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PAPER

Multimodal-Based Stream Integrated Neural Networks for Pain
Assessment

Ruicong ZHI†,††a), Caixia ZHOU†,††, Junwei YU†,††, Nonmembers, Tingting LI†,††, Member,
and Ghada ZAMZMI†††, Nonmember

SUMMARY Pain is an essential physiological phenomenon of human
beings. Accurate assessment of pain is important to develop proper treat-
ment. Although self-report method is the gold standard in pain assessment,
it is not applicable to individuals with communicative impairment. Non-
verbal pain indicators such as pain related facial expressions and changes
in physiological parameters could provide valuable insights for pain as-
sessment. In this paper, we propose a multimodal-based Stream Integrated
Neural Network with Different Frame Rates (SINN) that combines facial
expression and biomedical signals for automatic pain assessment. The main
contributions of this research are threefold. (1) There are four-stream in-
puts of the SINN for facial expression feature extraction. The variant facial
features are integrated with biomedical features, and the joint features are
utilized for pain assessment. (2) The dynamic facial features are learned
in both implicit and explicit manners to better represent the facial changes
that occur during pain experience. (3) Multiple modalities are utilized to
identify various pain states, including facial expression and biomedical sig-
nals. The experiments are conducted on publicly available pain datasets,
and the performance is compared with several deep learning models. The
experimental results illustrate the superiority of the proposed model, and it
achieves the highest accuracy of 68.2%, which is up to 5% higher than the
basic deep learning models on pain assessment with binary classification.
key words: multi-modality, pain assessment, dynamic facial feature,
biomedical feature, stream integrated neural networks

1. Introduction

Physical pain is a complex and subjective experience that
is often caused by noxious stimuli damaging tissue. It
can be defined as a protective mechanism that alerts us
about the damage that is occurring or potentially occur-
ring [1]. Accurate pain assessment is vital for understanding
patients’ medical conditions and developing suitable treat-
ments. Globally, self-report method is considered as the
gold standard in pain assessment, and has been applied suc-
cessfully in pain management. However, self-reporting re-
sults would provide inconsistent and unreliable information
in cases where an individual is suffering from a form of
cognitive impairment [34]. Moreover, the self-report man-
ner is not applicable to individuals with communicative
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impairment.
The observational measures based on behavioral indi-

cators and physiological indicators could be considered as
an effective way for pain assessment. The pain related be-
havioral indicators include facial expression, body move-
ment, and sound signals. Facial expression is the most spe-
cific pain behavioral indicator, which is more salient and
consistent than other behavioral indicators [3]–[5]. Painful
facial expressions are defined as the movement and distor-
tion of facial muscles associated with painful stimuli, which
can be described by the action units (AUs). Prkachin and
Solomon [2] found that four AUs on faces – brow lowering,
orbital tightening, levator contraction, and eye closure – car-
ried the bulk of information about pain. In addition, biomed-
ical signals are effective objective measurements which pro-
vide a lot of clues for pain assessment.

In practice, the evaluation of indicator-based manner
requires professional caregivers with plenty of training, and
the manual pain assessment is time-consuming and labor-
ing for long-term continuous pain monitoring. Therefore,
an automatic multi-modal based pain assessment system is
desired to objective pain assessment. Various studies have
investigated the feasibility and relevancy of automatic pain
assessment systems based on measurable visual and phys-
iological parameters (see Sect. 2.4). These studies show
that non-verbal pain indicators such as pain related facial
expressions and changes in physiological parameters could
provide valuable insights for pain detection and intensity
estimation.

In this paper, we propose a multimodal-based Stream
Integrated Neural Network with Different Frame Rates
(SINN) for automatic pain assessment. The proposed net-
work combines facial expression and biomedical signals.
The main contributions can be summarized as follows:

(1) We propose four-stream inputs to SINN for facial
expression feature extraction. These inputs include the spa-
tial information (original image sequences), the temporal in-
formation (optical flow sequences), the static information
(slow pathway), and the dynamic information (fast path-
way). These variant facial features are then integrated with
biomedical features, and the joint features are utilized for
pain assessment.

(2) We propose to learn the dynamic facial features in
both implicit and explicit manners to better represent the fa-
cial changes. The optical flow ConvNet3D deals with facial
image sequences and image sequences with different frame

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers



ZHI et al.: MULTIMODAL-BASED STREAM INTEGRATED NEURAL NETWORKS FOR PAIN ASSESSMENT
2185

rates are employed to learn dynamic facial features explic-
itly and implicitly.

(3) We propose to integrate facial expression, skin con-
ductance level, electrocardiogram, and electrical muscle ac-
tivity, to identify various pain states. Our experimental re-
sults prove that the multimodal scheme greatly enhances the
performance of pain assessment.

2. Related Work

Automatic pain assessment is a difficult task due to the vari-
ances between different subjects. In this section, we intro-
duce the state-of-the-art automated pain assessment meth-
ods for facial expression, body movement, and biomedical
signals.

2.1 Facial Expression

Facial expression is the most well-applied indicator for pain
assessment in practice as it is non-invasive and easily ac-
quired by video recording techniques [6]–[10]. Extracting
the best set of facial features is critical to obtain accurate
pain assessment. Furthermore, excellent facial features can
reduce the dependence on the selection of classifiers. Ex-
isting works for pain assessment based on facial expression
analysis can be divided into two categories: frame-level fea-
ture extraction and sequence-level feature extraction. For
frame-level facial expression feature extraction, researchers
tried both appearance features and geometry features for fa-
cial representation. Appearance features focus on captur-
ing information that represents facial texture, which reflects
the magnitude and direction of facial surface displacement.
Examples of the texture descriptors that have been applied
successfully to pain assessment include Local Binary Pat-
tern (LBP) [11]–[13], Gabor Transform [14], and Discrete
Cosine Transform (DCT) [15]. Geometry-based features de-
scribe the changes in the facial geometry using a set of fidu-
cial points or a connected face mesh, such as the Active Ap-
pearance Model (AAM) [16], [17]. The main limitation of
frame-level feature extraction is that they deal with static
images and ignore the dynamic pattern of pain.

In the last decades, several researchers reported the
importance of using temporal facial representation, since
pain is a dynamic event and it evolves in a specific pat-
tern over time. For example, Multiple Instance Learning
(MIL) [18], [19] was used to create instance labels inside the
bag, which benefited from weakly supervised pain intensity
estimation tasks. Other works, which used Three Orthogo-
nal Planes (TOP) [20], [21], were proposed to extract spatio-
temporal information for pain detection, and they were well
applied to several texture descriptors such as LBP and his-
togram of oriented gradients (HOG). Werner et al. [22] pro-
posed a novel feature set, called facial activity descriptors,
to describe facial actions for pain detection and pain inten-
sity estimation. Bourou et al. [23] calculated several dis-
tances (e.g., mean and median) from ROIs to classify pain
expressions.

Recently, self-learning features, extracted by deep
learning algorithms, are exploited in automatic pain assess-
ment to extract facial representations through a joint fea-
ture learning and classification/regression pipeline. For in-
stance, Kharghanian et al. [24] utilized Convolutional Deep
Belief Network (CDBN) to extract facial features in an un-
supervised manner. Convolutional Neural Networks (CNN)
were utilized in [25]–[27] to learn facial features for pain
recognition because of their powerful feature learning abil-
ity. For example, Egede et al. [26] combined three kinds of
facial features, including deep learning features for regions
of interest, geometric features, and texture features. To in-
tegrate temporal pain analysis, Long Short-Term Memory
(LSTM) [25] has been commonly used for temporal fea-
ture extraction. For example, Bellantonio et al. [27] em-
ployed a combination of CNN and Recurrent Neural Net-
works (RNN) to set up a deep hybrid pain detection frame-
work to analyze both spatial and temporal pain information
from videos of faces. Similarly, a bidirectional LSTM-RNN
was used to automatically estimate Prkachin and Solomon
Pain Intensity (PSPI) levels from face images. Moreover,
Zhou et al. [28] designed a real-time regression framework
based on recurrent CNN for automatic frame-level continu-
ous pain intensity estimation.

2.2 Body Movement

Body motion is an effective indicator of pain, especially for
patients with chronic diseases and infants. Walsh et al. [29]
found that pain was communicated through averted head
and trunk, hand touches to various sites, knee bending,
and shoulder to front movements. Olugbade et al. [30] ex-
plored pain-body movements by conducting experiments to
discriminate subjects with low-level and high-level pain.
Wang et al. [31] utilized LSTM to detect events of protec-
tive behavior captured from healthy people and people with
chronic back pain.

2.3 Biomedical Signals

Pain could cause changes in biomedical signals such as
Electromyography (EMG), Electrocardiogram (ECG), and
skin conductance level (SCL) signals. For example, Kachele
et al. [32] extracted EMG, ECG, and SCL signals and used
them to detect different levels of pain. Walter et al. [33]
obtained the amplitude and change of galvanic skin reac-
tion (GSR), EMG, ECG, and SCL. In [34], several parame-
ters were extracted temporally from biomedical signals. Al-
though the overall performance was significantly improved,
the authors found that pain assessment based on biomedical
signals was not performed well for low pain intensities.

2.4 Fusion of Multiple Pain Signals

Pain causes both behavioral and physiological changes,
multimodal-based pain assessment attracted increasing at-
tention [35]. Walter et al. [36] combined both facial
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expressions and biomedical channels to obtain pain-related
information. Haque et al. [37] used early feature fusion by
generating a new input that merged RGB, depth, and thermal
images into one matrix, and the outputs of several classi-
fiers were combined through late fusion. In the case of deep
learning, Thiam et al. [38] proposed a deep learning-based
method that merged several kinds of information, such as
speech information, geometry descriptor, head pose, and
biomedical signals, to detect different pain states. These
studies showed that both the behavioral and biomedical sig-
nals were critical for pain assessment and the superiority of
multimodal-based pain recognition.

3. Proposed Method

This paper presents a multimodal-based Stream Integrated
Neural Network with Different Frame Rates (SINN). SINN
utilizes facial expression and biomedical signals. For facial
expressions, a four-stream structure is used to extract four
kinds of facial features. As for the biomedical signals, the
LSTM structure is utilized and then the biomedical channel
is merged with the four-stream structure of a facial expres-
sion to generate the final SINN structure. Figure 1 depicts
the flowchart of our proposed SINN network.

As shown in the Fig. 1, the original video sequence is
normalized by interpolation to a 9-frame sequence to form
the high frame rates sample, and a 4-frame sequence to form
the low frame rates sample. Then the optical flow stream in-
formation is extracted for both the low frame rate image se-
quence and high frame rate image sequence, respectively, to
generate a four-stream input of facial expression data. These
inputs are convolved to extract facial features through the
ResNet3D module, then merge with the biomedical signal
feature extracted by LSTM. Finally, Softmax is used to out-
put the probability of each pain level. The proposed method
is described in detail next.

Fig. 1 The skeleton of the proposed SINN. The structure of ResNet3D can be seen in Fig. 3 (b).

3.1 Preprocessing

All the facial images of the sequences are preprocessed by
face alignment and face frontalization to get the exact face
region and eliminate noise. We use Procrustes Analysis [39]
to perform face alignment, and face frontalization was re-
ferred to [40].

3.2 SINN for Facial Expression Analysis

3.2.1 3DConvNet

The Two-dimensional Convolutional Neural Network
(2DCNN) is one of the most successfully applied deep
learning methods that are used to learn the image texture
information effectively. However, it is far not enough to
lean facial features by 2D convolution from spatial dimen-
sions when applied to video analysis tasks. Facial image
sequences contain plenty of spatial and temporal informa-
tion that is very helpful for identifying different pain states.
In this paper, we use 3DCovNet for feature learning so that
it can deal with the image sequences conveniently. More-
over, an optical scheme of squeezing is utilized to decrease
the complexity of 3DConvNet.

3DConvNet works by convolving a 3D kernel to the
cube formed by stacking multiple frames together. The mul-
tiple adjacent frames are connected to form the input and the
feature maps of 3DCNN. The formula of 3DConvNet is ex-
pressed as:

xl
3d = σ

(
zl
)
= σ
(
xl−1

3d ∗Wl
3d + bl

)
(1)

where x 3d is a four-dimension array. This four-dimension
array is [num of frames, width, height, channel] for in-
puts, and [first dimension of feature maps, width, height,
num of feature maps] for feature maps. W 3d is the pa-
rameters of the 3D convolutional kernel, and b is the biases
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Fig. 2 Comparison of 2D and 3D convolution operation (a) 2D convolu-
tion operation (b) 3D convolution operation.

parameter.
The 3DConvNet can extract both spatial information

and motion information. Figure 2 (a) and Fig. 2 (b) present
the 2D convolutional operation and 3D convolutional oper-
ation, respectively.

In this paper, we use 3DCovNet for feature learning
so that it can deal with the image sequences conveniently.
Moreover, an optical scheme of squeezing is utilized to de-
crease the complexity of 3DConvNet.

Although 3DConvNet can extract both spatial and tem-
poral information with a single convolutional kernel, the
network has a significantly high computational complexity.
Further, this network is deep with a high number of layers
to enhance performance. When deeper networks start con-
verging, a degradation problem occurs. This degradation
problem could be somehow addressed by the deep residual
neural networks.

The stacked layers are expected to fit a residual map-
ping, instead of a direct desired underlying mapping. For-
mally, the desired underlying mapping is denoted as H (x),
x is the input of the Resnet block. Let the stacked nonlinear
layers fit another mapping of F (x) := H (x) − x, and then
the original mapping is recast into F (x) + x. The hypothe-
ses are that it is easier to optimize the residual mapping than
the original unreferenced mapping. To the extreme, if an
identity mapping is optimal, it would be easier to push the
residual to zero than to fit an identity mapping by a stack of
nonlinear layers. The formulation of F (x)+ x is realized by
feedforward neural networks with “shortcut connections.”

We change the bottleneck layer in the ResNet to make it
more suitable for our task. First, the two-dimensional con-
volution in the ResNet structure is replaced by the three-
dimensional convolution to deal with the dynamic feature
extraction for facial expression image sequences. Second,
the idea of SqueezeNet [41] is integrated into the ResNet
architecture. The feature map is reduced by 1×1×1 convo-
lution kernel, and then 3×3×3 convolution is performed, so
that the network parameters can be compressed. The struc-
ture of the proposed ResNet3D is shown in Fig. 3.

3.2.2 Optical Flow 3DConvNet

As the 3DConvNet can’t estimate the motion implicitly, we

Fig. 3 Shortcut connections (a) original ResNet (b) proposed ResNet3D.

use the optical flow to estimate the motion between video
frames explicitly [42]. The optical flow-based 3DConvNet
for motion information extraction is implemented through
a scheme of feeding the 3DConvNet by stacking optical
flow displacement fields between several consecutive facial
frames.

Optical flow is the instantaneous velocity of the mov-
ing motion of a spatially moving object on an imaging plane.
The optical flow method explores the change of pixels in the
time domain and the correlation between adjacent frames
to find the correspondence between the previous frame and
the current frame. The computation of the optical flow vec-
tor from an image sequence requires constant brightness,
continuous-time, and small motion constraints.

Consider the brightness of a pixel I(x, y, t) in the first
frame, where t represents the time dimension, x and y repre-
sent the spatial coordinates in which it is located. It moves
the distance of (dx, dy) to the next frame by dt time. Ac-
cording to the first constraint of optical flow, the brightness
of the pixel before and after the motion is constant, i.e.

I (x, y, t) = I (x + dx, y + dy, t + dt) (2)

The right-side expression can be rewritten by Taylor expan-
sion as follows:

I (x, y, t) = I (x, y, t) +
∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt + ε (3)

where ε represents the second-order infinitesimal term and
can be neglect. Merge Eq. (3) and Eq. (4), and divide by dt
for both side:

∂I
∂x

dx
dt
+
∂I
∂y

dy
dt
+
∂I
∂t

dt
dt
= 0 (4)

Let u, v be the velocity vectors of the optical flow along X
and Y axes, respectively:

u =
dx
dt
, v =

dy
dt

(5)

The velocity vector of the pixel is calculated using the
spatio-temporal differentiation of the time-varying image
grayscale.

The optical flow means that each pixel in the image
has a displacement in the x-direction and y-direction, so the
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size of the corresponding optical flow image is the same as
that of the original image. It could be displayed with the
Munsell color system as shown in Fig. 4. Figure 4 (c) shows
the optical flow image we obtained from the facial images
(Fig. 4 (a) and Fig. 4 (b)).

We calculate the optical flow images by the adjacent
images of original facial image sequences. The optical flow
image sequences, together with the original pain facial ex-
pression image sequences, are fed to the neural network for
further facial feature learning to obtain temporal informa-
tion for classification.

3.2.3 Stream Integration for Facial Expression of Pain

Our strategy for combining the four-stream inputs is shown
in Fig. 5. Two-stream image sequences with different frame
rates are designed to process the facial frames individually.
Low frame rates are fed to the network to analyze static
parts of facial frames, while image sequences with high
frame rates are fed to the network to process dynamic parts
of facial frames. Our idea is partly inspired by the retinal
ganglion of primates [43], [44]. Also, both the high frame
rate pathway and slow frame rate pathway can interact bidi-
rectionally. A lateral connection scheme is utilized to fuse
the information of two pathways (low frame rate and high
frame rate), which is a popular technique for merging dif-
ferent levels of spatial resolution and semantics [45] and has
been used in two-stream networks [46]. The fast and slow

Fig. 4 Example of optical flow image for pain facial expression (a) and
(b) are original images, and (c) is the corresponding optical flow image.

Fig. 5 The facial feature learning structure in SINN network. K means kernel size and S means
strides. The number in [ ] means the channel.

pathways are connected to make facial features rich. The
feature map sizes of the high frame rate stream and low
frame rate stream are the same after the ResNet3D.

In this paper, we firstly use the multi-stream integrated
neural network for detecting facial expressions of pain. As
shown in Fig. 5, two kinds of dynamic information extrac-
tion manners are utilized to represent the dynamic facial fea-
tures of pain states. The network has four-input streams:
original image sequences of low frame rate by 3DConvNet
(input stream 1), optical flow image sequences of low frame
rate by optical flow 3DConvNet (input stream 2), original
image sequences of high frame rate by 3DConvNet (input
stream 3), and optical flow image sequences of high frame
rate by optical flow 3DConvNet (input stream 4). The fa-
cial features extracted by each stream are fused and fed to
Softmax for pain recognition.

3.3 Multimodal-Based SINN

Several studies reported that biomedical signals were good
indicators of pain. In this work, SCL (Skin conductance
level), ECG (electrocardiogram), and EMG (electrical mus-
cle activity) are utilized and fused with the facial informa-
tion extracted by SINN.

The EMG signal is filtered by a Butterworth bandpass
filter (20–250Hz). The filtered signal is further denoised by
Andrade [7], which is based on Empirical Mode Decom-
position. The ECG signal is filtered with a Butterworth
bandpass filter (0.1–250Hz) [38]. The biomedical signals
are recorded together with the videos of the face simulta-
neously. The time window of the biomedical signals and
face videos are the same.

Examples of those biomedical signals for baseline (BL)
and pain intensity 4 (PA4) are shown in Fig. 6. The x-axis is
time and the y-axis represents the amplitude of signals. The
figure shows that the biomedical signal is a vector concate-
nated based on the time window. Hence, LSTM is utilized
to extract features of the biomedical signals. After that, the
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Fig. 6 Biomedical signal comparison (a) SCL (b) ECG (c) EMG. Blue line denotes the signal of
baseline (BL) and red line denotes the signal of pain intensity 4 (PA4).

extracted feature vector is fed to a fully connected layer for
dimensionality reduction, then merged with the facial ex-
pression features. The final feature vector, which contains
both the facial and biomedical features, is then fed to two
Softmax layers. Finally, the probability of the pain category
is obtained.

In summary, the proposed SINN receives five differ-
ent inputs, including four streams for facial expression and
one stream for biomedical signals. In the following sec-
tion, we use the proposed multimodal-based SINN for auto-
matic pain assessment, and evaluate the performance on two
publicly available pain datasets, i.e. BioVid and MIntPAIN.
We perform two levels of pain classification: binary classi-
fication and multi-level classification. We also investigate
subject-independent and subject-dependent pain assessment
by using different cross-validation schemes.

4. Experiments and Discussion

4.1 Dataset and Evaluation Protocol

We evaluate the proposed SINN network on the BioVid and
MIntPAIN pain datasets. BioVid datase (http://www.iikt.
ovgu.de/BioVid.html) [5] has 8700 facial videos recorded
from eighty-seven participants. Three kinds of biomedical
signals are collected, i.e., SCL, EMG, and ECG. EEG sig-
nals are not collected to prevent the occlusion of facial ex-
pressions by EEG acquisition devices. There are five kinds
of stimulus intensity labels, i.e., Baseline (BL), pain inten-
sity 1 (PA1), pain intensity 2 (PA2), pain intensity 3 (PA3),
and pain intensity 4 (PA4). To enlarge this dataset, we aug-
ment the videos ten times by random cropping.

MIntPAIN dataset (https://vap.aau.dk/mintpain-
database/) [37] has data for 20 subjects captured during the
electrical muscle pain simulation. Each subject exhibit two
trials during the data capturing session, in which each trial
has 40 sweeps of pain stimulation. In each sweep, two kinds
of data are captured: one for no pain (BL) and the other one
for four kinds of different pain levels (i.e., PA1, PA2, PA3,
and PA4). In total, each trial has 80 folders for 40 sweeps.
To enlarge this dataset, we augment the videos twenty times

using random cropping. Since the BL samples are four times
more than other types of data, 1/4 of the data is randomly
selected from the BL to maintain the balance with other
categories.

For the BioVid dataset, the subject-independent ex-
periment is conducted by randomly selecting five subjects
(5.75%) for validation, five subjects (5.75%) for testing,
and the rest (88.5%) for training. As for the MIntPAIN
dataset, we perform subject-dependent pain recognition and
subject-independent pain recognition separately. In the case
of subject-independent, we divide the 20 subjects into five
groups, and then the five-fold cross-validation is conducted.
In the case of subject-dependent, we use 300 samples from
each pain level category as the verification set, 300 samples
are used as the testing set, and the rest as the training set.

4.2 Results Facial Expression Based SINN

The proposed SINN is utilized on BioVid and MIntPAIN
datasets for pain assessment. For fairness, several mod-
els based on deep learning are selected for comparison.
Up until now, rarely researches utilize the deep learning
method to deal with pain recognition problems mainly due
to the limitation of appropriate datasets. Daniel and Ros-
alind [47], [48] employed the feasibility of using physiolog-
ical signals to detect the presence of pain by RNNs through
regression on BioVid. They explored the effectiveness of
biomedical signals for pain assessment. To the best of our
knowledge, we are the first to propose a deep learning net-
work that combines facial expression video and biomedi-
cal signals for assessing pain. Therefore, the well-applied
deep learning models which deal with the video process-
ing problem successfully are chosen to be compared, includ-
ing two-stream neural networks [42] with a low frame rate
(Two-stream NN low) and high frame rate (Two-stream NN
high), and slow-fast neural networks [46].

The two-stream neural networks have two kinds of in-
put (original image sequences and optical flow sequences),
and the facial features are combined after convolution lay-
ers. Slow-fast is a network structure that combines the two
streams of original facial sequences with a slow frame rate
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Table 1 The results for binary classification on BioVid (BL and PA4).

methods accuracy precision recall F1-score

SINN 0.65 0.673 0.554 0.608
SINN+StF 0.603 0.577 0.687 0.627
SINN+FtS 0.62 0.558 0.666 0.607

Two-stream NN low 0.62 0.599 0.658 0.627
Two-stream NN high 0.626 0.623 0.582 0.602

Slowfast 0.6 0.597 0.518 0.555

Table 2 The accuracy comparison of facial expression based pain clas-
sification on the BioVid and MIntPAIN datasets.

Binary classification Multi-level clas-
sification

Method BioVid MIntPAIN BioVid MIntPAIN

SINN 0.65 0.636 0.281 0.252
SINN+StF 0.603 0.601 0.262 0.235
SINN+FtS 0.62 0.613 0.249 0.227

Two-stream NN low 0.62 0.598 0.242 0.231
Two-stream NN high 0.626 0.601 0.243 0.232

Slowfast 0.6 0.588 0.233 0.219

and fast frame rate, respectively. Moreover, there are three
types of variances of the facial expression-based SINN: the
low frame rate to high frame rate fusion (SINN+StF), the
high frame rate to low frame rate fusion (SINN+TtS), and
non-fusion (SINN). The difference is the manner of inter-
action between the low stream and fast stream. The six
deep learning models are conducted on the BioVid dataset
based on facial expression image sequences for pain detec-
tion, which is a binary classification task with two categories
(pain and no pain).

The experimental results are compared in Table 1 using
several metrics, including accuracy, precision, recall, and
F1-score. To assess the statistical significance of these meth-
ods, we use McNemar’s test [49] with p < 0.05. As shown in
Table 1, SINN achieves the highest accuracy and precision,
which are 2.4% (accuracy) and 5% (precision) significantly
higher (p < 0.05) than the second-best model. These results
prove that the information extracted by variant streams fu-
sion plays a positive role in pain classification. SINN+StF
achieves the highest recall rate and F1-score, i.e. the recall
of SINN+StF is 2.9% higher than the second-best model.
Similar results are achieved on the MIntPAIN dataset for bi-
nary classification. The SINN model achieves an accuracy
of 0.636, which was around 3% higher than that of two-
stream NN, and almost 5% higher than that of the SlowFast
network (p < 0.05).

Assessing multiple levels of pain is more challenging
than the binary assessment. Pain intensities assessment is a
typical multi-level classification task (PA1, PA2, PA3, PA4,
and no pain). Table 2 present the overall performance of bi-
nary and multi-class assessment on BioVid and MIntPAIN
datasets. In most cases, SINN achieves the highest perfor-
mance and outperforms other models in multi-level pain as-
sessment. The result of SINN with StF is slightly higher
than that of SINN with FtS. We think this might be attributed
to the over-fitting of SINN with the FtS model. All the

Fig. 7 Comparison of facial expression-based and multimodal-based
multi-level classification pain assessment on BioVid dataset.

SINN-based models achieve higher accuracy compared to
the two-stream model and the slow-fast model (p < 0.05),
which indicates the effectiveness of the proposed SINN
method. The best result obtained by SINN on the BioVid
dataset is 28.1%, and on the MIntPAIN dataset is 25.2% for
five-category pain intensity classification. The accuracy of
multi-level classification is much lower than that of binary
classification. This is attributed to the fact that multi-level
classification is more complicated, and the pain label is an-
notated by the stimuli level instead of the subject report, i.e.
the pain tolerance of different subjects is different, leading
to variant respondences among subjects. There are a certain
amount of high pain level videos with no obvious pain facial
expression.

The proposed SINN model obtain the highest accu-
racy and significantly outperform the compared deep learn-
ing models by up to 4% for multi-level classification pain
assessment on the MIntPAIN dataset. Moreover, the pro-
posed SINN model outperforms the baseline model of the
MIntPAIN dataset [37], which applied convolutional neu-
ral networks using only RGB image sequences, by up to
6.6% higher accuracy (SINN: 25.2% accuracy and base-
line: 18.6% accuracy). These results suggest that the pro-
posed network enhances the performance of the deep learn-
ing model significantly, and it can obtain the spatial and mo-
tion information implicitly (three-dimensional convolution)
and explicitly (optical flow sequences).

In addition, we also conduct a subject-dependent pain
assessment on MIntPAIN for the multi-level classification
task. The proposed network achieves 87.1% accuracy,
which is much higher than the subject-independent assess-
ment. These results indicate that the SINN model could
obtain rich facial information to present pain states and
the rigid facial change influences pain recognition perfor-
mances. Figure 8 presents the confusion matrix, where BL
denotes the no-pain label, and PA1 to PA4 are four levels
of pain intensities. As shown in the table, our method has
better pain detection than no-pain detection. This might be
attributed to the fact that some subjects made some kind of
relaxation action during no pain stimulation, which confuses
the identification between pain and no pain.
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Fig. 8 The confusion matrix of SINN for the subject-dependent experi-
ment on MIntPAIN dataset.

Table 3 The accuracy comparison of multimodal pain classification on
BioVid dataset.

Binary classification Multi-level classi-
fication

Method Facial expres- Multimodal Facial ex- Multimodal
sion pression

SINN 0.65 0.682 0.281 0.299
SINN+StF 0.603 0.668 0.262 0.282
SINN+FtS 0.62 0.656 0.249 0.263
Two-stream 0.62 0.649 0.242 0.241
NN low
Two-stream 0.626 0.638 0.243 0.245
NN high
Slowfast 0.6 0.638 0.233 0.24

4.3 Results of Multimodal-Based SINN

In this section, we present the results of assessing pain using
both facial expression and biomedical signal. Specifically,
the facial expression-based pain assessment models evalu-
ated in Sect. 3.3 are fused with biomedical signal features
learned by LSTM networks. The multimodal-based SINN
is compared with facial expression-based SINN and several
deep learning models.

The comparison of binary classification accuracy is il-
lustrated in Table 3 with single-model and multi-modal.
McNemar’s test is used to measure statistical significance
with p < 0.05. It can be seen from the table that joint fea-
tures can promote pain assessment performance by more
than 3%, and there is a significant difference between
multimodal-based and facial expression-based models. Ac-
cording to the comparisons of multimodal-based deep learn-
ing methods, the best results are obtained by multimodal-
based SINN with an accuracy of 68.2%, which is up to 5%
higher than that of the SlowFast method. The difference
analysis shows that there are significant differences between
SINN and Two-stream NN high and SlowFast schemes (p <

Table 4 The multi-level classification confusion matrix of the
multimodal-based SINN on the BioVid dataset.

BL PA1 PA2 PA3 PA4

BL 0.679 0.197 0.037 0.014 0.073
PA1 0.549 0.272 0.051 0.046 0.082
PA2 0.543 0.146 0.135 0.035 0.141
PA3 0.567 0.181 0.07 0.042 0.14
PA4 0.353 0.191 0.04 0.058 0.358

0.05). Despite no significant difference between SINN and
Two-stream NN low in the statistical difference analysis, the
accuracy of SINN is approximately more than 3% higher
than that of Two-stream NN low.

Figure 7 visually illustrates the comparison between
facial expression-based and multimodal-based multi-level
classification pain assessment, where the left bar denotes
the results of facial expression-based pain assessment, and
the right bar denoted the results of multimodal-based pain
assessment. As can be seen in the figure, the multimodal-
based SINN achieves 29.9% accuracy, which is almost
2% higher than facial expression-based SINN. Moreover,
the multimodal-based SINN outperforms two-stream-based
neural networks and slow-fast neural networks by up to
5.4% and 5.9%, respectively. Significant differences are
found (p < 0.05) between the accuracy of SINN and Two-
stream NN and Slowfast. Therefore, we can conclude that
combining different features can enhance pain assessment
performance, and the biomedical signal is helpful for pain
recognition. The performance of multimodal-based SINN
is acceptable (overall accuracy of binary classification was
68.2%) but lower than the performance of the traditional
machine learning-based pain assessment. For example, the
method proposed by Markus et al. [36] which combined fa-
cial features with biomedical signals achieved 83.1% binary
classification accuracy when evaluated on BioVid dataset
with leave-one-subject-out cross-validation. In [50], the au-
thors achieved 80.6% accuracy using a Random Forest (RF)
with bio-physiological, facial expression, and head move-
ment features.

We believe that these methods achieve better overall
performance due to two main reasons. First, the tradi-
tional machine learning methods extract hand-crafted fea-
tures from facial expression and several biomedical signals
respectively, which can explore the intrinsic information of
multi-modal through different manners. Our proposed deep
learning scheme utilizes unified architecture to deal with
the sequence signals, and there is no need to design the
feature extraction and classifier beforehand. Second, the
five-fold cross-validation (subject-independent) utilized in
our experiments is more challenging than leave-one-subject-
out cross-validation, as there are fewer training samples and
more testing samples, which can lead to lower classification
accuracy.

The confusion matrix of the multimodal-based SINN
for multi-level classification on the BioVid dataset is shown
in Table 4. The columns of the table are the predicted la-
bels, and the rows are the ground truth labels. As can be
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seen, almost half of the pain samples are misclassified to
the no pain category. The case is not entirely due to the net-
work structure and self-learning scheme, but mostly because
of the instance variation for different pain stimuli. A great
number of video samples with pain labels have no obvious
facial changes, leading to the deviation of the information
extracted in the facial feature learning. It is even worse for
PA2 and PA3. Although integrating physiological features
can alleviate this problem to a degree, the misclassification
problem is not improved.

5. Conclusion

This paper presents a novel network that utilizes different
pain indicators to deeply exploit pain-related information.
The scheme is implemented by a multimodal-based stream
integrated neural network with different frame rates (SINN),
which employs both facial expression and biomedical sig-
nals for pain assessment. In addition, the network learns
dynamic facial features in both implicit manner and ex-
plicit manner, which is conducted by different frame rate
operation and optical flow image sequence processing, re-
spectively. Multi-streams can reflect the spatial information
(original image sequences), the temporal information (op-
tical flow sequences), the static information (slow pathway),
and the dynamic information (fast pathway), which enrich
the ability for characteristic facial description by facial fea-
tures. Experimental results on public BioVid and MIntPAIN
pain datasets illustrated that the proposed SINN model per-
formed well for pain detection and pain intensity recogni-
tion, especially for the binary classification task. The results
also showed that the joint feature from facial expression
and biomedical signals could promote the accuracy of the
automatic pain recognition system. The multimodal-based
SINN achieves a better accuracy which is up to 5% higher
than facial expression-based SINN in binary pain classifica-
tion. And in multi-level pain classification, the accuracy is
enhanced for almost 2% comparing the multimodal-based
SINN to single facial expression modal. The deep learn-
ing method needs a large scale of training samples to en-
hance the classification performance, and we will try a larger
dataset to evaluate the proposed SINN in the future.
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