl

W

⌉
∗
⌈
NOC

N

⌉
∗
⌈
NC
H

⌉
∗ NR

TFC =

⌈
NIN
W

⌉
∗
⌈

NON
H ∗ N

⌉
(14)

Finally, we design a python parsing program to explore
the scale parameters automatically, which has three stages:

1) Get the respective ranges of (N1,H1,W1) and
(N2,H2,W2) by Eq. (13).

2) Iterate over every possibility in their ranges, and then
choose automatically all sets which can achieve the
higher and similar theoretical performance by Eq. (14).

3) Choose the best set, which consumes the least resource
cost by Eq. (12), among all the sets which are got in
stage 2.

After finishing the three stages, we get (N1,H1,W1) and
(N2,H2,W2) are (16, 9, 96) and (16, 9, 16), respectively.

5. Mapping Flow

To efficiently support change of the target BNN and accel-
eration of a new BNN, a mapping flow for FCA-BNN is
proposed, as shown in Fig. 7. This flow includes five steps
as follows:

Step 1: Generating of bitstream. We employ Verilog-
HDL language to design FCA-BNN with the hardware-
oriented optimization techniques and the optimal design pa-
rameters, and then use Vivado to generate the bitstream.
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Fig. 7 Overview of the mapping flow.

Step 2: loading of bitstream. We use Vivado SDK load
the bitstream into the target Xilinx XC7Z100 FPGA.

Step 3: compiling of instructions and data. We em-
ploy the loop tiling technique for different sizes of padded
CONV and FC operations to design the script for parsing
network description, which can parse the target network
layer by layer to produce two C language files, network.cpp
and network.hpp. These two files insist of the instructions
of LLCR. Additionally, the script for processing data is de-
veloped by the storage strategies of FMB and PB, and pro-
cesses the trained parameters and testing dataset to produce
binarized parameters file (parameter.bin) and 8-bits fixed-
point input file (images.bin), respectively. Afterwards, us-
ing SDK compiles the application project, including the pro-
duced four files and other applications applied to all the tar-
get networks, to generate the instructions and data.

Step 4: Loading of instructions and data. Under the
communication between PC and ARM-based Processor, us-
ing SDK loads the instructions and data into LLCR and
DDR3, respectively. Afterwards, FCA-BNN can accelerate
the target network successfully.

Step 5: Entering of order. Each target BNN has its own
order after executing the above four steps. Therefore, we
just need to enter the corresponding order while changing
the target BNN among the existing BNNs.

Even for a new network, we just perform the step 3 and
4 to map it into FCA-BNN, making the accelerator designer
accelerate the new network quickly. Note that one of the
five types of macro layers shown in Table 1 can match with
each layer of the new BNN. In short, our mapping flow com-
pletes switch of the target network and acceleration of a new
network quickly, without generating and loading bitstream.

6. Experimental Results

In this section, hardware implementation and preparation
of the target BNNs are first introduced. Afterwards, we
provide evaluation and comparison with previous designs.
Finally, for change of the target BNN and acceleration of
a new target BNN, comparison with the existing relevant
works is given. The LUT resource utilization and power

Table 3 Resources utilization of each block.

Table 4 Structures of the models used to evaluate FCA-BNN.
CONVi,o,k,s denotes a CONV layer with i input channels, o output chan-
nels, kernel size k × k and stride s. FCi,o denotes a FC layer with i input
neurons and o output neurons. MPk,s is a max-pooling layer with window
size k × k and stride s. BN-BA and BN-NBA have introduced in Sect. 3.5.

consumption are reported in Vivado after implementation.

6.1 Hardware Implementation

Table 3 shows the details of resources utilization for each
block. FCA-BNN consumes about 152.8K LUTs, 692 36K
BRAMs and 10 DSPs. For the demand of LUTs, CA-BNN
accounts for ∼50% of used LUTs which is nearly equal to
the estimate by Eq. (12), while the other half is mainly used
to the designs of LLCR and Global Controller. Moreover,
10 DSPs are used for the linear-operations of BN-NBA. For
requirement of storage, all the parameters of most models
can be stored in OCM, while for large models, a tile-based
parameter storage strategy is introduced, which takes only
parameters required for the current tile from DDR3.

6.2 BNN Models Preparation

To fully evaluate FCA-BNN, we prepare three well-known
BNNs with different structures including LFC [16] on
MNIST, VGG-like [6] on Cifar-10 and Cifar-10 AlexNet
which is inspired from AlexNet [21], as shown in Table 4.

6.3 Functionality Evaluation and Comparison

The inference of three networks on GPU and FPGA (FCA-
BNN) platforms both classify 10,000 test images to get the
AccuGPU and AccuFPGA accuracies, respectively, and then
the DoIA is equal to AccuGPU minus AccuFPGA. There-
fore, the smaller DoIA represents network inference on
FCA-BNN is more reliable. As shown in Table 5, for
LFC and MLP which are four-layer FC models, our LFC
achieves DoIA of 0.07%, which is less than that of the
works [10], [16]. For VGG-like, the work [16] just has ac-
curacy of 80.1%. Although [12] achieves 0.17% smaller
DoIA, it uses the odd-even padding to makes control logic
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Table 5 Evaluation of accuracy: LFC, VGG-like and AlexNet for Cifar-10.

Table 6 Evaluation of performance: LFC and VGG-like.

Table 7 Cross-platform evaluation of performance: AlexNet for
Cifar-10.

more complex. For Cifar-10 AlexNet, our DoIA of 0.4% is
smaller than that of [17], since this work adopts linear shift
operations to approximate multiplications in BN operations
and ignores bias of CONV and FC layers. In short, FCA-
BNN employs 0-padding and threshold-based comparison
including bias to achieve small DoIA.

6.4 Performance Evaluation and Comparison

Comparing with the previous state-of-the-art works, FCA-
BNN achieves competitive performance on LFC and VGG-
like models, as shown in Table 6. For LFC, despite our
throughput of 1,932 GOPS is 4.7/3.8× lower than that
of [10] and [16], our latency of 3us is nearly equal to
theirs and our power consumption of 5.7W achieves at least
2× lower than theirs. Moreover, our energy-efficiency of
339 GPOS/W is 0.8× by theirs. But for VGG-like, FCA-
BNN achieves latency of 371us, throughput of 3,322 GOPS
and energy efficiency of 583 GPOS/W, which are at least
1.4/1.3/2.6× better than the designs [7], [12] and [16]. De-
spite our power consumption is 1.7× higher than that of the
design [12], our energy-efficiency is 2.7× better than that of
the design [12].

To the best of our knowledge, Cifar-10 AlexNet is the
first work to accelerate binarized AlexNet model on Cifar-
10, and thus the performance results of this model on FCA-
BNN are compared with that of Intel i7-6700 (CPU) and
NVIDIA GTX1060 (GPU), as shown in Table 7. FCA-
BNN achieves at least 16.7/2.9× smaller in latency over
CPU/GPU. Moreover, FCA-BNN achieves 188.2/60.6×
better in energy efficiency over CPU/GPU.

As we have seen, FCA-BNN on VGG-like achieves
the better performance results than the results on LFC and

Table 8 Evaluation of efficiency: the mapping flow.

Cifar-10 AlexNet. Since LFC is just composed of four lay-
ers, the overall results are lager limited by the first layer. For
Cifar-10 AlexNet, the kernel sizes of the first two layers are
5 × 5, while we give priority to the computing efficiency of
3 × 3 kernel shown in Eq. (13). But for Cifar-10 AlexNet,
it is more suitable than VGG-like in this kind of scenario
where low-latency is highly desired.

6.5 Evaluation and Comparison of Mapping Flow Effi-
ciency

Table 8 shows the steps required to perform change of the
target BNN and acceleration of a new BNN on FCA-BNN
and the prior works [16], [17], [19]. As presented in Sect. 5,
the mapping flow for FCA-BNN just needs the step of en-
tering order which generally takes less than one second to
change the target BNN, while the existing designs require
the two steps, loading bitstream and instructions, which
generally take tens of seconds for operating and executing.
More importantly, the next target BNN is switched seam-
lessly with the current running BNN on FCA-BNN.

Besides, for accelerating a new BNN, we only perform
compiling and loading instructions, while other works also
need the extra two steps, loading and generating bitstream,
which generally take server hours for the large-scale design.
Note that there is a requirement of FCA-BNN: each macro
layer of the new BNN can match with one of the provided
five types of macro layers shown in Table 1. Nevertheless,
these five types of macro layers can support the most popular
BNNs. Moreover, FPGA can be reprogrammed to respond
to new advances of BNNs, making FPGA-based FCA-BNN
more applicable in such a fast-changing field than ASICs.
Hence, FCA-BNN is applicable and promising in mobile
devices.

7. Conclusion

In this paper, we propose a flexible and configurable ac-
celerator. FCA-BNN employs the layer-level configurable
technique (LLCR) to execute each layer of target BNN in a
pipeline fashion. Moreover, we use the hardware-oriented
optimal formulas to design energy-efficient computing ar-
rays for CONV and FC operations, TSCMP engine for
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MP operations, and the two types of BN engines includ-
ing bias for BN operations. Besides, the analytical model
is used to determine the scale parameters, achieving high
flexibility and performance. The inference accuracies of
LFC, VGG-like and Cifar-10 AlexNet on FCA-BNN are just
0.07/0.31/0.4% less than that of the three BNNs on GPU, re-
spectively. In term of energy-efficiency, FCA-BNN achieves
0.8× for LFC and 2.6× for VGG-like compared with the
existing works. Furthermore, for Cifar-10 AlexNet, FCA-
BNN achieves 188.2/60.6× energy-efficiency better than
CPU and GPU, respectively. To the best of our knowledge,
by using our proposed mapping flow, FCA-BNN is the most
efficient in change of the target BNN and acceleration of
a new BNN compared with previous works. Meanwhile,
FCA-BNN keeps the competitive performance.
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