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PAPER

Discriminative Part CNN for Pedestrian Detection

Yu WANG†a), Cong CAO††, Nonmembers, and Jien KATO†, Member

SUMMARY Pedestrian detection is a significant task in computer vi-
sion. In recent years, it is widely used in applications such as intelligent
surveillance systems and automated driving systems. Although it has been
exhaustively studied in the last decade, the occlusion handling issue still
remains unsolved. One convincing idea is to first detect human body parts,
and then utilize the parts information to estimate the pedestrians’ exis-
tence. Many parts-based pedestrian detection approaches have been pro-
posed based on this idea. However, in most of these approaches, the low-
quality parts mining and the clumsy part detector combination is a bottle-
neck that limits the detection performance. To eliminate the bottleneck, we
propose Discriminative Part CNN (DP-CNN). Our approach has two main
contributions: (1) We propose a high-quality body parts mining method
based on both convolutional layer features and body part subclasses. The
mined part clusters are not only discriminative but also representative, and
can help to construct powerful pedestrian detectors. (2) We propose a novel
method to combine multiple part detectors. We convert the part detectors
to a middle layer of a CNN and optimize the whole detection pipeline by
fine-tuning that CNN. In experiments, it shows astonishing effectiveness of
optimization and robustness of occlusion handling.
key words: pedestrian detection, occlusion handling, parts mining, parts
detectors, Discriminative Part CNN

1. Introduction

Pedestrian detection is a significant task in computer vision.
In recent years, it is widely used in applications such as
intelligent surveillance systems and automated driving sys-
tems. Although it has been exhaustively studied in the last
decade [1]–[5], the occlusion situation still remains a very
challenging issue to be dealt with.

As the samples shown in Fig. 1, the occlusion situation
means that a partial or the whole pedestrian is blocked by
other objects. Such a situation is closely related to potential
risks in the real world. For example, for automated driving
systems, the pedestrians that hide behind a wall or a parked
car are the most dangerous objects in the street. When they
suddenly appear from a very close distance, the brake or
steering operations may be too late. Because it is hard to
detect fully occluded pedestrians, the precise detection at
the moment when they appears is very important, especially
when only body parts become visible. In order to deal with
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Fig. 1 The image samples that show occlusion situation in the Caltech
Pedestrian dataset [6].

this issue, one convincing idea is to first detect human body
parts, and then utilize the parts information to estimate the
pedestrians’ existence.

Many parts-based pedestrian detection approaches
have been proposed in the literature, most of them focus
on part detector construction. In Bourdev et al.’s work [7],
Poselet is proposed and human detection is implemented
based on the configurations of human body parts. However,
this approach utilizes annotations of human body parts in
training, which are expensive and difficult to obtain. Tian
et al. propose Deepparts in [8], which constructs part clus-
ters simply using the relative position within the pedestrian
bounding box, and trains one weak detector for each part
cluster. Although it does not need additional annotations
for training, since the relevance within each part cluster is
weak, it is necessary to consume large computational cost to
train and implement a lot of such weak detectors to achieve a
good performance. Similar to [7] and [8], many parts-based
approaches have to make a compromise between paying ex-
pensive annotation costs for getting good part clusters and
paying high computational cost for using a large number of
weak detectors.

Different with these approaches, this paper proposes
Discriminative Part CNN (DP-CNN) that employs a com-
plex mining method to find discriminative part clusters with-
out any extra annotations. With the resulting high-quality
part clusters, it becomes easy to construct robust part detec-
tors. We also notice that most existing approaches, includ-
ing the works mentioned above, do not pay much attention
to part detector combination. Many approaches use brutally
a linear SVM that may not exert the potential of multiple
part detectors. In this work, we implement part detectors
as a layer in the feature extractor CNN, which makes use of
their potentials and achieves astonishing optimization effect.

The proposed DP-CNN makes full use of the parts in-
formation to deal with the occlusion issue in the pedestrian
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detection task. Our approach has two main contributions:
(1) We propose a body parts mining method based on both
convolutional layer features and body part subclasses. The
mined part clusters own discriminative and representative
characteristics which help to construct powerful pedestrian
detectors. By mining part clusters, expensive annotations of
human body parts are no longer a pre-condition for train-
ing part detectors, therefore, utilizing parts information be-
comes easier and cheaper. (2) We propose to convert the
part detectors to a middle layer of the CNN that used for fea-
ture extraction, and optimize the whole detection pipeline by
fine-tuning that CNN. This makes utilizing parts informa-
tion becomes more computational efficient, and shows as-
tonishing effectiveness for optimization and occlusion han-
dling.

2. Related Work

This section introduces the related works in three aspects.
First, we introduce the R-CNN based approaches for pedes-
trian detection, which we also adapt as the basic pipeline in
this work. Then, we introduce some mid-level visual ele-
ment mining methods that are closely related to the one we
proposed to mine pedestrian body parts. Finally, we com-
pare our approach with the previous parts-based pedestrian
detection works to show the differences.

2.1 Pedestrian Detection with CNN

Similar to many other object detection tasks, pedestrian
detection is usually approached using the sliding window
paradigm. It means to slide a window over all the scales
and positions of an image, extract image features from each
detection window, and apply a pre-trained classifier to do
the pedestrian/non-pedestrian classification. Over the past
decade, many research efforts have been devoted to the fea-
ture extraction phase, and a lot of feature extraction meth-
ods have been proposed. The hand-crafted feature propos-
als such as HOG [1] and channel features [2], [3] have made
great achievements in early years.

In recent years, with the rapid development of Con-
volutional Neural Networks (CNNs), the performance of
pedestrian detection has been improved significantly. For in-
stance, Hosang et al. [9] show that both small and large CNN
models can reach good performance by carefully exploring
the design space and the critical implementation choices.
Zhang et al. [10] provide a detailed analysis of state-of-the-
art pedestrian detectors, and use the insights to construct an
R-CNN [11] pipeline to improve the detection performance.
Tian et al. [12] jointly optimize pedestrian detection with se-
mantic tasks, such as pedestrian attribute recognition and
scene category classification. Zhang et al. [13] show that
using the Region Proposal Networks (RPN) in a R-CNN
pipeline is more efficient than hand-crafted proposals, and
Brazil et al. [14] suggest that adding an additional segmen-
tation task can further improve the detection accuracy.

Including the researches mentioned above, most of the

CNN based approaches are based on the two-phase R-CNN
pipeline. The R-CNN paradigm is similar with sliding win-
dow paradigm except using a fast but coarse detector instead
of searching exhaustively. In this work, we also utilize the
R-CNN pipeline like many other previous works. However,
we mainly focus on the occlusion handling in the second
classification phase, by emphasizing on the effective usages
of human body parts information.

2.2 Mid-Level Visual Element Mining

Mid-level visual element mining aims to discover clusters
of representative and discriminative image patches. Ac-
cording to former works, it is useful for image classifica-
tion tasks [15]–[17]. Recently, Li et al. [18] utilize the CNN
fully-connected layer features as the input of the Apriori
mining algorithm [19], and use the mined clusters to con-
struct concept detectors which are further used to encode
images. Their approach show state-of-the-art performances
on both scene categorization and object classification tasks.

These researches give us inspirations on how to mine
discriminative body parts for the pedestrian detection task.
However, different with these prior works, our task deals
with small-sized pedestrian images in which body parts are
sometimes hard to distinguish. Therefore, we adopt more
local-adapted CNN convolutional layer features and utilize
body part subclasses in the mining process to make sure
high-quality body part clusters can be discovered.

2.3 Pedestrian Detection Based on Body-Parts

Recent researches suggest that using body part detectors [7],
[8], [20], [21] helps improving the pedestrian detection per-
formance. In a relatively earlier work [7], Bourdev et al.
propose the idea of Poselets, which are defined as body
part clusters under different viewpoint and pose conditions.
Poselets are learned from manually labelled 3D joint key-
points and are very discriminative. However, because heav-
ily dependent on manual annotations, such an approach does
not generalize well to datasets and tasks without annota-
tions.

In a recent work, Tian et al. propose Deepparts [8],
in which each body part cluster is constructed using im-
age patches of a same spatial location within the pedes-
trian bounding boxes. This approach does not need addi-
tional annotations for training while achieves state-of-the-
art pedestrian detection performance. However, because the
relevance within each body part cluster is weak, in order to
achieve a good performance, it is necessary to train and im-
plement a large number of weak detectors.

Including above mentioned researches, most of the ex-
isting parts-based approaches [7], [8], [20], [21] mainly fo-
cus on the construction of part detectors, but hardly pay
enough attention to the combination of multiple part detec-
tors. For example, [8] and [20] both use a linear SVM to
combine multiple part detection scores to a pedestrian score.
By contrast, we believe the detection performance could be
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further improved with a more ingenious combination strat-
egy.

The proposed DP-CNN is different from prior works
in two aspects: (1) It mines high-quality body part clusters
without any additional annotations. This makes robust part
detectors can be trained in an easier and faster way. (2) It
implements multiple part detectors as a CNN middle layer.
This makes fine-turning of the whole pipeline, from fea-
ture extraction to part detector combination, become pos-
sible thus lead to further global optimization.

3. Basic Idea

In this study, we focus on two key phases of the parts-based
pedestrian detection approach: part detector construction
and part detector combination.

As discussed before, the mining quality is very impor-
tant for part detector construction. In previous works, high-
quality mining methods usually rely on rich annotations,
which require exhaustive manual efforts and do not gener-
alize well. By contrast, low-quality mining methods do not
require additional annotations but usually lead to part clus-
ters of low internal relevance and weak part detectors. In this
work, we propose a novel mining method which discovers
discriminative part clusters without additional annotations.

On the other hand, in this work, we pay more atten-
tion to the part detector combination phase. We reshape the
learned part detectors, which are actually linear classifiers,
to 2D filters and plug them back to the CNN as a middle
layer. The resulting CNN then implements all part detectors
through a single forward pass, and can be further optimized
as a whole model in an end-to-end fashion.

The two-steps pipeline which reflects above ideas is

Fig. 2 The two-steps pipeline of the proposed DP-CNN. The first step mines body part clusters using
convolutional layer features, and trains Linear Discriminant Analysis (LDA) detectors for selected part
clusters. On the other hand, in the second step, the LDA detectors are converted to a CNN layer and
plugged back to the CNN that is used to extract convolutional layer features. The resulting CNN model
is then fine-turned to pursue further optimization.

shown in Fig. 2. Specifically, in the first step, we conduct
rule mining to gather body part clusters using CNN convo-
lutional layer features, and train Linear Discriminant Analy-
sis (LDA) detectors for selected part clusters. In the second
step, we transform LDA detectors to a CNN layer and plug
it back to the CNN that is used to extract convolutional layer
features, then train the renewed model to pursue further op-
timization.

3.1 Part Detector Construction

Overall, we mine body parts from pedestrian and back-
ground images using convolutional layer features and as-
sociation rule mining. The mining process is similar with
MDPM [18], which is designed for the scene classification
task. Because the body parts of pedestrians are small and
less distinguishable, our mining task is more challenging.
We take the following two strategies to ensure the mining
quality.

• Mine body parts using convolutional layer features,
which not only can better represent local image patches
but also are of lower dimensionality.

• Divide training images/features of body parts into sub-
classes according to their known size and location, and
conduct parts mining within each subclass respectively.

3.2 Part Detector Combination

Most parts-based pedestrian detection methods focus on
how to construct part detectors rather than how to combine
them. We propose a novel approach which transforms the
part detectors to a CNN middle layer and trains the resulted
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CNN model end-to-end to achieve further optimization.
Thanks to the use of convolutional layer features in the

mining phase, the part detectors can be converted to 2D fil-
ters and plugged back to the CNN model as a layer (after the
last convolutional layer that is used for feature extraction).
By adding additional fully-connected layers and retrain the
whole model, not only a classifier for combining part de-
tection results can be learnt, but also the parameters of the
layers for feature extraction can be finely optimized.

4. Part Detector Construction

The implementation of part detector construction can be
summarized into three steps: 1) extract CNN features from
image patches; 2) mine body part clusters; and 3) train part
detectors of body part clusters.

4.1 Local Feature Extraction

In recent years, many authors realize that fully-connected
layer features of a pre-trained CNN can represent im-
ages much precisely than the traditional hand-crafted fea-
tures [18]. However, because the pedestrian images are usu-
ally small sized (e.g. under an average height of 80 pixels
in the Caltech Pedestrian dataset [6]), it is unreasonable to
use the fully-connected layer features. For example, resize
a small part of the pedestrian image (e.g. 32 × 32) to feed a
pre-trained CNN model (e.g. 227 × 227 of AlexNet) seems
to be inefficient and overqualified.

Therefore, we propose to use the last convolutional
layer’s activations of the whole image as local features to
represent images patches. Given an image of size w × h × 3,
each d-dimensional feature in the resulted w′ × h′ × d acti-
vation/feature map corresponds to a local image patch. Sec-
tion 6.2.1 shows that these convolutional layer features have
some nice properties for mining body part clusters.

4.2 Body Parts Mining

The body parts mining is conducted mainly based on the as-
sociation rule mining algorithm [22]. The algorithm is mo-
tivated by the market basket analysis and aims to discover a
collection of if-then rules from the transactions. In our min-
ing task, the rule means “if a specific collection of feature
dimensions are active, then it is an image of pedestrian”.

4.2.1 Association Rule Mining

First, we briefly introduce the fundamental of association
rule mining [22]. Let I = {i1, i2, . . . in} be a set of n items.
Let D = {t1, t2, . . . tm} be a database of m transactions. Each
transaction t ∈ D contains a subset of the items in I. A rule
is defined as {X → Y}, where X,Y ⊆ I. The support value
of X reflects the quantity defined as:

supp(X) =
| {t|t ∈ D, X ⊆ t} |

m
, (1)

where | · | measures cardinality. supp(X) shows how fre-

Fig. 3 Pipeline of body parts mining. Given image patches sampled from
both “pedestrian” and “background”, we create transactions using their
CNN features. Mid-level patterns (rules) of “pedestrian” are then discov-
ered via association rule mining. Body part clusters are then constructed
by retrieving image patches that agree with related patterns.

quently the item set X appears in the database D. On the
other hand, the confidence value of the rule {X → Y} reflects
the quantity defined as:

conf(X → Y) =
supp(X ∪ Y)

supp(X)
. (2)

It shows how often the rule {X → Y} (the co-occurrence of
X and Y) has been found to be true in the database.

4.2.2 Pattern Mining on Pedestrians

We treat every image patch as a transaction, and its d-
dimensional feature has d independent items. For each
transaction, we keep n items which have the largest ac-
tivations and add a pedestrian/non-pedestrian label as the
(n + 1)th item. For example, if the feature vector of a
pedestrian image patch has the 1st, the 10th and the dth
dimensions as its top items, then the transaction becomes
{1, 10, d, pedestrian}.

We use the Apriori algorithm [19] to find a set of rules
P that satisfy the following two conditions:

supp(P) > suppmin, (3)

conf(P→ pedestrian) > confmin, (4)
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Fig. 4 (a) The subclasses for the “UpMidDown+Scales” setting. (b) Examples of part clusters that
mined for each subclass.

where, suppmin and con fmin are predefined thresholds that
define the minimum requirements on representativeness and
discriminativeness of a rule. Each rule corresponds to a clus-
ter of image patches which agree with that rule.

4.2.3 Mining Parts from Subclasses

In MDPM [18], the mining is conducted to discriminate

the holistic collection of pedestrian image patches from
the background image patches. However, because image
patches of pedestrian body parts are usually small and of
low resolution, different body parts (e.g. arm and leg) with
similar visual appearances may be end up in a same part
cluster after the mining is converged. In order to get more
discriminative part clusters, we propose to divide the holistic
collection of pedestrian image patches into body part sub-
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classes according to the known size and location, and con-
duct mining for each subclass under this weak supervision.
Specifically, we define two types of subclasses for mining
discriminative part clusters (see Fig. 4 (a) for an illustration).

• UpMidDown: Divide pedestrian image patches based
on their known location (within the bounding box) into
three subclasses: {Up, Mid, Down, Background}.
• UpMidDown+Scales: Divide each UpMidDown sub-

class into small (Height < 80) and large (Height >
80) ones: {Up-small, Up-large, Mid-small, Mid-large,
Down-small, Down-large, Background}.
Because the image patches of subclasses all belong

to the pedestrian class, the discriminitiveness between sub-
classes is not important for the pedestrian detection task.
Therefore, in practice, we conduct mining to discriminate
image patches of each subclass from the background image
patches to find rules {X → attribute}, where attribute can be
replaced by the subclasses that defined above. The support
then becomes:

supp(X) =
| {t|t ∈ D′, X ⊆ t} |

|D′| , (5)

where the database D′ is defined as:

D′= {t|t∈D, attribute ⊆ t}∪{t|t∈D, background ⊆ t} .
(6)

Additionally, we do not mine rules from the background im-
age patches because their large data quantity and huge diver-
sity in appearance make the mining hard to converge.

4.3 Train Part Detectors

With the rules, we first retrieve the image patches to con-
struct one part cluster for each specific rule. Then, we use
the patches of the part clusters to train related detectors. In
this step of training, we make use of Linear Discriminant
Analysis (LDA) [23]. We also utilize the merging algorithm
proposed in [18] to remove the redundancy that caused by
overlaps between different part clusters.

Specifically, training of part detectors is done by a re-
cursive process. In each iteration, we first select the largest
part cluster and trains its LDA detector. Then, we run this
detector on remaining image patches to find positive detec-
tions, add them to the training set, and update the LDA de-
tector. The iteration is repeated until no more image patches
can be added to the training set. The output of this merging
procedure is a clean set of part clusters, each with a corre-
sponding LDA detector.

For each subclass, detectors trained from the part clus-
ters of top k cover rates (number of image patches) are se-
lected for further combination. In Fig. 4 (b), we show some
examples of the part clusters that mined for each subclass
using the Caltech Pedestrian dataset [6]. It can be confirmed
that image patches in the same cluster show visual similar-
ity and are related to similar semantic concepts. The trend

is especially obvious in the “UpMidDown+Scales” setting,
which confirms the effectiveness of our mining strategy.

5. Part Detector Combination

In this section, we introduce two methods for part detector
combination. One is the traditional shallow method, which
encodes an image as a vector of part detection scores, and
learns a linear SVM classifier to predict the pedestrian score
from that vector. Another is the proposed deep method,
which transforms the part detectors to a middle layer of the
CNN, and fine-tune the resulted CNN to predict the pedes-
trian score. We use the VggNet19 [24] as an example to
facilitate our discussion, and will also show experiment re-
sults of other models in Sect. 6.

5.1 The Shallow Method

Similar to [18], we encode images using part detectors. In
order to reduce computational cost, not all part detectors are
used. We first rank the mined rules based on their cove rate
within each subclass, and then select the detectors corre-
sponding to the rules of the top k highest cover rates. A
same number of detectors are selected from each subclass.
Stack them together lead to to set of N = nk part detectors,
where n is the number of subclasses.

We first run the N detectors at each location on the W×
H × 512 feature map to get a W ′ ×H′ × N new feature map.
Then, apply max pooling five times (one covers the whole
image and the other four cover every H/4 of the feature map)
to get a 1 × 1 × 5N feature vector. Finally, we train a linear
SVM to predict pedestrian scores from these 1 × 1 × 5N
vectors. The pipeline is illustrated in Fig. 5 (a).

The shallow method is originally designed to follow the
reasonable idea of part detector combination, and achieved
good performance in our preliminary experiments. How-
ever, we also found several issues or improvable aspects of
it.

One serious issue is the high memory consumption in
the parts mining and SVM training phases. Both phases re-
quire to keep a large quantity of data points in the memory.
In practice, when training on the Caltech Pedestrian dataset,
only a small subset of the data can be loaded into the mem-
ory at a same time. This means the performance of this
method is restricted by the limited quantity of training data
that can be used. Another improvable aspect is the separated
learning and processing of different steps within the whole
pipeline. As highlighted in [25], the CNN model itself is
a process of combing local image information to high-level
concepts, and it can achieve better performance rather than
the methods that manipulate each step separately. Addition-
ally, the CNN training does not have much memory limita-
tions because it is a batch-based training process. Therefore,
we propose the deep method and discuss it in the next sec-
tion.
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Fig. 5 Shallow and deep methods for part detector combination. (a) Shallow method: encode the
image by pooling part detection scores, and predict the pedestrian score using a linear SVM. (b) Deep
method (Conv): Transform part detectors to a convolutional layer and retrain the whole CNN model.
(c) Deep method (Fc): Transform part detectors to a fully-connected layer and retrain the whole CNN
model.

5.2 The Deep Method

As shown in Fig. 5 (a), the shallow method is surprisingly
similar to the processing pipeline in a CNN model. Since
we use the convolutional layer feature to construct part de-
tectors, processing steps such as feature extraction, part de-
tection, part detector combination and classification can be
seamlessly merged to a CNN and implemented through a
single forward pass. In Fig. 5 (b) and (c), we show two ways
for such kind of manipulation: one transforms part detectors
to a convolutional layer; the other transforms part detectors
to a fully-connected layer. The merged model is a standard
CNN, which can be fine-tuned using the popular mini-batch
stochastic gradient descent algorithm to achieve further op-
timization in an end-to-end fashion.

5.2.1 Convert Part Detectors to a Convolutional Layer

• Input size: We fix the input size to 256 × 128, which
adapts the average aspect ratio of pedestrian images in
the Caltech Pedestrian dataset as well as the input size
of the base model VggNet19 [24].

• Convolutional layer: As show in Fig. 5 (b), we keep
all convolutional layers of the VggNet19 and insert a
DP (Discriminative Part) convolutional layer on top of
them. The DP convolutional layer is of size 1 × 1 ×
512 × N, and is converted from the N 512-dimensional
part detectors according to the following rule:

convW(1, 1, :, i) = Li, (7)

where, convW(1, 1, :, i) denotes the weight of the ith fil-
ter in the DP convolutional layer and Li means the 512
dimensional weight of the ith part detector.

• Fully-connected layers: We add two normal fully-
connected layers of 4096 filters, one fully-connected
layer of 2 filters, and one softmax layer to get the bi-
nary pedestrian classification outputs.

5.2.2 Convert Part Detectors to a Fully-Connected Layer

• Input size: We fix the input size to 256 × 128 for the
same reason that mentioned above.

• Convolutional layers: As show in Fig. 5 (c), we sim-
ply keep all of the convolutional layers of the Vg-
gNet19.

• Fully-connected layers: We add one DP fully-
connected layer of N filters, one normal fully-
connected layer of 4096 filters, one fully-connected
layer of 2 filters and one softmax layer on top of the
convolutional layers. These layers together help to im-
plement the part detectors and predict the final pedes-
trian classification scores. Specifically, the DP fully-
connected layer is initialized randomly at first. Then,
some of its random weights are replaced using the
weights of the part detectors. Because the part detec-
tors that mined from the subclasses also have known lo-
cation information (Up, Mid or Down),they are used to
substitute the weights of the corresponding locations in
the DP fully-connected layer. The DP fully-connected
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layer is of size h×w×512×N, and the substitution of its
weights using part detectors is implemented according
to the following rule:

f cW(hi, wi, :, i) = Li, (8)

where h and w equals to the height and width of the
feature maps from the previous convolutional layer.
f cW(hi, wi, :, i) is a 1 × 1 × 512 vector at the loca-
tion (hi, wi) of the ith filter in the DP fully-connected
layer. f cW(hi, wi, :, i) is replaced by the 512 dimen-
sional weight of the ith part detector. (hi, wi) represents
the ith part detector’s known location (in anther word,
in which subclass the ith part detector have been con-
structed). In this work, hi ∈ {hup, hmid, hdown} as de-
scribed in Sect. 4.2.3, and wi is not divided into sub-
classes in the body parts mining phase.

6. Experiments

In this section, we evaluate different aspects of the proposed
approach through experiments. We first conduct ablation
studies on the part detector construction method and the part
detector combination method using VggNet19 on the Cal-
tech Pedestrian dataset. Then, we extend the experiments
by using additional CNN models and the KITTI dataset.

6.1 Dataset and Evaluation Criterion

The experiments are mainly conducted on the Caltech
Pedestrian dataset, which has approximately ten hours of
640 × 480 videos that were taken from an urban environ-
ment in CA, USA. In this dataset, about 350, 000 pedestrian
bounding boxes of 2, 300 unique pedestrians are annotated.
Strictly follow the evaluation protocol of [6], [26], we use
sequences 00 to 05 for training and sequences 06 to 10 for
testing.

In the experiments, we use the Caltech1x subset (every
30th frame) or the Caltech10x subset (every 3th frame) for
different training tasks. For the body parts mining and part
detector training tasks, due to the high computational cost
and the large memory consumption, we use the Caltech1x
subset. For the CNN retraining task, we use the much larger
Caltech10x subset. In all experiments, we use ground truth
pedestrian images that annotated by bounding boxes as the
positive training data, and the false positive regional propos-
als obtained by LDCF [27] as the negative training data.

To evaluate a detection approach, we utilize LDCF [27]
to get pedestrian proposals first, and then implement that ap-
proach to update the scores of raw proposals to improved
ones. The detection performance is evaluated on the im-
proved detection scores. Like many previous studies, we use
log-average miss rate [6], [26] as the evaluation metric, and
report results on five subsets of different difficulties, namely
Reasonable, Near Scales, Medium Scales, Partial Occlusion
and Heavy Occlusion, of the Caltech Pedestrian dataset.

To confirm some of the conclusions we get from the

Caltech Pedestrian dataset, we also implement one set of ex-
periments on the KITTI dataset [28]. KITTI is another ma-
jor dataset for pedestrian detection which consists of 7, 481
training images and 7, 518 testing images. We only evalu-
ate the pedestrian detection task, and ignore car and cyclist
labels which are also included in the KITTI dataset. Three
subsets including Easy, Moderate and Hard are generally
used to evaluate the pedestrian detection performance under
different difficulties. We evaluate pedestrian detection per-
formance using the PASCAL criteria on the KITTI dataset.

6.2 Evaluation on Part Detector Construction

We first compare the proposed parts mining method to the
traditional mining method of MDPM [18]. Our method is
different from the MDPM method in two aspects. First, our
method uses the CNN convolutional layer features, while
the MDPM uses the CNN fully-connected layer features.
Second, we propose to divide training images of body parts
into subclasses and conduct mining within each subclasses,
while the MDPM conduct mining only using the holistic
collection of images. We evaluate these two aspects in the
following experiments.

6.2.1 Evaluation on CNN Feature Representation

The objective of this experiment is to confirm if convolu-
tional layer features are useful image representations for the
pedestrian detection task. The CNN model that used for fea-
ture extraction is a VggNet19 [24] that per-trained on the
ImageNet dataset. In this experiment, we compare three dif-
ferent representations produced by the VggNet19.

• Fc.: Resize the image to 224×224 (standard input size
of the VggNet19), then feed it to the VggNet19 and
take the the 4, 096 dimensional feature of the last fully-
connected layer as the representation.

• Conv.: Resize the image to 256 × 128, then feed it to
the CNN model and take the feature map from the last
convolutional layer. Reshape the resulted 16 × 8 × 512
feature map to a 65, 536 dimensional vector, and take
it as the representation.

• Conv. + Max Pooling: Conduct max pooling on the
16 × 8 × 512 convolutional layer feature map, and use
the pooled feature vector as the representation.

Using these features, we train linear SVMs to classify
pedestrians from backgrounds. The classification scores of
the SVMs are then used to update the raw scores of detection
proposals found by LDCF. This experiment is conducted on
the Caltech1x subset, and the results are reported on the
Reasonable subset. The log-average miss rate is used as the
performance metric.

The results in Table 1 show that although the max
pooling version of the convolutional layer features perform
slightly worse than the fully-connected layer features, the
performance of the raw convolutional layer features is much
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Table 2 The effectiveness of part detectors that trained using three different mining methods. The
final pedestrian scores are predicted using linear SVMs. MR: Log-average miss rate (%).

Detectors Reasonable Near Scales Medium Scales Partial Occlusion Heavy Occlusion

Holistic 46.32 18.31 74.95 59.12 87.91
UpMidDown 41.16 15.41 73.87 53.05 84.46

UpMidDown+Scales 39.34 16.69 72.53 48.21 82.33

Table 1 Comparison of pedestrian detection performance using Fc.,
Conv. and Conv. + Max Pooling features. Results are reported on the
Reasonable subset of Caltech Pedestrian dataset, using Log-average miss
rate (%) as the metric.

Method MR

Fc. 62.38
Conv. 41.32

Conv. +Max Pooling 65.4

better. This suggests that the convolutional layer features
preserve more information that can be used to better rep-
resent pedestrians. Moreover, to represent small image
patches, the convolutional layer features are superior be-
cause they do not only have small size of receptive fields,
but also omit the steps of downsampling and resizing, which
could easily lead to information loss and distortion.

6.2.2 Evaluation on Mining Using Subclasses

The objective of this experiment is to confirm if conducting
parts mining using body part subclasses helps to construct
better part detectors. In this experiment, the UpMidDown
method and the UpMidDown+Scales method are compared
with the Holistic method. The Holistic method is actually
a reimplementation of the mining method of MDPM, and
can be treated as the baseline method. Considering the fact
that the number of part detectors may directly affect the fi-
nal performance, we select the same number of 600 part
detectors for each method. The selection is implemented
by calculating the detectors’ cover rate of the training im-
ages as described in Sect. 4.3. We use the shallow method
to get the final detection score from multiple part detectors.
In Table 2, we report the results on the Reasonable, Near
Scales, Medium Scales, Partial Occlusion and Heavy Oc-
clusion subsets of the Caltech Pedestrian dataset.

On the Reasonable subset, the results show that the
part detectors trained using body part subclasses perform
better than the part detectors trained using only the holis-
tic set. In addition, by comparing the results of UpMid-
Down and UpMidDown+Scales, it is obvious that more
detailed definition of subclasses results in better part detec-
tors. The part detectors mined from six subclasses of Up-
MidDown+Scales get the best result of 39.34%.

The results of the Near Scales and the Medium Scales
subsets also show a similar trend. The proposed meth-
ods outperform the baseline on these two subsets. The
UpMidDown+Scales method outperforms the UpMid-
Down method on the Medium Scales subset. However,
the results on the Near Scales subset show that the Up-

MidDown method outperforms the UpMidDown+Scales
method 1.28%. It means using scales in mining is help-
ful for detecting small-sized/faraway pedestrians but brings
negative affects for handling large-sized/near pedestrians.

The results of the Partial Occlusion subset and the
Heavy Occlusion subset show the same trend comparing
to the Reasonable subset. Both proposed methods out-
perform the baseline by a considerable margin. More-
over, the UpMidDown+Scales method outperforms Up-
MidDown method under both conditions, which indicates
that a fine definition of body part subclasses is very useful
for occlusion handling.

Overall, this experiment confirms that parts mining us-
ing body part subclasses is effective for training good part
detectors. It does not bring additional runtime cost, but lead
to improved pedestrian detection performance.

6.3 Evaluation on Part Detector Combination

In this section, we evaluate different strategies for part de-
tector combination. We start with an exhaustive study using
the VggNet19, and then extend the experiments by also us-
ing the AlexNet and the VggNet16.

6.3.1 Evaluation Using VggNet19

We evaluate a series of deep and shallow methods for com-
bining multiple part detectors to predict the final pedestrian
scores. Because most of the deep methods do not have the
issue of large memory consumption, we use the Caltech10x
subset to train the deep models. On the other hand, because
training SVMs for the shallow methods requires to keep all
data points in the memory, we use the smaller Caltech1x
subset to train shallow classifiers. For all methods in this
experiment, the base part detectors are mined using the Up-
MidDown+Scales setting, which have been confirmed to
have the best performance in earlier experiments. The re-
sults on the Reasonable, Partial Occlusion and Heavy Oc-
clusion subsets are reported. The details of the methods we
compare in this experiment are described as below and in
Table 3, with the quantitative results summarized in Table 4.

• Shallow: The best performed setting in Sect. 6.2.2. It
can be considered as the MDPM [18] approach com-
bined with our proposed mining method.

• ConvDP: Convert the part detectors to a convolutional
layer and retrain the resulted model. The details of the
model architecture can be found in Table 3.

• FcDP: Convert the part detectors to a fully-connected
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Table 3 Architectures of deep methods with different base models. The convolutional and fully-
connneted layer parameters are denoted as “Conv-[filter size]-[number of channels]”, and “Fc-[number
of channels]”.

ConvNet Configuration

AlexNet VggNet16 VggNet19

ConvDP FcDP ConvDP FcDP ConvDP FcDP

Input: 256 × 128 RGB Image

AlexNet Layer 1 VggNet16 Layer 1 VggNet19 Layer 1
. . . . . . . . .

AlexNet Layer 5 VggNet16 Layer 13 VggNet19 Layer 16

Conv-1-600 Conv-1-600 Conv-1-600
Max Pooling Max Pooling Max Pooling

FC-4096 FC-600 FC-4096 FC-600 FC-4096 FC-600
FC-4096 FC-600 FC-4096 FC-600 FC-4096 FC-600

Fc-2

SoftMax

Table 4 Comparison of shallow and deep methods for part detector com-
bination. All methods are implemented using VggNet19 as the base model.
Results are reported on the Caltech Pedestrian dataset in log-average miss
rate (%).

Method Reasonable Partial Occl. Heavy Occl.

Shallow 39.34 48.21 82.33
Shallow+FT 29.74 39.10 68.71

FT 18.10 28.48 65.46
ConvDP 17.47 30.73 66.58

FcDP 17.14 28.12 62.33
ConvDP+FT 16.63 28.48 61.38

FcDP+FT 16.65 27.59 64.92

layer and retrain the resulted model. The details of the
model architecture can be found in Table 3.

• FT: Fine-tune the VggNet19 on the Caltech10x sub-
set for binary classification, and use the resulted model
to directly predict pedestrian scores. The model is
tweaked to accept images of size 256×128, which cor-
respond to the aspect ratio of pedestrian images.

• Shallow+FT: The approach is the same to the Shallow
approach. It uses a fine-tuned VggNet19 from the FT
approach, while the Shallow approach is implemented
using the VggNet19 that pre-trained on ImageNet.

• ConvDP+FT: The ConvDP approach that imple-
mented using the fine-tuned VggNet19 of FT.

• FcDP+FT: The FcDP approach that implemented us-
ing the fine-tuned VggNet19 of FT.

Comparing the baseline method Shallow to the two
proposed deep methods ConvDP and FcDP, we observe a
significant performance gap. Both deep methods outper-
form the shallow method over 20% MR on all three sub-
sets. It is also obvious that using a fine-tuned VggNet19 to
replace the pre-trained one used in these methods does not
change the trend. The performance gap between the Shal-
low+FT to ConvDP+FT and FcDP+FT is narrower, but
still remains over 10% MR on the Reasonable and Partial

Table 5 Number of parameters (in millions).

Methods AlexNet VggNet16 VggNet19

Original 41 99 104
ConvDP 71 110 116

FcDP 19 54 60

Occlusion subsets. These results indicate that the proposed
deep part detector combination methods are superior than
the shallow part detector combination method.

Comparing between the two proposed deep methods,
the FcDP slightly outperforms ConvDP on all three subsets.
However, replacing the pre-trained VggNet19 by a fine-
tuned one leads to a different result, in which ConvDP+FT
outperforms FcDP+FT on the Reasonable and Heavy Oc-
clusion subsets. We hypothesize that this is because of the
trade off between the importance of location information
and the model capacity. Comparing to ConvDP which con-
verts part detectors to a convolutional layer, FcDP converts
part detectors to a fully-connected layer and also preserves
the location information of part detectors. This makes FcDP
work better than ConvDP. On the other hand, as summa-
rized in Table 5, ConvDP has relatively more parameters
than FcDP. During the training process, both ConvDP+FT
and FcDP+FT have been fine-turned for two times, one
for the feature extraction layers and the other for the whole
models. The two-stage fine-tuning makes ConvDP+FT can
achieve a better optimization and bring out its full potential.

The results also indicate some other trends. Firstly,
comparing ConvDP and FcDP to FT, while FcDP always
has better performance than FT, ConvDP sometimes under-
performs FT. This shows that the simplest deep method FT,
which is implemented without using any explicit parts in-
formation, is already a very powerful pedestrian detection
approach. Secondly, by using the fine-tuned model in FT
as the base model of ConvDP and FcDP, we see Con-
vDP+FT and FcDP+FT achieve steady improvements over
FT, ConvDP and FcDP. This confirms in advance that the
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Fig. 6 Comparing between the proposed DP-CNN with related works on the Caltech Pedestrain
dataset. DP-CNN outperforms most of the related methods, with notable high performance on the
Heavy Occlusion subset.

Table 6 Comparison of deep methods implemented using different base
models. Results are reported on the Caltech Pedestrian dataset in log-
average miss rate (%).

Model Reasonable Partial Occl. Heavy Occl.

FT(AlexNet) 26.76 45.05 79.49
ConvDP+FT(AlexNet) 26.38 40.14 73.76

FcDP+FT(AlexNet) 25.96 41.78 70.62

FT(VggNet16) 20.88 33.92 71.15
ConvDP+FT(VggNet16) 18.61 30.05 66.01

FcDP+FT(VggNet16) 19.18 30.95 70.04

FT(VggNet19) 18.10 28.48 65.46
ConvDP+FT(VggNet19) 16.63 28.48 61.38

FcDP+FT(VggNet19) 16.65 27.59 64.92

parts information is very useful and plays an important role
in pedestrian detection. The best approach we confirmed in
this experiment is ConvDP, which utilizes part information
in a deep way and of sufficient model capacity.

6.3.2 Evaluation on other CNN Models

In order to confirm whether the proposed deep methods gen-
eralize well to other CNN models, we conduct additional ex-
periments using the AlexNet [29] and the VggNet16 [24] as
base models. AlexNet is a classic CNN model which con-
sists of 5 convolutional layers and 3 fully-connected layers.
It is much shallower comparing to the VggNet19. On the
other hand, VggNet16 shares a same design language with
VggNet19 but has three less convolutional layers.

Because the shallow methods are not comparable to
deep methods as shown in previous experiments, in this ex-
periment, we only implement three deep methods, namely
FT, ConvDP+FT and FcDP+FT, using the additional base
models. The implementation is exactly the same as de-
scribed in Sect. 6.3.1. The details of network architecture
and parameter quantity can be found in Table 3 and Table 5.
Note again that ConvDP+FT and FcDP+FT utilize a same
fine-tuned model of FT as the start point for the steps of
body parts mining and part detector combination.

The results are shown in Table 6. Comparing the
FT to ConvDP+FT and FcDP+FT, we observe that the

proposed parts-based approaches outperform the standard
fine-turning approach in all subset and base model com-
binations. This confirms that the superiority of our ap-
proaches does not depend on the architecture of base model
and generalize well. On the other hand, the comparisons
between ConvDP+FT and FcDP+FT using different base
models do not always lead to a consist conclusion. Basi-
cally, ConvDP+FT works better when using deeper models
(VggNet16 and VggNet19), while FcDP+FT works better
when the model is relatively shallow (AlexNet). Addition-
ally, comparing all the three deep methods with themselves
using different base models, it is easy to observe that the
deeper the base model is, the better the final performance
can be.

6.4 Overall Evaluation

In previous experiments we confirmed that: (1) the two con-
tributions of the proposed parts-based approach lead to su-
perior pedestrian detection performances; (2) a deeper base
model makes the two configurations of the proposed ap-
proach, namely ConvDP+FT and FcDP+FT, work better;
and (3) in case of using relatively deeper base models, Con-
vDP+FT works better than FcDP+FT. Base on these ob-
servations, we take the ConvDP+FT(VggNet19) configu-
ration to represent the proposed Discriminative Part Convo-
lutional Neural Network (DP-CNN), and compare it with
related approaches on the Caltech Pedestrian dataset, in-
cluding VJ [30], HOG [1], ACF+SDT [31], Jointdeep [25],
SDN [32], LDCF [27], SCF+AlexNet [9], Katamari [33],
SpatialPooling+ [34], TA-CNN [12] and Deepparts [8].

The evaluation results on the Caltech Pedestrian dataset
are shown in Fig. 6. Our DP-CNN achieves 16.63% MR
on the Reasonable subset, 28.48% MR on the Partial Oc-
clusion subset and 61.38% MR on the Heavy Occlusion
subset. These results outperform most of the related ap-
proaches. We also note that the proposed approach does
not outperform the DeepParts [8] approach, which explic-
itly utilizes the human body parts information and closely
related to our approach. However, comparing to DeepParts,
our DP-CNN has an obvious strength that we believe make
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Table 7 A comparison between the DP-CNN and the DeepParts in terms
of the number of parameters and the runtime cost. The runtime cost is
evaluated for processing 100 images. The mean time of 5 runs is reported.

Methods Number of Parameters Runtime Cost

DP-CNN 116 (millions) 0.679 (seconds)
DeepParts 602 (millions) 97.505 (seconds)

Table 8 The AP (%) of different methods on the KITTI validation
dataset. Compression of the fine-tuning method with two deep methods
using VggNet19 as the base model.

Model Easy Moderate Hard

FT(VggNet19) 60.79 53.04 45.42
ConvDP+FT(VggNet19) 61.89 54.11 46.11

FcDP+FT(VggNet19) 60.96 54.06 46.18

valuable contributions. The final CNN model of DP-CNN
has a very simple architecture: a standard VggNet19 model
with one more convolutional layer. This architecture is sim-
ple and slim. In contrast, DeepParts uses a number of 45
GoogleNets to train a lot of weak part detectors, which not
only makes the training difficult, but also lead to high run-
time cost. A detailed comparison between the DP-CNN and
the DeepParts in terms of the number of parameters and the
runtime cost is shown in Table 7. Because the DeepParts
is not open-sourced, we reimplemented it based on the de-
scriptions in [8], then calculated its number of parameters
and estimated its runtime performance. We used a single
Titan X GPU for computation, and confirmed that the pro-
posed DP-CNN is about 144 times faster comparing to the
DeepsParts in practice.

6.5 Evaluation on KITTI

Through the above experiments, the proposed approach
have been exhaustively evaluated on the Caltech Pedestrian
dataset. In this section, we conduct one more set of experi-
ments on the KITTI dataset to verify if the conclusions from
previous experiments also hold. Because of such a purpose,
this experiment adopts a quite simple configuration. We fol-
lowed [35] to split the KITTI TrainVal set to training set and
validation set, and report the evaluation results on the vali-
dation set. The regional proposals we used are generated us-
ing the LDCF that trained on the Caltech Pedestrian dataset.
We implemented three methods as in Sect. 6.3.2 using Vg-
gNet19 as the base model.

Different with the MR (the lower the better) that used
in previous experiments, we adopt AP (the higher the bet-
ter) as the performance metric in this experiment. As shown
in Table 8, the results indicate that the trends on the KITTI
dataset are consistent with these we observed in Sect. 6.3.1.
On the KITTI validation dataset, the proposed parts-based
approaches steadily outperforms the standard fine-turning
approach on all subsets. Additionally, comparing between
ConvDP+FT and FcDP+FT, it is also obvious that Con-
vDP+FT works better in general.

7. Conclusion

In this paper, we proposed the DP-CNN, which is a parts-
based approach for pedestrian detection. DP-CNN is fea-
tured with: (1) a high-quality body parts mining method,
which utilizes convolutional layer features as the image rep-
resentation and conducts body parts mining using finely de-
fined body part subclasses; and (2) a novel deep method for
combining multiple body part detectors, which enables the
whole pipeline, from feature extraction to part detector com-
bination, to be optimized in an end-to-end fashion.

Through the experiments, we exhaustively evaluated
the effectiveness of the two featured aspects of DP-CNN,
and confirmed: (1) the body parts mining method helps
to train high performance part detectors without parts an-
notations; and (2) the part detector combination method
helps to achieve better global optimization of detection
performance. By conducting additional experiments us-
ing more base models on more datasets, we further pro-
vided evidences which indicate the proposed approach also
generalizes well. The representative configuration of DP-
CNN is compared with many related works, and its high-
performance and high-efficiency have also been confirmed.

In the future work, we will develop DP-CNN in the
following two directions: (1) implement the core ideas of
DP-CNN in single shot detection methods, such as SSD [36]
and YOLO [37], to achieve further computational efficiency;
(2) develop methods to integrate the parts mining process,
which is done independently in its current form, to the whole
detection pipeline to achieve further global optimization.
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