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PAPER

Semi-Supervised Representation Learning via Triplet Loss Based
on Explicit Class Ratio of Unlabeled Data

Kazuhiko MURASAKI†a), Shingo ANDO†, and Jun SHIMAMURA†, Members

SUMMARY In this paper, we propose a semi-supervised triplet loss
function that realizes semi-supervised representation learning in a novel
manner. We extend conventional triplet loss, which uses labeled data to
achieve representation learning, so that it can deal with unlabeled data. We
estimate, in advance, the degree to which each label applies to each un-
labeled data point, and optimize the loss function with unlabeled features
according to the resulting ratios. Since the proposed loss function has the
effect of adjusting the distribution of all unlabeled data, it complements
methods based on consistency regularization, which has been extensively
studied in recent years. Combined with a consistency regularization-based
method, our method achieves more accurate semi-supervised learning. Ex-
periments show that the proposed loss function achieves a higher accuracy
than the conventional fine-tuning method.
key words: semi-supervised learning, representation learning, triplet loss

1. Introduction

In recent years, deep learning has achieved high perfor-
mance in machine learning, and a lot of practical applica-
tions have been realized by deep learning. It has been ap-
plied not only to image classification but also to various
problems such as facial expression recognition from im-
ages [1], gesture recognition from videos [2], rainfall pre-
diction from weather parameters [3] and so on. One of the
major challenges to utilize deep learning for practical appli-
cations is that quite a lot of labelled training data is required.
Even if a lot of data has already been collected or it is easy to
collect data, it is not easy to annotate the data. Recently, the
approach of semi-supervised deep learning has been seen as
an attractive way of solving this problem. There are various
semi-supervised learning methods such as giving pseudo la-
bels to unlabeled data [4], minimizing the entropy of fea-
ture vectors by representation learning [5], attaining classi-
fier consistency by adding small changes (noise or pertur-
bation) to unlabeled data [6]–[8], or generating new training
data from generative adversarial networks (GAN) [9], and
so on. In particular, many methods based on consistency
regularization have recently been proposed that train the fea-
ture representation of images so that it does not change in
response to the processing of images. These have demon-
strated high recognition accuracy [6]–[8], [10]–[17]. Con-
sistency regularization methods decrease the influence of
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noise that is orthogonal to the class information by train-
ing the feature representation so that it remains consistent
when images corrupted by noise are input. Although the ap-
proaches based on consistency regularization have achieved
better performance, they do not directly address the distri-
bution of unlabeled data. For example, hypothesis that data
which are sufficiently close together are likely to be identi-
cally labeled or hypotheses that all unlabeled data are split
into a certain number of classes is not utilized by the meth-
ods even though prior knowledge about the distribution of
the data is clearly important. It is expected that utilizing
prior knowledge will further improve the performance of
semi-supervised learning.

In this paper, we propose a semi-supervised learning
method that directly considers the distribution of unlabeled
data, and that can reinforce conventional consistency reg-
ularization approaches. The technical contribution of our
method is introducing new clues about global distribution to
semi-supervised representation learning additional to con-
ventional local distribution assumptions and consistency to
noise. To utilize prior knowledge of the global distribution
of unlabeled data, we assume that the proportions of each
class of data are given in advance. Our proposed loss func-
tion uses a predetermined class ratio and make feature repre-
sentation fit this ratio. In experiments, based on the param-
eters pretrained by consistency regularization, several loss
functions for fine-tuning are evaluated. Compared with or-
dinary cross entropy loss and neighbor embedding loss [18],
it is shown that our proposed loss function achieves better
performance.

Figure 1 shows an image of the proposed semi-
supervised triplet loss. Conventional triplet loss places the
positive samples closer to the anchor than the negative sam-
ples, as shown in (a). The proposed objective function ex-
tends this idea to evaluate the unlabeled samples. As shown
in (b), it makes the unlabeled samples approach the corre-
sponding positive samples by an amount proportional to the
ratio of θi. As shown in (c), it makes the unlabeled samples
approach the corresponding negative samples by an amount
proportional to the ratio of 1−θi. That is, our method utilizes
the unlabeled samples for representation learning.

2. Related Work

A number of semi-supervised learning methods based on
deep learning have been proposed [19]. There are major two
approaches: The consistency based approach, which tries
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Fig. 1 The conceptual diagram of semi-supervised triplet loss. The semi-supervised triplet loss takes
into account three relationships. (a) Positive samples are drawn toward the anchor and negative samples
are pushed away from the anchor. (b) Distances of unlabeled samples in the ratio of θi from the anchor
are drawn toward distances of positive samples, and vice versa. (c) Like (b), distances of unlabeled
samples in the ratio of 1− θi and distances of negative samples from the anchor are drawn to each other.

to maintain the consistency of representation against data
deformation, and the distribution-based approach, which
makes assumptions about the distribution of unlabeled data
and learns the corresponding deformation of the feature
space.

In [19], approaches of semi-supervised deep learn-
ing are divided into five categories, generative methods,
consistency regularization methods, graph-based methods,
pseudo-labeling methods and hybrid methods. We catego-
rize generative methods as one type of consistency-based
approach, and categorize pseudo-labeling methods as one
type of distribution-based approach. We do not refer to
graph-based methods because they are based on graph neu-
ral networks whose structure is completely different from
general DNNs or CNNs.

2.1 Consistency Based Approach

Many of the semi-supervised learning methods that have
been studied in recent years are based on the consistency-
based approach, which is a good match with deep learn-
ing [6]–[8], [11]–[17]. In this approach, data augmenta-
tion is used to generate pseudo-data and the data is as-
sumed to have the same representation or label as the orig-
inal data. Various data generation methods have been at-
tempted, such as the generation of samples with slight per-
turbation in the feature space (VAT [6]), generative adversar-
ial networks (GAN [9]), generation of significantly differ-
ent images via affine and color transformation (UDA [10],
SimCLR [15], [16], MoCo [17]), or generation by mixing
multiple images (MixMatch [13], ReMixMatch [14]). Al-
though high recognition accuracies have been reported by
interweaving various generation methods, the tuning cost is
high because the appropriate data generation method must
be assumed to vary from problem to problem. Moreover, it
is difficult to reproduce the reported recognition accuracy.

Consistency-based learning applied to representation
learning from completely unsupervised data is called self-
supervised learning. SimCLR [15] and its extensions [16],
which attains consistency for strong data augmentation from
unlabeled datasets, have been reported to provide highly
accurate semi-supervised learning with simple fine tuning.

Moreover, although such learning requires a GPU with huge
memory, some methods [17], [20] have been proposed to
achieve competitive accuracy with reasonable GPU mem-
ory requirements.

In this paper, we employ self-supervised learning with
SimCLRv2 [16] as the pre-training method. Based on the
pre-trained model, we evaluate fine-tuning methods utiliz-
ing the distribution cue of unlabeled data to show that the
combination of representation consistency and distribution
cue improves accuracy further.

2.2 Distribution-Based Approach

Semi-supervised deep learning methods using distributions
of unlabeled data have been proposed. In distribution-based
approaches, The feature representation is trained first by
using an objective function related with the distribution,
then the classifier is trained again using the acquired rep-
resentation. The simplest variant is the clustering-based
method, which assumes that the unlabeled dataset has a
cluster structure [21]. In addition, the entropy minimiza-
tion in feature space proposed in [5] assumes that each un-
labeled sample belongs to one of the known classes. Neigh-
bor embedding [18] by Hoffer and Ailon assumes that un-
labeled data are likely to belong to the same class as the
nearest sample in the feature space, and in combination
with entropy minimization, their proposed objective func-
tion achieved high accuracy without data augmentation.
There are some semi-supervised training methods based on
pseudo-labeling, which can be considered as another type of
distribution-based approach. Pseudo-labeling is the method
of learning from pseudo labels which are assigned to un-
labeled data by the model in the middle of training. Be-
cause pseudo labels are decided by the distance from labeled
samples in the feature space, the effect of pseudo labeling
is almost like entropy minimization. In the most simple
method [4], because all unlabeled samples are labeled based
on the classification result, training results are affected by
out-of-distribution samples. Shi et al. [22] proposed more
sophisticated method, in which they set the confidence to
each pseudo-label. The confidence follows the local density
of samples in the feature space so that the effect of out-of-
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distribution samples is attenuated.
Although these approaches are inferior to the

consistency-based approaches in terms of recognition accu-
racy, they do not require the tuning step of creating pseudo
data according to the potential variations of the input data.
Note that the distribution-based approach and consistency-
based approach can be used in combination because they are
complementary.

Neighbor embedding [18] achieves high recognition
accuracy by combining entropy minimization with an ob-
jective function which assumes that unlabeled data are
likely to be labeled similarly to neighboring data. Un-
fortunately, these assumptions cover only local relation-
ships and the global distribution is ignored. Although Shi’s
method [22] also achieves high accuracy by combination
with consistency-based loss, it only considers local distri-
butions through pseudo-labeling.

The conventional distribution-based approaches focus
only on the neighborhood relations of samples, not on how
the entire set of unlabeled data is distributed, especially on
the proportion of each class included. They ignore the class
proportion of unlabeled samples, or implicitly assume that
each class is present in equal proportions, as is done for k-
means clustering.

Our semi-supervised triplet loss proposal addresses this
problem by considering the class ratio of the entire unla-
beled data distribution. Using the class ratio of unlabeled
data, which is defined or estimated in a preliminary step, the
objective function evaluates how the unlabeled data is di-
vided among the classes. Considering local neighborhood
relationships as well as global relationships allows us to fur-
ther improve the accuracy of semi-supervised learning.

2.3 Hybrid Approach

Currently, the state-of-the-art in the semi-supervised image
recognition problem is a combination of consistency-based
approach and pseudo-labeling, such as FixMatch [11] and
CoMatch [12]. FixMatch [11] is based on the combination
of consistency-based loss function and pseudo-labeling pro-
cess. Consistency-based contrastive loss restricts the image
feature from changing according to strong data augmenta-
tion, and pseudo labels are given by classification scores and
thresholding. Although the process flow is a simple combi-
nation, the evaluation results are very good. CoMatch [12] is
also based on the combination of consistency-based loss and
pseudo-labeling. In addition to contrastive loss as like Fix-
Match, CoMatch evaluates feature embedding using pseudo
labels. Using pseudo labels to evaluate feature representa-
tion instead of cross entropy loss enhances representation
learning and further improves classification accuracy. Al-
though these methods show extremely high performance,
there are many parameters to be tuned, such as appropriate
data augmentation settings according to the data and thresh-
old settings for pseudo labeling. Complicated parameters
make it difficult to reproduce reported accuracy. In addition,
all of these parameters are based on assumptions about local

data distribution, and not on assumptions about global dis-
tribution such as the ratio of each class included in unlabeled
data.

In this paper, we show that performance can be im-
proved by assuming a global label distribution from the
model pretrained by SimCLRv2 [16] which is a simple but
powerful consistency-based method. Moreover, since local
distribution-based approaches such as pseudo-labeling and
nearest embedding use clues different from the proposed
method, further performance improvement is expected by
combining these methods.

3. Proposed Method

The proposed method is based on representation learning by
triplet loss function [23]. We extend the triplet loss function,
which is normally applied only to fully supervised data, so
that it can be applied to unsupervised data. We call our pro-
posal semi-supervised triplet loss (SST). We assume the C
classes classification problem in this paper, so each sample
belongs to one of C classes. Some training data are labeled
while the remainder are unlabeled. We denote the labeled
sample set belonging to class i as Di, labeled sample set
not belonging to class i as D\i, and unlabeled sample set as
DU . Of the unlabeled samples, we denote the sample set that
truly belongs to class i as DU

i . The output of the deep neural
network feature extractor is represented by f (x,ϕ), where ϕ
represents the DNN parameters.

3.1 Triplet Loss

Triplet loss [23] is an objective function that can learn fea-
ture representation from labeled data. Given model ϕ and
three input samples (a, p, n), the triplet loss is calculated for
the set of three outputs possible. Here, sample a is called
an anchor, sample p belongs to the same class as the anchor,
while sample n belongs to different class. Feature vectors
f (a,ϕ) and f (p,ϕ) should be similar because they are in
the same class, and conversely f (a,ϕ) and f (n,ϕ) should be
separated. The triplet loss function that realizes these rela-
tionships is written as

Ltri(a, p, n,ϕ) = max(S (a, n,ϕ) − S (a, p,ϕ) + α, 0)

(1a)
(1b)S (a, p,ϕ) = ⟨ f (a,ϕ), f (p,ϕ)⟩ ,

where α is a parameter that controls how far the similarity
between the same classes and the similarity between differ-
ent classes should be; ⟨·, ·⟩ denotes the dot product. If the
difference between the similarity is more than α, the loss
becomes 0. To minimize the triplet loss, Ltri is calculated
for every set of three samples and parameter ϕ is trained so
as to minimize the average of all losses for all classes,

LS
i (ϕ) = E

a∈Di

E
p∈Di\a

E
n∈D\i

Ltri(a, p, n,ϕ), (2)

LS (ϕ) = E
i

LS
i (ϕ), (3)
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where E means the average value. The model parameter ϕ,
which minimizes LS , yields good feature extraction.

For simplicity, parameter ϕ is omitted from the follow-
ing equations.

3.2 Semi-Supervised Triplet Loss

If the training data contains unlabeled samples, the conven-
tional triplet loss cannot be applied for representation learn-
ing. Since unlabeled dataset DU could contain any class
data, treating all its data simply in the same way means
that samples in different classes cannot be separated. There-
fore, we assume the ratio of class i in DU is given by C-
dimensional vector θ (

∑
i θi = 1), similar to the positive-

unlabeled learning method [24], and try to calculate triplet
loss for the unlabeled data based on the assumed ratios. If
the labeled samples and unlabeled samples are independent
and identically distributed, the class ratio is easily estimated
based on the ratio of labeled samples. In this paper, we as-
sume the class ratio of unlabeled data is given or equally
distributed.

First, using class i as anchors and calculating triplet
loss (Eq. (2)) based on the similarities with the unlabeled
data yields the following expression,

(4)LU p
i = Ea∈Di

E
p∈Di\a

E
u∈DU

Ltri(a, p,u)

Here, dataset DU includes samples of various classes, which
are, on average, apportioned in the ratio of θi. Considering
that unlabeled data belonging to class i are denoted as DU

i
and others as DU

\i , Eq. (4) is expressed as follows,

(5)
LU p

i = Ea∈Di

E
p∈Di\a

{θi E
p′∈DU

i

Ltri(a, p, p′)

+ (1 − θi) E
n′∈DU

\i

Ltri(a, p, n′)}.

Because the labeled sample p and the unlabeled sample p′

are originally sampled from the same distribution, the av-
erage of the difference in their similarities from the anchor
should be close to 0. In addition, since the difference be-
tween unlabeled sample n′ and sample p is the almost same
as the conventional triplet loss, it is desirable that the dif-
ference exceeds α. Letting the parameters of the optimized
model be ϕ̃, the average of each triplet loss becomes

E
a∈Di

E
p∈Di\a

E
p′∈DU

i

Ltri(a, p, p′, ϕ̃) = α, (6)

E
a∈Di

E
p∈Di\a

E
n′∈DU

\i

Ltri(a, p, n′, ϕ̃) = 0. (7)

That is, if the representation for semi-supervised data is op-
timized, LU p

i becomes θiα. In order for training to approach
this ideal value, we introduce a loss function that considers
unlabeled data as follows

L̃U p
i = |L

U p
i − θiα|. (8)

Similarly, for a triplet based on the difference between the
similarity of an unlabeled sample and the similarity of a dif-
ferent class sample from the anchor, conditional triplet loss
is expressed as

LUn
i = Ea∈Di

E
u∈DU

E
n∈D\i

Ltri(a,u, n). (9)

Then, dividing DU into DU
i and DU

\i yields

(10)
LUn

i = Ea∈Di

E
n∈D\i

(θi E
p′∈DU

i

Ltri(a, p′, n)

+ (1 − θi) E
n′ ∈DU

\i

Ltri(a, n′, n)).

Because it is desirable that the difference between the simi-
larities of labeled n and unlabeled n′ becomes 0 on average,
and assuming the ideal model parameters ϕ̃ in the same way
as given by Eq. (6) and Eq. (7), the average of triplet losses
becomes

E
a∈Di

E
n∈D\i

E
p′∈DU

i

Ltri(a, p′, n, ϕ̃) = 0, (11)

E
a∈Di

E
n∈D\i

E
n′∈DU

\i

Ltri(a, n′, n, ϕ̃) = α. (12)

The loss function for different class and unlabeled data is
determined as follows:

L̃Un
i = |LUn

i − (1 − θi)α|. (13)

We add the loss functions from the unlabeled samples
to LS calculated from the labeled samples. By weighting
with γ, semi-supervised triplet loss function LS S T is given
as follows:

LS S T = γLS + (1 − γ)E
i
{L̃U p

i + L̃Un
i }. (14)

This proposed loss function is optimized by deep learn-
ing. Triplets of samples for each class are made using the
mini batch approach, and back propagation is applied to
minimize the loss function.

3.3 Combination with Other Approaches

Semi-supervised triplet loss utilizes the class ratio of un-
labeled data as prior-knowledge of the global distribution.
Naturally, optimization based on the assumption of the local
distribution and the consistency of feature representation are
complementary. We combine our method with pre-training
by SimCLRv2 [16] for consistency and neighbor embedding
loss [18] to consider the local distribution.

SimCLR [15], [16] is a pretty simple but strong method
that can acquire consistency without any supervision. We
use open source code by the authors and recommended pa-
rameters for CIFAR-10 to train the CNN model. After train-
ing by SimCLR, we fine-tune the model by applying the pro-
posed loss function.

Neighbor embedding loss [18] is composed of two
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types of entropy minimization. One is for supervised sam-
ples and the other is for unsupervised samples. Entropy min-
imization of supervised samples makes the features in the
same class close while separating the features of the differ-
ent classes. Entropy minimization of unsupervised samples
makes their features approach those of the nearest labeled
sample. Each loss function is expressed as follows,

LNE
S = E

i
E

z1∈D1

· · · E
zC∈DC

E
x∈Di\zi

{− log P(x, i; z1, . . . , zC)}

LNE
U = E

z1∈D1

· · · E
zC∈DZ

E
u∈DU

[−
C∑

i=1

{P(u, i; z1, . . . , zC)

· log P(u, i; z1, . . . , zC)}]

P(u, i; z1, . . . , zC) =
exp{−|| f (u) − f (zi)||2}∑C

j=1 exp{−|| f (u) − f (z j)||2}

where LNE
S means supervised entropy minimization and

LNE
U means unsupervised entropy minimization. Combining

these loss functions yields clusters in feature space while
preserving local structure.

We simply add the neighbor embedding loss function
to our semi-supervised triplet loss as follows,

L = λ1LS S T + λ2LNE
S + λ3LNE

U . (15)

Each loss function can be weighted by λ1, λ2 and λ3. In the
experiments in this paper, we set all λi to 1.

4. Experiments

In order to evaluate the performance of the proposed
method, semi-supervised multi-class classification was per-
formed on the CIFAR10 [25] dataset, the STL10 [26] dataset
and the SVHN [27] dataset. Almost all training samples
were unlabeled and we evaluated the classification score us-
ing the test samples of each dataset.

4.1 Experimental Setup

In this experiment, we show that our proposed loss function
improves accuracy through fine-tuning on a semi-supervised
dataset based on a pre-trained model whose consistency
was already acquired. Specifically, fine-tuning by semi-
supervised triplet loss is performed based on the parame-
ters pre-trained by SimCLRv2. In [16], it is shown that
fine-tuning by cross entropy loss realizes semi-supervised
learning with sufficiently high accuracy, but we assume that
the recognition accuracy can be further improved if the loss
function takes account of the class ratio of unlabeled data.
At the same time, we show that the proposed method is more
effective than conventional approaches [16], [18] based on
the distribution of unlabeled data.

With regard to pre-training, open source code of Sim-
CLR [15], [16] was applied and recommended parameters
were employed. We used ResNet-18 [28] as the CNN
model, and set batch size to 512, dimension size of fea-
ture vector to 512, temperature to 0.5, learning rate to 1.0

and number of train epochs to 1000. As the optimization
method, LARS [29] was used.

In fine-tuning, learning rate and number of training
epochs were heuristically tuned according to the loss func-
tion and dataset. As for the other parameters, we set margin
α to 1, dimension size of feature vector to 512, and weight
γ of Eq. (14) to 0.5. Class ratios θ was set to the true dis-
tribution of the dataset. Last two layers of the model pre-
trained by SimCLRv2 are replaced by two randomly initial-
ized dense layers to allow fine-tuning.

To evaluate recognition accuracy, extracted feature ex-
pressions were converted into class labels by a kNN clas-
sifier, whose parameter K was set to 3. The same amount
of labeled samples was randomly selected from each class,
and the accuracy was evaluated 5 times while changing the
random seed.

4.2 Results

Table 1 shows the performance evaluation results for CI-
FAR10. The CIFAR10 dataset has 50000 training images
and 10000 test images. Labeled samples were randomly
chosen from training images, and the remainder of the train-
ing set were used as unlabeled training data. Pre-training by
SimCLRv2 used all training images. As the number of sam-
ples in each class is balanced in CIFAR10, we set the same
number for each element of parameter θ. The performance
of each method was evaluated using 1000 labeled training
samples (100 samples in each class), 400 samples (40 sam-
ples in each class), and 40 samples (4 samples in each class).
The table shows the average error rate and standard devia-
tion of 5 trials in each condition. All trials used parameters
pre-trained by SimCLRv2 [16]. XE means fine-tuning by
cross entropy loss using only labeled samples, NE means
nearest embedding loss, and SST means semi-supervised
triplet loss. SST+NE means combined loss function of NE
and SST. The accuracy is improved by fine-tuning with con-
sideration of the distribution of unlabeled data using the
model that attained consistency. Semi-supervised triplet loss
matched the recognition accuracy of neighbor embedding
loss, and moreover, combining them improved the accuracy
significantly. This indicates the complementary nature of
neighbor embedding loss, which focuses on the local dis-
tribution, while our proposed loss function focuses on the
global distribution.

Table 2 shows the results for the STL10 dataset, and
Table 3 shows the results for the SVHN dataset. The STL10
dataset has 5000 training images, 8000 test images and
100000 unlabeled images. Labeled samples were randomly
chosen from the training images, and the remainder and all
unlabeled images were used for training as unlabeled data.
Table 2 shows that the accuracy of SST is close to that of
XE, and the effect of SST seems to be small. This is be-
cause true labels of unlabeled images in the STL10 dataset
are not given so that parameter θ is different from the true
distribution. On the other hand, when combined with NE,
SST+NE achieves slightly better accuracy than NE. Despite
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Table 1 Classification accuracy for CIFAR10 dataset. NL indicates the number of labeled samples.

Loss function NL = 1000 NL = 400 NL = 40
XE 83.85 ± 0.59% 81.97 ± 0.91% 69.98 ± 2.12%
NE [18] 85.75 ± 0.28% 84.62 ± 0.30% 73.94 ± 2.83%
SST 84.01 ± 0.56% 82.26 ± 0.93% 74.04 ± 1.51%
SST+NE 87.10 ± 0.42% 86.19 ± 0.59% 77.19 ± 1.21%

Table 2 Classification accuracy for STL10 dataset. NL indicates the number of labeled samples.

Loss function NL = 1000 NL = 400 NL = 40
XE 80.42 ± 0.36% 79.42 ± 0.53% 69.67 ± 2.70%
NE [18] 82.00 ± 0.14% 80.92 ± 0.44% 71.49 ± 2.53%
SST 80.82 ± 0.34% 78.93 ± 0.42% 69.61 ± 2.80%
SST+NE 83.28 ± 0.16% 81.85 ± 0.28% 72.99 ± 2.67%

Table 3 Classification accuracy for SVHN dataset. NL indicates the number of labeled samples.

Loss function NL = 1000 NL = 400 NL = 40
XE 88.44 ± 0.61% 84.49 ± 0.50% 39.80 ± 1.53%
NE [18] 91.40 ± 0.40% 89.01 ± 1.05% 54.72 ± 13.00%
SST 82.28 ± 1.66% 75.61 ± 1.07% 47.25 ± 8.96%
SST+NE 91.22 ± 0.36% 88.93 ± 0.62% 73.47 ± 12.72%

the wrong class ratio parameter, the combination of local
distribution and global distribution cues improved the fea-
ture representation. The SVHN dataset has 73257 training
images, 26032 test images and 531131 extra images. We
randomly chose labeled samples from training and extra im-
ages. The remainder were used as unlabeled samples. Ev-
ery image in the SVHN dataset has a ground truth label,
so parameter θ was set to the true distribution of unlabeled
data. Table 3 shows that SST+NE significantly improved
the accuracy from NE when NL = 40, because the SST loss
function addresses the class unbalance in the unlabeled data.
When NL = 400 or NL = 1000, the effect of SST seems quite
weak. This shows that SST is especially effective when the
labeled samples are sparse in the feature space while the un-
labeled samples are dense.

4.3 Parameter Sensitivity of θ

In our loss function, parameter θ, which controls the distri-
bution of unlabeled data, is of critical importance. Although
parameter θ is determined by the distribution of labeled data,
in actuality, the difference from the true distribution may be
significant if the labeled data is very scant. To evaluate the
sensitivity of θ, we conducted fine-tuning by the loss func-
tion SST+NE with various values of θ. Figure 2 shows the
results for the CIFAR10 dataset with 40 labeled samples.
X-axis in the figure means cosine similarity from true dis-
tribution. Each point denotes the average accuracy using θ
which is in the range of ±0.025 of cosine similarity. Each
error bar represents the standard deviation of 10 trials with
randomly sampled θ. The two dashed lines denote the ac-
curacies of SST+NE and NE in Table 1. When θ was set
to the true distribution, the average accuracy was 0.77, and
without SST loss, the average accuracy became 0.74. Figure
2 shows that the classification accuracy decreases as the co-
sine similarity decreases, but the reduction is limited. Even
if the cosine similarity is less than 0.7, it is still competitive
with the average accuracy offered by NE loss (0.74). This is

Fig. 2 Parameter sensitivity of θ. X-axis denotes cosine similarity be-
tween true distribution and θ, Y-axis denotes classification accuracy of CI-
FAR10 when 40 samples are labeled.

because the penalty to the average of distances (Eq. (8) and
Eq. (13)) is not so strict and the feature distribution of the
original data is kept.

5. Conclusion

In this paper, we proposed a new method of representa-
tion learning that applies triplet loss to the semi-supervised
learning problem. The proposal, semi-supervised triplet loss
(SST) adjusts the similarity between samples so that unla-
beled samples are distributed at an appropriate ratio in the
feature space by explicitly assuming the actual ratio of un-
labeled data. Experiments showed that the proposed loss
function achieved higher accuracy than the conventional
method, especially when combined with a loss function
that considered the local distribution. Although the results
mentioned here are not superior to those of state-of-the-art
methods [11], [12], we did show that fine-tuning by com-
bining our semi-supervised triplet loss with neighbor em-
bedding loss can improve the feature representation yielded
by pre-trained features created by consistency-based self-
supervised learning [16]
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